1
|
Zhang B, Li Y, Liu N, Liu B. AP39, a novel mitochondria-targeted hydrogen sulfide donor ameliorates doxorubicin-induced cardiotoxicity by regulating the AMPK/UCP2 pathway. PLoS One 2024; 19:e0300261. [PMID: 38568919 PMCID: PMC10990198 DOI: 10.1371/journal.pone.0300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum, highly effective antitumor agent; however, its cardiotoxicity has greatly limited its use. Hydrogen sulfide (H2S) is an endogenous gaseous transmitter that exerts cardioprotective effects via the regulation of oxidative stress and apoptosis and maintenance of mitochondrial function, among other mechanisms. AP39 is a novel mitochondria-targeted H2S donor that, at appropriate concentrations, attenuates intracellular oxidative stress damage, maintains mitochondrial function, and ameliorates cardiomyocyte injury. In this study, DOX-induced cardiotoxicity models were established using H9c2 cells and Sprague-Dawley rats to evaluate the protective effect of AP39 and its mechanisms of action. Both in vivo and in vitro experiments showed that DOX induces oxidative stress injury, apoptosis, and mitochondrial damage in cardiomyocytes and decreases the expression of p-AMPK/AMPK and UCP2. All DOX-induced changes were attenuated by AP39 treatment. Furthermore, the protective effect of AP39 was significantly attenuated by the inhibition of AMPK and UCP2. The results suggest that AP39 ameliorates DOX-induced cardiotoxicity by regulating the expression of AMPK/UCP2.
Collapse
Affiliation(s)
- Bin Zhang
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Yangxue Li
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Ning Liu
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Liu
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| |
Collapse
|
2
|
Gan L, Cheng P, Wu J, Li Q, Pan J, Ding Y, Gao X, Chen L. Hydrogen Sulfide Promotes Postnatal Cardiomyocyte Proliferation by Upregulating SIRT1 Signaling Pathway. Int Heart J 2024; 65:506-516. [PMID: 38825495 DOI: 10.1536/ihj.23-370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Hydrogen sulfide (H2S) has been identified as a novel gasotransmitter and a substantial antioxidant that can activate various cellular targets to regulate physiological and pathological processes in mammals. However, under physiological conditions, it remains unclear whether it is involved in regulating cardiomyocyte (CM) proliferation during postnatal development in mice. This study mainly aimed to evaluate the role of H2S in postnatal CM proliferation and its regulating molecular mechanisms. We found that sodium hydrosulfide (NaHS, the most widely used H2S donor, 50-200 μM) increased neonatal mouse primary CM proliferation in a dose-dependent manner in vitro. Consistently, exogenous administration of H2S also promoted CM proliferation and increased the total number of CMs at postnatal 7 and 14 days in vivo. Moreover, we observed that the protein expression of SIRT1 was significantly upregulated after NaHS treatment. Inhibition of SIRT1 with EX-527 or si-SIRT1 decreased CM proliferation, while enhancement of the activation of SIRT1 with SRT1720 promoted CM proliferation. Meanwhile, pharmacological and genetic blocking of SIRT1 repressed the effect of NaHS on CM proliferation. Taken together, these results reveal that H2S plays a promotional role in proliferation of CMs in vivo and in vitro and SIRT1 is required for H2S-mediated CM proliferation, which indicates that H2S may be a potential modulator for heart development in postnatal time window.
Collapse
Affiliation(s)
- Lu Gan
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Peng Cheng
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Jieyun Wu
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Qiyong Li
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
| | - Jigang Pan
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University
| | - Yan Ding
- Department of Histoembryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Xiufeng Gao
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Li Chen
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| |
Collapse
|
3
|
Spinelli S, Guida L, Passalacqua M, Magnone M, Cossu V, Sambuceti G, Marini C, Sturla L, Zocchi E. Abscisic Acid and Its Receptors LANCL1 and LANCL2 Control Cardiomyocyte Mitochondrial Function, Expression of Contractile, Cytoskeletal and Ion Channel Proteins and Cell Proliferation via ERRα. Antioxidants (Basel) 2023; 12:1692. [PMID: 37759995 PMCID: PMC10526111 DOI: 10.3390/antiox12091692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The cross-kingdom stress hormone abscisic acid (ABA) and its mammalian receptors LANCL1 and LANCL2 regulate the response of cardiomyocytes to hypoxia by activating NO generation. The overexpression of LANCL1/2 increases transcription, phosphorylation and the activity of eNOS and improves cell vitality after hypoxia/reoxygenation via the AMPK/PGC-1α axis. Here, we investigated whether the ABA/LANCL system also affects the mitochondrial oxidative metabolism and structural proteins. Mitochondrial function, cell cycle and the expression of cytoskeletal, contractile and ion channel proteins were studied in H9c2 rat cardiomyoblasts overexpressing or silenced by LANCL1 and LANCL2, with or without ABA. Overexpression of LANCL1/2 significantly increased, while silencing conversely reduced the mitochondrial number, OXPHOS complex I, proton gradient, glucose and palmitate-dependent respiration, transcription of uncoupling proteins, expression of proteins involved in cytoskeletal, contractile and electrical functions. These effects, and LANCL1/2-dependent NO generation, are mediated by transcription factor ERRα, upstream of the AMPK/PGC1-α axis and transcriptionally controlled by the LANCL1/2-ABA system. The ABA-LANCL1/2 hormone-receptor system controls fundamental aspects of cardiomyocyte physiology via an ERRα/AMPK/PGC-1α signaling axis and ABA-mediated targeting of this axis could improve cardiac function and resilience to hypoxic and dysmetabolic conditions.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratorio di Nefrologia Molecolare, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Lucrezia Guida
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Mirko Magnone
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Vanessa Cossu
- Section Human Anatomy, Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy;
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (G.S.); (C.M.)
| | - Gianmario Sambuceti
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (G.S.); (C.M.)
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy
| | - Cecilia Marini
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (G.S.); (C.M.)
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20100 Milan, Italy
| | - Laura Sturla
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Elena Zocchi
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| |
Collapse
|
4
|
A highly sensitive and specific luminescent MOF determines nitric oxide production and quantifies hydrogen sulfide-mediated inhibition of nitric oxide in living cells. Mikrochim Acta 2023; 190:127. [PMID: 36897440 DOI: 10.1007/s00604-023-05660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/25/2022] [Indexed: 03/11/2023]
Abstract
The synthesis of a novel carboxylate-type organic linker-based luminescent MOF (Zn(H2L) (L1)) (named PUC2) (H2L = 2-aminoterephtalic acid, L1 = 1-(3-aminopropyl) imidazole) is reported by the solvothermal method and comprehensively characterized using single-crystal XRD, PXRD, FTIR, TGA, XPS, FESEM, HRTEM, and BET. PUC2 selectively reacts with nitric oxide (▪NO) with a detection limit of 0.08 µM, and a quenching constant (0.5 × 104 M-1) indicating a strong interaction with ▪NO. PUC2 sensitivity remains unaffected by cellular proteins or biologically relevant metals (Cu2+/ Fe3+/Mg2+/ Na+/K+/Zn2+), RNS/ROS, or H2S to score ▪NO in living cells. Lastly, we used PUC2 to demonstrate that H2S inhibition increases ▪NO production by ~ 14-30% in various living cells while exogenous H2S suppresses ▪NO production, indicating that the modulation of cellular ▪NO production by H2S is rather generic and not restricted to a particular cell type. In conclusion, PUC2 can successfully detect ▪NO production in living cells and environmental samples with considerable potential for its application in improving the understanding of the role of ▪NO in biological samples and study the inter-relationship between ▪NO and H2S.
Collapse
|
5
|
Li M, Tan H, Gao T, Han L, Teng X, Wang F, Zhang X. Gypensapogenin I Ameliorates Isoproterenol (ISO)-Induced Myocardial Damage through Regulating the TLR4/NF-κB/NLRP3 Pathway. Molecules 2022; 27:5298. [PMID: 36014544 PMCID: PMC9416370 DOI: 10.3390/molecules27165298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Myocardial fibrosis (MF) is a common pathological feature of many heart diseases and seriously threatens the normal activity of the heart. Jiaogulan (Gynostemma pentaphyllum) tea is a functional food that is commercially available worldwide. Gypensapogenin I (Gyp I), which is a novel dammarane-type saponin, was obtained from the hydrolysates of total gypenosides. It has been reported to exert a beneficial anti-inflammatory effect. In our study, we attempted to investigate the efficiency and possible molecular mechanism of Gyp I in cardiac injury treatment induced by ISO. In vitro, Gyp I was found to increase the survival rate of H9c2 cells and inhibit apoptosis. Combined with molecular docking and Western blot analysis, Gyp I was confirmed to regulate the TLR4/NF-κB/NLRP3 signaling pathway. In vivo, C57BL6 mice were subcutaneously injected with 10 mg/kg ISO to induce heart failure. Mice were given a gavage of Gyp I (10, 20, or 40 mg/kg/d for three weeks). Pathological alterations, fibrosis-, inflammation-, and apoptosis-related molecules were examined. By means of cardiac function detection, biochemical index analysis, QRT-PCR monitoring, histopathological staining, immunohistochemistry, and Western blot analysis, it was elucidated that Gyp I could improve cardiac dysfunction, alleviate collagen deposition, and reduce myocardial fibrosis (MF). In summary, we reported for the first time that Gyp I showed good myocardial protective activity in vitro and in vivo, and its mechanism was related to the TLR4/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
6
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
7
|
Qi W, Man L, Suguro S, Zhao Y, Quan H, Huang C, Ma H, Guan H, Zhu Y. Endocrine effects of three common gas signaling molecules in humans: A literature review. Front Endocrinol (Lausanne) 2022; 13:1074638. [PMID: 36568094 PMCID: PMC9780443 DOI: 10.3389/fendo.2022.1074638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Gases such as hydrogen sulfide, nitric oxide and sulfur dioxide have important regulatory effects on the endocrine and physiological processes of the body and are collectively referred to as "gas signaling molecules". These gas signaling molecules are also closely related to Alzheimer's disease, the inflammatory response and depression. In this paper, we introduce the production and metabolic pathways of NO, H2S and SO2 in living organisms and review the regulatory functions of gas signaling molecules in the endocrine system and their mechanisms in relation to their clinical applications. This work will provide a basis for finding targets for intervention and establishing novel prevention and treatment strategies for related diseases.
Collapse
Affiliation(s)
- Wei Qi
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
| | - Luo Man
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Sei Suguro
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Shatin, China
| | - Yidan Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
| | - Heng Quan
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Chuoji Huang
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
| | - Haoran Ma
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Haoran Guan
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
- *Correspondence: Yizhun Zhu,
| |
Collapse
|
8
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
9
|
Fan D, Huang H, Wang X, Liu J, Liu B, Yin F. Inverse association of plasma hydrogen sulfide levels with visceral fat area among Chinese young men: a cross-sectional study. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:269-276. [PMID: 33740335 PMCID: PMC10065337 DOI: 10.20945/2359-3997000000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective To investigate the association between plasma Hydrogen Sulfide (H2S) levels and visceral fat area (VFA) among Chinese young men. Methods This cross-sectional study involved 156 Chinese male subjects, aged 18-45 years, who visited the First Hospital of Qinhuangdao (Hebei, China) in 2014 for annual health check-up. Participants were categorized into: low (VFA < 75.57 cm2), medium (75.57 cm2 ≤ VFA<100.37 cm2), and high (VFA ≥ 100.37 cm2) (n = 52/group). We estimated VFA and plasma H2S levels by using bioelectrical impedance analysis and a fluorescence probe-based approach, respectively. The associations of H2S with VFA and obesity anthropometric measures were assessed. Results In the high VFA group, the body mass index (BMI, 30.4 ± 2.45 kg/m2), total body fat (TBF, 27.9 ± 3.23 kg), plasma H2S (3.5 µmol/L), free fatty acid (FFA, 0.6 ± 0.24 mmol/L), triglyceride (TG, 2.0 mmol/L), and total cholesterol (TC, 5.5 ± 1.02 mmol/L) levels were significantly higher than that of those of the low and medium VFA groups, respectively (P < 0.05). Plasma H2S levels were found to be inversely correlated with VFA, TBF, waist circumference, BMI, FFA, LnFINS, LnHOMA-IR, LnTG, TC, and LDL-C (P < 0.05). Multiple backward stepwise regression analysis revealed an inverse correlation of plasma H2S levels with FFA (β = -0.214, P = 0.005) and VFA (β = -0.429, P < 0.001), independent of adiposity measures and other confounding factors. Conclusion VFA was independently and inversely associated with plasma H2S levels among Chinese young men. Therefore, determining plasma H2S levels could aid in the assessment of abnormal VAT distribution.
Collapse
Affiliation(s)
- Dongmei Fan
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Huiyan Huang
- Department of Endocrinology, Dalian Hospital affiliated to Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing Wang
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Junru Liu
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Bowei Liu
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Fuzai Yin
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China,
| |
Collapse
|
10
|
da Silva GM, da Silva MC, Nascimento DVG, Lima Silva EM, Gouvêa FFF, de França Lopes LG, Araújo AV, Ferraz Pereira KN, de Queiroz TM. Nitric Oxide as a Central Molecule in Hypertension: Focus on the Vasorelaxant Activity of New Nitric Oxide Donors. BIOLOGY 2021; 10:1041. [PMID: 34681140 PMCID: PMC8533285 DOI: 10.3390/biology10101041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases include all types of disorders related to the heart or blood vessels. High blood pressure is an important risk factor for cardiac complications and pathological disorders. An increase in circulating angiotensin-II is a potent stimulus for the expression of reactive oxygen species and pro-inflammatory cytokines that activate oxidative stress, perpetuating a deleterious effect in hypertension. Studies demonstrate the capacity of NO to prevent platelet or leukocyte activation and adhesion and inhibition of proliferation, as well as to modulate inflammatory or anti-inflammatory reactions and migration of vascular smooth muscle cells. However, in conditions of low availability of NO, such as during hypertension, these processes are impaired. Currently, there is great interest in the development of compounds capable of releasing NO in a modulated and stable way. Accordingly, compounds containing metal ions coupled to NO are being investigated and are widely recognized as having great relevance in the treatment of different diseases. Therefore, the exogenous administration of NO is an attractive and pharmacological alternative in the study and treatment of hypertension. The present review summarizes the role of nitric oxide in hypertension, focusing on the role of new NO donors, particularly the metal-based drugs and their protagonist activity in vascular function.
Collapse
Affiliation(s)
- Gabriela Maria da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Déborah Victória Gomes Nascimento
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Ellen Mayara Lima Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Fabíola Furtado Fialho Gouvêa
- School of Technical Health, Health Sciences Center, Federal University of Paraíba, João Pessoa 58.051-900, PB, Brazil;
| | - Luiz Gonzaga de França Lopes
- Laboratory of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza 60.020-181, CE, Brazil;
| | - Alice Valença Araújo
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Kelli Nogueira Ferraz Pereira
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| |
Collapse
|
11
|
Abstract
Nitric oxide, studied to evaluate its role in cardiovascular physiology, has cardioprotective and therapeutic effects in cellular signaling, mitochondrial function, and in regulating inflammatory processes. Heme oxygenase (major role in catabolism of heme into biliverdin, carbon monoxide (CO), and iron) has similar effects as well. CO has been suggested as the molecule that is responsible for many of the above mentioned cytoprotective and therapeutic pathways as CO is a signaling molecule in the control of physiological functions. This is counterintuitive as toxic effects are related to its binding to hemoglobin. However, CO is normally produced in the body. Experimental evidence indicates that this toxic gas, CO, exerts cytoprotective properties related to cellular stress including the heart and is being assessed for its cytoprotective and cytotherapeutic properties. While survival of adult cardiomyocytes depends on oxidative phosphorylation (survival and resulting cardiac function is impaired by mitochondrial damage), mitochondrial biogenesis is modified by the heme oxygenase-1/CO system and can result in promotion of mitochondrial biogenesis by associating mitochondrial redox status to the redox-active transcription factors. It has been suggested that the heme oxygenase-1/CO system is important in differentiation of embryonic stem cells and maturation of cardiomyocytes which is thought to mitigate progression of degenerative cardiovascular diseases. Effects on other cardiac cells are being studied. Acute exposure to air pollution (and, therefore, CO) is associated with cardiovascular mortality, myocardial infarction, and heart failure, but changes in the endogenous heme oxygenase-1 system (and, thereby, CO) positively affect cardiovascular health. We will review the effect of CO on heart health and function in this article.
Collapse
Affiliation(s)
- Vicki L Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Tomasova L, Grman M, Misak A, Kurakova L, Ondriasova E, Ondrias K. Cardiovascular "Patterns" of H 2S and SSNO --Mix Evaluated from 35 Rat Hemodynamic Parameters. Biomolecules 2021; 11:biom11020293. [PMID: 33669309 PMCID: PMC7920056 DOI: 10.3390/biom11020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
This work is based on the hypothesis that it is possible to characterize the cardiovascular system just from the detailed shape of the arterial pulse waveform (APW). Since H2S, NO donor S-nitrosoglutathione (GSNO) and their H2S/GSNO products (SSNO−-mix) have numerous biological actions, we aimed to compare their effects on APW and to find characteristic “patterns” of their actions. The right jugular vein of anesthetized rats was cannulated for i.v. administration of the compounds. The left carotid artery was cannulated to detect APW. From APW, 35 hemodynamic parameters (HPs) were evaluated. H2S transiently influenced all 35 HPs and from their cross-relationships to systolic blood pressure “patterns” and direct/indirect signaling pathways of the H2S effect were proposed. The observed “patterns” were mostly different from the published ones for GSNO. Effect of SSNO−-mix (≤32 nmol kg−1) on blood pressure in the presence or absence of a nitric oxide synthase inhibitor (L-NAME) was minor in comparison to GSNO, suggesting that the formation of SSNO−-mix in blood diminished the hemodynamic effect of NO. The observed time-dependent changes of 35 HPs, their cross-relationships and non-hysteresis/hysteresis profiles may serve as “patterns” for the conditions of a transient decrease/increase of blood pressure caused by H2S.
Collapse
Affiliation(s)
- Lenka Tomasova
- Biomedical Research Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 811 04 Bratislava, Slovakia; (L.T.); (M.G.); (A.M.)
| | - Marian Grman
- Biomedical Research Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 811 04 Bratislava, Slovakia; (L.T.); (M.G.); (A.M.)
| | - Anton Misak
- Biomedical Research Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 811 04 Bratislava, Slovakia; (L.T.); (M.G.); (A.M.)
| | - Lucia Kurakova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 814 99 Bratislava, Slovakia; (L.K.); (E.O.)
| | - Elena Ondriasova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 814 99 Bratislava, Slovakia; (L.K.); (E.O.)
| | - Karol Ondrias
- Biomedical Research Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 811 04 Bratislava, Slovakia; (L.T.); (M.G.); (A.M.)
- Correspondence: ; Tel.: +421-908577943
| |
Collapse
|
13
|
Rozza AM, Menyhárd DK, Oláh J. Gas Sensing by Bacterial H-NOX Proteins: An MD Study. Molecules 2020; 25:molecules25122882. [PMID: 32585836 PMCID: PMC7356049 DOI: 10.3390/molecules25122882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Gas sensing is crucial for both prokaryotes and eukaryotes and is primarily performed by heme-based sensors, including H-NOX domains. These systems may provide a new, alternative mode for transporting gaseous molecules in higher organisms, but for the development of such systems, a detailed understanding of the ligand-binding properties is required. Here, we focused on ligand migration within the protein matrix: we performed molecular dynamics simulations on three bacterial (Ka, Ns and Cs) H-NOX proteins and studied the kinetics of CO, NO and O2 diffusion. We compared the response of the protein structure to the presence of ligands, diffusion rate constants, tunnel systems and storage pockets. We found that the rate constant for diffusion decreases in the O2 > NO > CO order in all proteins, and in the Ns > Ks > Cs order if single-gas is considered. Competition between gases seems to seriously influence the residential time of ligands spent in the distal pocket. The channel system is profoundly determined by the overall fold, but the sidechain pattern has a significant role in blocking certain channels by hydrophobic interactions between bulky groups, cation-π interactions or hydrogen bonding triads. The majority of storage pockets are determined by local sidechain composition, although certain functional cavities, such as the distal and proximal pockets are found in all systems. A major guideline for the design of gas transport systems is the need to chemically bind the gas molecule to the protein, possibly joining several proteins with several heme groups together.
Collapse
Affiliation(s)
- Ahmed M. Rozza
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology, Budapest Szent Gellért tér 4, H-1111 Budapest, Hungary;
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Dóra K. Menyhárd
- Laboratory of Structural Chemistry and Biology & MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
- Correspondence: (D.K.M.); (J.O.)
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology, Budapest Szent Gellért tér 4, H-1111 Budapest, Hungary;
- Correspondence: (D.K.M.); (J.O.)
| |
Collapse
|
14
|
Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4105382. [PMID: 32064023 PMCID: PMC6998763 DOI: 10.1155/2020/4105382] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Harmful, stressful conditions or events in the cardiovascular system result in cellular damage, inflammation, and fibrosis. Currently, there is no targeted therapy for myocardial fibrosis, which is highly associated with a large number of cardiovascular diseases and can lead to fatal heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter similar to nitric oxide and carbon monoxide. H2S is involved in the suppression of oxidative stress, inflammation, and cellular death in the cardiovascular system. The level of H2S in the body can be boosted by stimulating its synthesis or supplying it exogenously with a simple H2S donor with a rapid- or slow-releasing mode, an organosulfur compound, or a hybrid with known drugs (e.g., aspirin). Hypertension, myocardial infarction, and inflammation are exaggerated when H2S is reduced. In addition, the exogenous delivery of H2S mitigates myocardial fibrosis caused by various pathological conditions, such as a myocardial infarct, hypertension, diabetes, or excessive β-adrenergic stimulation, via its involvement in a variety of signaling pathways. Numerous experimental findings suggest that H2S may work as a potential alternative for the management of myocardial fibrosis. In this review, the antifibrosis role of H2S is briefly addressed in order to gain insight into the development of novel strategies for the treatment of myocardial fibrosis.
Collapse
|
15
|
Suchland B, Malassa A, Görls H, Krieck S, Westerhausen M. Iron(I)‐Based Carbonyl Complexes with Bridging Thiolate Ligands as Light‐Triggered CO Releasing Molecules (photoCORMs). Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Benedikt Suchland
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Astrid Malassa
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Helmar Görls
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Sven Krieck
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Matthias Westerhausen
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| |
Collapse
|
16
|
Helmy MM, Helmy MW, El-Mas MM. Upregulation of cystathionine-γ-lyase/hydrogen sulfide pathway underlies the celecoxib counteraction of cyclosporine-induced hypertension and renal insult in rats. Prostaglandins Other Lipid Mediat 2019; 141:1-10. [DOI: 10.1016/j.prostaglandins.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
|
17
|
Soboleva T, Berreau LM. 3-Hydroxyflavones and 3-Hydroxy-4-oxoquinolines as Carbon Monoxide-Releasing Molecules. Molecules 2019; 24:E1252. [PMID: 30935018 PMCID: PMC6479552 DOI: 10.3390/molecules24071252] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Carbon monoxide-releasing molecules (CORMs) that enable the delivery of controlled amounts of CO are of strong current interest for applications in biological systems. In this review, we examine the various conditions under which CO is released from 3-hydroxyflavones and 3-hydroxy-4-oxoquinolines to advance the understanding of how these molecules, or derivatives thereof, may be developed as CORMs. Enzymatic pathways from quercetin dioxygenases and 3-hydroxy-4-oxoquinoline dioxygenases leading to CO release are examined, along with model systems for these enzymes. Base-catalyzed and non-redox-metal promoted CO release, as well as UV and visible light-driven CO release from 3-hydroxyflavones and 3-hydroxy-4-oxoquinolines, are summarized. The visible light-induced CO release reactivity of recently developed extended 3-hydroxyflavones and a 3-hydroxybenzo[g]quinolone, and their uses as intracellular CORMs, are discussed. Overall, this review provides insight into the chemical factors that affect the thermal and photochemical dioxygenase-type CO release reactions of these heterocyclic compounds.
Collapse
Affiliation(s)
- Tatiana Soboleva
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| |
Collapse
|
18
|
Exogenous Hydrogen Sulfide Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent Manner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9396089. [PMID: 30647820 PMCID: PMC6311776 DOI: 10.1155/2018/9396089] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/11/2018] [Indexed: 01/25/2023]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter with a variety of cardiovascular protective effects. Sirtuin 3 (SIRT3) is closely related to mitochondrial function and oxidative stress. We found that NaHS increased SIRT3 expression in the preventive effect on isoproterenol- (ISO-) induced myocardial hypertrophy. We further investigated whether exogenous H2S supplement improved ISO-induced myocardial hypertrophy in a SIRT3-dependent manner. 10-week-old male 129S1/SvImJ (WT) mice and SIRT3 knockout (KO) mice were intraperitoneally injected with NaHS (50 μmol/kg/d) for two weeks and then intraperitoneally injected with ISO (60 mg/kg/d) for another two weeks. In WT mice, NaHS significantly reduced the cardiac index of ISO-induced mice, decreased the cross-sectional area of cardiomyocytes, and inhibited the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in the myocardium was increased, but the level of malondialdehyde (MDA) was decreased. The fluorescence intensity of dihydroethidium staining for superoxide anion was attenuated. Optic atrophy 1 (OPA1) expression was upregulated, while dynamin-related protein 1 (DRP1) expression was downregulated. ERK, but not P38 and JNK, phosphorylation was downregulated. However, all above protective effects were unavailable in ISO-induced SIRT3 KO mice. Our present study suggested that exogenous H2S supplement inhibited ISO-induced cardiac hypertrophy depending on SIRT3, which might be associated with antioxidant stress.
Collapse
|
19
|
Hydrogen sulphide facilitates exocytosis by regulating the handling of intracellular calcium by chromaffin cells. Pflugers Arch 2018; 470:1255-1270. [DOI: 10.1007/s00424-018-2147-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/09/2023]
|