1
|
Cardile A, Zanrè V, Campagnari R, Asson F, Addo SS, Orlandi E, Menegazzi M. Hyperforin Elicits Cytostatic/Cytotoxic Activity in Human Melanoma Cell Lines, Inhibiting Pro-Survival NF-κB, STAT3, AP1 Transcription Factors and the Expression of Functional Proteins Involved in Mitochondrial and Cytosolic Metabolism. Int J Mol Sci 2023; 24:ijms24021263. [PMID: 36674794 PMCID: PMC9860844 DOI: 10.3390/ijms24021263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Hyperforin (HPF), the main component responsible for the antidepressant action of Hypericum perforatum, displays additional beneficial properties including anti-inflammatory, antimicrobic, and antitumor activities. Among its antitumor effects, HPF activity on melanoma is poorly documented. Melanoma, especially BRAF-mutated melanoma, is still a high-mortality tumor type and the currently available therapies do not provide solutions. We investigated HPF's antimelanoma effectiveness in A375, FO1 and SK-Mel-28 human BRAF-mutated cell lines. Cell viability assays documented that all melanoma cells were affected by low HPF concentrations (EC50% 2-4 µM) in a time-dependent manner. A Br-deoxy-uridine incorporation assay attested a significant reduction of cell proliferation accompanied by decreased expression of cyclin D1 and A2, CDK4 and of the Rb protein phosphorylation, as assessed by immunoblots. In addition, the expression of P21/waf1 and the activated form of P53 were increased in A375 and SK-Mel-28 cells. Furthermore, HPF exerts cytotoxic effects. Apoptosis is induced 24 h after HPF administration, documented by an increase of cleaved-PARP1 and a decrease of both Bcl2 and Bcl-xL expression levels. Autophagy is induced, attested by an augmented LC3B expression and augmentation of the activated form of AMPK. Moreover, HPF lowers GPX4 enzyme expression, suggesting ferroptosis induction. HPF has been reported to activate the TRPC6 Ca++ channel and/or Ca++ and Zn++ release from mitochondria stores, increasing cytosolic Ca++ and Zn++ concentrations. Our data highlighted that HPF affects many cell-signaling pathways, including signaling induced by Ca++, such as FRA1, pcJun and pCREB, the expression or activity of which are increased shortly after treatment. However, the blockage of the TRPC6 Ca++ channel or the use of Ca++ and Zn++ chelators do not hinder HPF cytostatic/cytotoxic activity, suggesting that damages induced in melanoma cells may pass through other pathways. Remarkably, 24 h after HPF treatment, the expression of activated forms of the transcription factors NF-κB P65 subunit and STAT3 are significantly lowered. Several cytosolic (PGM2, LDHA and pPKM2) and mitochondrial (UQCRC1, COX4 and ATP5B) enzymes are downregulated by HPF treatment, suggesting a generalized reduction of vital functions in melanoma cells. In line with these results is the recognized ability of HPF to affect mitochondrial membrane potential by acting as a protonophore. Finally, HPF can hinder both melanoma cell migration and colony formation in soft agar. In conclusion, we provide evidence of the pleiotropic antitumor effects induced by HPF in melanoma cells.
Collapse
Affiliation(s)
- Alessia Cardile
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Valentina Zanrè
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Rachele Campagnari
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Francesca Asson
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Solomon Saforo Addo
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Elisa Orlandi
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
2
|
Chen M, Liu J, Luo H, Duan C, Gao G, Yang H. Increase in membrane surface expression and phosphorylation of TRPC3 related to olfactory dysfunction in α-synuclein transgenic mice. J Cell Mol Med 2022; 26:5008-5020. [PMID: 36029194 PMCID: PMC9549507 DOI: 10.1111/jcmm.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Olfactory impairment is an initial non-motor symptom of Parkinson's disease that causes the deposition of aggregated α-synuclein (α-syn) in olfactory neurons. Transient receptor potential canonical (TRPC) channels are a diverse group of non-selective Ca2+ entry channels involved in the progression or pathogenesis of PD via Ca2+ homeostatic regulation. However, the relationship between TRPC and α-syn pathology in an olfactory system remains unclear. To address this issue, we assessed the olfactory function in α-syn transgenic mice. In contrast with control mice, the transgenic mice exhibited impaired olfaction, TRPC3 activation and apoptotic neuronal cell death in the olfactory system. Similar results were observed in primary cultures of olfactory neurons, that is TRPC3 activation, increasing intracellular Ca2+ concentration and apoptotic cell death in the α-syn-overexpressed neurons. These changes were significantly attenuated by TRPC3 knockdown. Therefore, our findings suggest that TRPC3 activation and calcium dyshomeostasis play a key role in α-syn-induced olfactory dysfunction in mice.
Collapse
Affiliation(s)
- Min Chen
- Department of Neurobiology School of Basic Medical Sciences, Key Laboratory of Neural Regeneration and Repair, Center for Parkinson's Disease, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Guangxi Neurological Disease Clinical Research Center, Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jia Liu
- Department of Neurobiology School of Basic Medical Sciences, Key Laboratory of Neural Regeneration and Repair, Center for Parkinson's Disease, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hanjiang Luo
- Guangxi Neurological Disease Clinical Research Center, Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chunli Duan
- Department of Neurobiology School of Basic Medical Sciences, Key Laboratory of Neural Regeneration and Repair, Center for Parkinson's Disease, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Neurobiology School of Basic Medical Sciences, Key Laboratory of Neural Regeneration and Repair, Center for Parkinson's Disease, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Key Laboratory of Neural Regeneration and Repair, Center for Parkinson's Disease, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Mutations in trpγ, the homologue of TRPC6 autism candidate gene, causes autism-like behavioral deficits in Drosophila. Mol Psychiatry 2022; 27:3328-3342. [PMID: 35501408 PMCID: PMC9708601 DOI: 10.1038/s41380-022-01555-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Autism Spectrum Disorder (ASD) is characterized by impaired social communication, restricted interests, and repetitive and stereotyped behaviors. The TRPC6 (transient receptor potential channel 6) represents an ASD candidate gene under an oligogenic/multifactorial model based on the initial description and cellular characterization of an individual with ASD bearing a de novo heterozygous mutation disrupting TRPC6, together with the enrichment of disruptive TRPC6 variants in ASD cases as compared to controls. Here, we perform a clinical re-evaluation of the initial non-verbal patient, and also present eight newly reported individuals ascertained for ASD and bearing predicted loss-of-function mutations in TRPC6. In order to understand the consequences of mutations in TRPC6 on nervous system function, we used the fruit fly, Drosophila melanogaster, to show that null mutations in transient receptor gamma (trpγ; the fly gene most similar to TRPC6), cause a number of behavioral defects that mirror features seen in ASD patients, including deficits in social interactions (based on courtship behavior), impaired sleep homeostasis (without affecting the circadian control of sleep), hyperactivity in both young and old flies, and defects in learning and memory. Some defects, most notably in sleep, differed in severity between males and females and became normal with age. Interestingly, hyperforin, a TRPC6 agonist and the primary active component of the St. John's wort antidepressant, attenuated many of the deficits expressed by trpγ mutant flies. In summary, our results provide further evidence that the TRPC6 gene is a risk factor for ASD. In addition, they show that the behavioral defects caused by mutations in TRPC6 can be modeled in Drosophila, thereby establishing a paradigm to examine the impact of mutations in other candidate genes.
Collapse
|
4
|
El Hamdaoui Y, Zheng F, Fritz N, Ye L, Tran MA, Schwickert K, Schirmeister T, Braeuning A, Lichtenstein D, Hellmich UA, Weikert D, Heinrich M, Treccani G, Schäfer MKE, Nowak G, Nürnberg B, Alzheimer C, Müller CP, Friedland K. Analysis of hyperforin (St. John's wort) action at TRPC6 channel leads to the development of a new class of antidepressant drugs. Mol Psychiatry 2022; 27:5070-5085. [PMID: 36224261 PMCID: PMC9763113 DOI: 10.1038/s41380-022-01804-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 01/14/2023]
Abstract
St. John's wort is an herb, long used in folk medicine for the treatment of mild depression. Its antidepressant constituent, hyperforin, has properties such as chemical instability and induction of drug-drug interactions that preclude its use for individual pharmacotherapies. Here we identify the transient receptor potential canonical 6 channel (TRPC6) as a druggable target to control anxious and depressive behavior and as a requirement for hyperforin antidepressant action. We demonstrate that TRPC6 deficiency in mice not only results in anxious and depressive behavior, but also reduces excitability of hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. Using electrophysiology and targeted mutagenesis, we show that hyperforin activates the channel via a specific binding motif at TRPC6. We performed an analysis of hyperforin action to develop a new antidepressant drug that uses the same TRPC6 target mechanism for its antidepressant action. We synthesized the hyperforin analog Hyp13, which shows similar binding to TRPC6 and recapitulates TRPC6-dependent anxiolytic and antidepressant effects in mice. Hyp13 does not activate pregnan-X-receptor (PXR) and thereby loses the potential to induce drug-drug interactions. This may provide a new approach to develop better treatments for depression, since depression remains one of the most treatment-resistant mental disorders, warranting the development of effective drugs based on naturally occurring compounds.
Collapse
Affiliation(s)
- Yamina El Hamdaoui
- grid.5802.f0000 0001 1941 7111Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany
| | - Fang Zheng
- grid.5330.50000 0001 2107 3311Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nikolas Fritz
- grid.5802.f0000 0001 1941 7111Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany
| | - Lian Ye
- grid.5802.f0000 0001 1941 7111Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany
| | - Mai Anh Tran
- grid.9613.d0000 0001 1939 2794Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Chemistry and Earth Science, Friedrich Schiller University Jena, Jena, Germany ,grid.5802.f0000 0001 1941 7111Biochemistry, Department of Chemistry, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Kevin Schwickert
- grid.5802.f0000 0001 1941 7111Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany
| | - Tanja Schirmeister
- grid.5802.f0000 0001 1941 7111Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany
| | - Albert Braeuning
- grid.417830.90000 0000 8852 3623Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Dajana Lichtenstein
- grid.417830.90000 0000 8852 3623Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Ute A. Hellmich
- grid.9613.d0000 0001 1939 2794Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Chemistry and Earth Science, Friedrich Schiller University Jena, Jena, Germany ,grid.5802.f0000 0001 1941 7111Biochemistry, Department of Chemistry, Johannes-Gutenberg Universität Mainz, Mainz, Germany ,grid.517250.4Cluster of Excellence “Balance of the Microverse”, Friedrich-Schiller-Uniersität Jena, Jena, Germany ,grid.7839.50000 0004 1936 9721Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt, Germany
| | - Dorothee Weikert
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus Heinrich
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Giulia Treccani
- grid.410607.4Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany ,grid.410607.4Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K. E. Schäfer
- grid.410607.4Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131 Mainz, Germany
| | - Gabriel Nowak
- grid.5522.00000 0001 2162 9631Department of Pharmacobiology, Jagiellonian University Medical College, Krakow, Poland
| | - Bernd Nürnberg
- grid.10392.390000 0001 2190 1447Department of Pharmacology, Experimental Therapy & Toxicology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Christian Alzheimer
- grid.5330.50000 0001 2107 3311Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian P. Müller
- grid.5330.50000 0001 2107 3311Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.11875.3a0000 0001 2294 3534Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - Kristina Friedland
- Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany.
| |
Collapse
|
5
|
Nutraceuticals in mental diseases - Bridging the gap between traditional use and modern pharmacology. Curr Opin Pharmacol 2021; 61:62-68. [PMID: 34628304 DOI: 10.1016/j.coph.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023]
Abstract
In evidence-based pharmacotherapy, the complexity of etiopathogenesis and pathophysiology of mental diseases has attracted comparably little consideration so far. The choice of currently available pharmacotherapies is predominantly guided by specific clinical phenotypes and is limited by low response rates and clinically relevant side effects. Nutraceuticals typically represent multicomponent compounds and may offer high therapeutic potential, by simultaneously addressing multiple aspects in mental disease pathogenesis with rather little side effects. Here, recent pharmacological research on natural products is assessed with focus on a multitarget therapeutic concept, based on shared molecular mechanisms, and in particular, on how far nutraceuticals might address such multitargets. Overcoming deficits regarding clearly defined compositions, concentration-dependent and causative structure-activity-response relationships, evaluation of bioavailability, metabolic fate, and long-term safety are crucial for translating potential plant-based drug candidates into proof-of-concept clinical studies.
Collapse
|
6
|
Sun H, Wang J, Zhen B, Wang X, Suo X, Lin M, Jiang J, Ji T. Polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum pseudohenryi. PHYTOCHEMISTRY 2021; 187:112761. [PMID: 33933827 DOI: 10.1016/j.phytochem.2021.112761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Seven previously unidentified polycyclic polyprenylated acylphloroglucinol (PPAP) derivatives hypseudohenrins A-G, along with six known analogs, were isolated from the aerial portion of Hypericum pseudohenryi. Their structures were determined by NMR, ECD and X-ray crystallographic spectroscopy. These compounds were screened for anti-inflammatory activity, and hypseudohenrins B and G (at the concentration of 10 μM) showed NO production inhibition ratios of 52.56% and 54.01%, respectively, which imply good anti-inflammatory activity. In particular, uraloidin A exhibited an NO inhibition ratio of 90.61%, while that ratio of the positive control compound dexamethasone was 94.88%. Additionally, anti-cancer and neural-protective activities were screened, but none of these compounds showed desirable activity.
Collapse
Affiliation(s)
- Haoran Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jiajia Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Bo Zhen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Xue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Xinyue Suo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Mingbao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
7
|
Budantsev AL, Prikhodko VA, Varganova IV, Okovityi SV. BIOLOGICAL ACTIVITY OF HYPERICUM PERFORATUM L. (HYPERICACEAE): A REVIEW. PHARMACY & PHARMACOLOGY 2021. [DOI: 10.19163/2307-9266-2021-9-1-17-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- A. L. Budantsev
- Komarov Botanical Institute of Russian Academy of Science
2, Prof. Popov St., St. Petersburg, Russia, 197376
| | - V. A. Prikhodko
- Saint Petersburg State Chemical and Pharmaceutical University
14, Prof. Popov St., St. Petersburg, Russia, 197376
| | - I. V. Varganova
- Komarov Botanical Institute of Russian Academy of Science
2, Prof. Popov St., St. Petersburg, Russia, 197376
| | - S. V. Okovityi
- Saint Petersburg State Chemical and Pharmaceutical University
14, Prof. Popov St., St. Petersburg, Russia, 197376
| |
Collapse
|
8
|
Sun HR, Wang JJ, Zhen B, Wang X, Suo XY, Lin MB, Jiang JD, Ji TF. Hypseudohenrins I - K: three new polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum pseudohenryi. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:536-544. [PMID: 33779421 DOI: 10.1080/10286020.2021.1906232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Three previously unidentified polycyclic polyprenylated acylphloroglucinols (PPAPs) derivatives, hypseudohenrins I-K (1-3), along with a known analogue hyphenrone X (4), were isolated from the aerial part of Hypericum pseudohenryi. The structures of the new compounds were elucidated by NMR spectroscopy and ECD calculation. The anti-inflammatory activity of the compounds was evaluated. Compounds 1-3 showed mild anti-inflammatory activity while hyphenrone X showed prominent anti-inflammatory activity.[Formula: see text].
Collapse
Affiliation(s)
- Hao-Ran Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Jia Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Zhen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin-Yue Suo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming-Bao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Teng-Fei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Menegazzi M, Masiello P, Novelli M. Anti-Tumor Activity of Hypericum perforatum L. and Hyperforin through Modulation of Inflammatory Signaling, ROS Generation and Proton Dynamics. Antioxidants (Basel) 2020; 10:antiox10010018. [PMID: 33379141 PMCID: PMC7824709 DOI: 10.3390/antiox10010018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper we review the mechanisms of the antitumor effects of Hypericum perforatum L. (St. John's wort, SJW) and its main active component hyperforin (HPF). SJW extract is commonly employed as antidepressant due to its ability to inhibit monoamine neurotransmitters re-uptake. Moreover, further biological properties make this vegetal extract very suitable for both prevention and treatment of several diseases, including cancer. Regular use of SJW reduces colorectal cancer risk in humans and prevents genotoxic effects of carcinogens in animal models. In established cancer, SJW and HPF can still exert therapeutic effects by their ability to downregulate inflammatory mediators and inhibit pro-survival kinases, angiogenic factors and extracellular matrix proteases, thereby counteracting tumor growth and spread. Remarkably, the mechanisms of action of SJW and HPF include their ability to decrease ROS production and restore pH imbalance in tumor cells. The SJW component HPF, due to its high lipophilicity and mild acidity, accumulates in membranes and acts as a protonophore that hinders inner mitochondrial membrane hyperpolarization, inhibiting mitochondrial ROS generation and consequently tumor cell proliferation. At the plasma membrane level, HPF prevents cytosol alkalization and extracellular acidification by allowing protons to re-enter the cells. These effects can revert or at least attenuate cancer cell phenotype, contributing to hamper proliferation, neo-angiogenesis and metastatic dissemination. Furthermore, several studies report that in tumor cells SJW and HPF, mainly at high concentrations, induce the mitochondrial apoptosis pathway, likely by collapsing the mitochondrial membrane potential. Based on these mechanisms, we highlight the SJW/HPF remarkable potentiality in cancer prevention and treatment.
Collapse
Affiliation(s)
- Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7168
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Via Roma 55, I-56126 Pisa, Italy; (P.M.); (M.N.)
| | - Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Via Roma 55, I-56126 Pisa, Italy; (P.M.); (M.N.)
| |
Collapse
|
10
|
Bicyclic polyprenylated acylphloroglucinols and their derivatives: structural modification, structure-activity relationship, biological activity and mechanism of action. Eur J Med Chem 2020; 205:112646. [PMID: 32791400 DOI: 10.1016/j.ejmech.2020.112646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/22/2022]
Abstract
Bicyclic polyprenylated acylphloroglucinols (BPAPs), the principal bioactive benzophenone products isolated from plants of genera Garcinia and Hypericum, have attracted noticeable attention from the synthetic and biological communities due to their fascinating chemical structures and promising biological activities. However, the potential drug interaction, undesired physiochemical properties and toxicity have limited their potential use and development. In the last decade, pharmaceutical research on the structural modifications, structure-activity relationships (SARs) and mechanisms of action of BPAPs has been greatly developed to overcome the challenges. A comprehensive review of these scientific literature is extremely needed to give an overview of the rapidly emerging area and facilitate research related to BPAPs. This review, containing over 226 references, covers the progress made in the chemical synthesis-based structure modifications, SARs and the mechanism of action of BPAPs in vivo and vitro. The most relevant articles will focus on the discovery of lead compounds via synthetic modifications and the important BPAPs for which the direct targets have been deciphered. From this review, several key points of the SARs and mode of actions of this novel class of compounds have been summarized. The perspective and future direction of the research on BPAPs are concluded. This review would be helpful to get a better grasp of medicinal research of BPAPs and become a compelling guide for chemists dedicated to the synthesis of these compounds.
Collapse
|
11
|
Traeger A, Voelker S, Shkodra-Pula B, Kretzer C, Schubert S, Gottschaldt M, Schubert US, Werz O. Improved Bioactivity of the Natural Product 5-Lipoxygenase Inhibitor Hyperforin by Encapsulation into Polymeric Nanoparticles. Mol Pharm 2020; 17:810-816. [PMID: 31967843 DOI: 10.1021/acs.molpharmaceut.9b01051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hyperforin, a highly hydrophobic prenylated acylphloroglucinol from the medical plant St. John's Wort, possesses anti-inflammatory properties and suppresses the formation of proinflammatory leukotrienes by inhibiting the key enzyme 5-lipoxygenase (5-LO). Despite its strong effectiveness and the unique molecular mode of interference with 5-LO, the high lipophilicity of hyperforin hampers its efficacy in vivo and, thus, impairs its therapeutic value, especially because of poor water solubility and strong plasma (albumin) protein binding. To overcome these hurdles that actually apply to many other hydrophobic 5-LO inhibitors, we have encapsulated hyperforin into nanoparticles (NPs) consisting of acetalated dextran (AcDex) to avoid plasma protein binding and thus improve its cellular supply under physiologically relevant conditions. Encapsulated hyperforin potently suppressed 5-LO activity in human neutrophils, but it failed to interfere with 5-LO activity in a cell-free assay, as expected. In the presence of human serum albumin (HSA), hyperforin was unable to inhibit cellular 5-LO activity, seemingly because of strong albumin binding. However, when encapsulated into NPs, hyperforin caused strong inhibition of 5-LO activity in the presence of HSA. Together, encapsulation of the highly hydrophobic hyperforin as a representative of lipophilic 5-LO inhibitors into AcDex-based NPs allows for efficient inhibition of 5-LO activity in neutrophils in the presence of albumin because of effective uptake and circumvention of plasma protein binding.
Collapse
Affiliation(s)
- Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Susanna Voelker
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Blerina Shkodra-Pula
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.,Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Oliver Werz
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| |
Collapse
|
12
|
Xu WJ, Tang PF, Lu WJ, Zhang YQ, Wang XB, Zhang H, Luo J, Kong LY. Hyperberins A and B, Type B Polycyclic Polyprenylated Acylphloroglucinols with Bicyclo[5.3.1]hendecane Core from Hypericum beanii. Org Lett 2019; 21:8558-8562. [DOI: 10.1021/acs.orglett.9b03098] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wen-Jun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Peng-Fei Tang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Wei-Jia Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Yan-Qiu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
13
|
Wen S, Boyce JH, Kandappa SK, Sivaguru J, Porco JA. Regiodivergent Photocyclization of Dearomatized Acylphloroglucinols: Asymmetric Syntheses of (-)-Nemorosone and (-)-6- epi-Garcimultiflorone A. J Am Chem Soc 2019; 141:11315-11321. [PMID: 31264859 DOI: 10.1021/jacs.9b05600] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regiodivergent photocyclization of dearomatized acylphloroglucinol substrates has been developed to produce type A polycyclic polyprenylated acylphloroglucinol (PPAP) derivatives using an excited-state intramolecular proton transfer (ESIPT) process. Using this strategy, we achieved the enantioselective total syntheses of the type A PPAPs (-)-nemorosone and (-)-6-epi-garcimultiflorone A. Diverse photocyclization substrates have been investigated leading to divergent photocyclization processes as a function of tether length. Photophysical studies were performed, and photocyclization mechanisms were proposed based on investigation of various substrates as well as deuterium-labeling experiments.
Collapse
Affiliation(s)
- Saishuai Wen
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Jonathan H Boyce
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Sunil K Kandappa
- Center for Photochemical Sciences and the Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403-0001 , United States
| | - Jayaraman Sivaguru
- Center for Photochemical Sciences and the Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403-0001 , United States
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|
14
|
Yang XW, Grossman RB, Xu G. Research Progress of Polycyclic Polyprenylated Acylphloroglucinols. Chem Rev 2018; 118:3508-3558. [PMID: 29461053 DOI: 10.1021/acs.chemrev.7b00551] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of hybrid natural products sharing the mevalonate/methylerythritol phosphate and polyketide biosynthetic pathways and showing considerable structure and bioactivity diversity. This review discusses the progress of research into the chemistry and biological activity of 421 natural PPAPs in the past 11 years as well as in-depth studies of biological activities and total synthesis of some PPAPs isolated before 2006. We created an online database of all PPAPs known to date at http://www.chem.uky.edu/research/grossman/PPAPs . Two subclasses of biosynthetically related metabolites, spirocyclic PPAPs with octahydrospiro[cyclohexan-1,5'-indene]-2,4,6-trione core and complicated PPAPs produced by intramolecular [4 + 2] cycloadditions of MPAPs, are brought into the PPAP family. Some PPAPs' relative or absolute configurations are reassigned or critically discussed, and the confusing trivial names in PPAPs investigations are clarified. Pharmacologic studies have revealed a new molecular mechanism whereby hyperforin and its derivatives regulate neurotransmitter levels by activating TRPC6 as well as the antitumor mechanism of garcinol and its analogues. The antineoplastic potential of some type B PPAPs such as oblongifolin C and guttiferone K has increased significantly. As a result of the recent appearances of innovative synthetic methods and strategies, the total syntheses of 22 natural PPAPs including hyperforin, garcinol, and plukenetione A have been accomplished.
Collapse
Affiliation(s)
- Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| | - Robert B Grossman
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , United States
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| |
Collapse
|
15
|
Markó L, Mannaa M, Haschler TN, Krämer S, Gollasch M. Renoprotection: focus on TRPV1, TRPV4, TRPC6 and TRPM2. Acta Physiol (Oxf) 2017; 219:589-612. [PMID: 28028935 DOI: 10.1111/apha.12828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Members of the transient receptor potential (TRP) cation channel receptor family have unique sites of regulatory function in the kidney which enables them to promote regional vasodilatation and controlled Ca2+ influx into podocytes and tubular cells. Activated TRP vanilloid 1 receptor channels (TRPV1) have been found to elicit renoprotection in rodent models of acute kidney injury following ischaemia/reperfusion. Transient receptor potential cation channel, subfamily C, member 6 (TRPC6) in podocytes is involved in chronic proteinuric kidney disease, particularly in focal segmental glomerulosclerosis (FSGS). TRP vanilloid 4 receptor channels (TRPV4) are highly expressed in the kidney, where they induce Ca2+ influx into endothelial and tubular cells. TRP melastatin (TRPM2) non-selective cation channels are expressed in the cytoplasm and intracellular organelles, where their inhibition ameliorates ischaemic renal pathology. Although some of their basic properties have been recently identified, the renovascular role of TRPV1, TRPV4, TRPC6 and TRPM2 channels in disease states such as obesity, hypertension and diabetes is largely unknown. In this review, we discuss recent evidence for TRPV1, TRPV4, TRPC6 and TRPM2 serving as potential targets for acute and chronic renoprotection in chronic vascular and metabolic disease.
Collapse
Affiliation(s)
- L. Markó
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
| | - M. Mannaa
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - T. N. Haschler
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - S. Krämer
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - M. Gollasch
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
| |
Collapse
|
16
|
Soni H, Adebiyi A. TRPC6 channel activation promotes neonatal glomerular mesangial cell apoptosis via calcineurin/NFAT and FasL/Fas signaling pathways. Sci Rep 2016; 6:29041. [PMID: 27383564 PMCID: PMC4935859 DOI: 10.1038/srep29041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023] Open
Abstract
Glomerular mesangial cell (GMC) proliferation and death are involved in the pathogenesis of glomerular disorders. The mechanisms that control GMC survival are poorly understood, but may include signal transduction pathways that are modulated by changes in intracellular Ca2+ ([Ca2+]i) concentration. In this study, we investigated whether activation of the canonical transient receptor potential (TRPC) 6 channels and successive [Ca2+]i elevation alter neonatal GMC survival. Hyperforin (HF)-induced TRPC6 channel activation increased [Ca2+]i concentration, inhibited proliferation, and triggered apoptotic cell death in primary neonatal pig GMCs. HF-induced neonatal GMC apoptosis was not associated with oxidative stress. However, HF-induced TRPC6 channel activation stimulated nuclear translocation of the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). HF also increased cell death surface receptor Fas ligand (FasL) level and caspase-8 activity in the cells; effects mitigated by [Ca2+]i chelator BAPTA, calcineurin/NFAT inhibitor VIVIT, and TRPC6 channel knockdown. Accordingly, HF-induced neonatal GMC apoptosis was attenuated by BAPTA, VIVIT, Fas blocking antibody, and a caspase-3/7 inhibitor. These findings suggest that TRPC6 channel-dependent [Ca2+]i elevation and the ensuing induction of the calcineurin/NFAT, FasL/Fas, and caspase signaling cascades promote neonatal pig GMC apoptosis.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology University of Tennessee Health Science Center, Memphis TN, USA
| | - Adebowale Adebiyi
- Department of Physiology University of Tennessee Health Science Center, Memphis TN, USA
| |
Collapse
|