1
|
Martín-Estal I, Fajardo-Ramírez OR, Bermúdez De León M, Zertuche-Mery C, Rodríguez-Mendoza D, Gómez-Álvarez P, Galindo-Rangel M, Leal López A, Castilla-Cortázar I, Castorena-Torres F. Ethanol consumption during gestation promotes placental alterations in IGF-1 deficient mouse placentas. F1000Res 2024; 10:1284. [PMID: 39640427 PMCID: PMC11617828 DOI: 10.12688/f1000research.75116.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background During pregnancy, the placenta is an extremely important organ as it secretes its own hormones, e.g. insulin-like growth factor 1 (IGF-1), to ensure proper intrauterine fetal growth and development. Ethanol, an addictive and widely used drug, has numerous adverse effects during pregnancy, including fetal growth restriction (FGR). To date, the molecular mechanisms by which ethanol triggers its toxic effects during pregnancy, particularly in the placenta, are not entirely known. For this reason, a murine model of partial IGF-1 deficiency was used to determine ethanol alterations in placental morphology and aspartyl/asparaginyl β-hydroxylase (AAH) expression. Methods Wild type (WT, Igf1 +/+) and heterozygous (HZ, Igf1 +/-) female mice were given 10% ethanol in water during 14 days as an acclimation period and throughout pregnancy. WT and HZ female mice given water were used as controls. At gestational day 19, pregnant dams were sacrificed, placentas were collected and genotyped for subsequent studies. Results IGF-1 deficiency and ethanol consumption during pregnancy altered placental morphology, and decreased placental efficiency and AAH expression in placentas from all genotypes. No differences were found in Igf1, Igf2, Igf1r and Igf2r mRNA expression in placentas from all groups. Conclusions IGF-1 deficiency and ethanol consumption throughout gestation altered placental development, suggesting the crucial role of IGF-1 in the establishment of an adequate intrauterine environment that allows fetal growth. However, more studies are needed to study the precise mechanism to stablish the relation between both insults.
Collapse
Affiliation(s)
- Irene Martín-Estal
- Tecnologico de Monterrey, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64710, Mexico
| | | | - Mario Bermúdez De León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, 64720, Mexico
| | - Carolina Zertuche-Mery
- Tecnologico de Monterrey, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64710, Mexico
| | | | - Patricio Gómez-Álvarez
- Tecnologico de Monterrey, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64710, Mexico
| | - Marcela Galindo-Rangel
- Tecnologico de Monterrey, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64710, Mexico
| | - Andrea Leal López
- Tecnologico de Monterrey, Hospital San Jose, Monterrey, Nuevo Leon, Mexico
| | | | | |
Collapse
|
2
|
Zha X, Elsabagh M, Zheng Y, Zhang B, Wang H, Bai Y, Zhao J, Wang M, Zhang H. Impact of Bisphenol A exposure on maternal gut microbial homeostasis, placental function, and fetal development during pregnancy. Reprod Toxicol 2024; 129:108677. [PMID: 39067774 DOI: 10.1016/j.reprotox.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Pregnancy is extremely vulnerable to external environmental influences. Bisphenol A, an endocrine-disrupting chemical, poses a significant environmental hazard to individuals of all ages and stages, particularly during pregnancy. The placenta is a temporary organ facilitating the connection between the mother and fetus. While it can detoxify certain exogenous substances, it is also vulnerable to the impacts of endocrine disruptors. Likewise, the intestinal flora is highly sensitive to exogenous stresses and environmental pollutants. The regulation of gut microbiota plays a crucial role in ensuring the health of both the mother and the fetus. The gut-placental axis connects the gut, gut microbes, placenta, and fetus. Exploring possible effects on placental function and fetal development involves analyzing changes in gut microbiota composition. Given that bisphenol A may cross the intestine and affect intestinal function, gut microorganisms, and their metabolites, as well as its potential impact on the placenta, resulting in impaired placental function and fetal development, this study aims to establish a link between bisphenol A exposure, intestinal microorganisms, placental function, and fetal development. This paper seeks to analyze the effects of maternal exposure to bisphenol A during pregnancy on the balance of the maternal gut microbiota, placental function, and fetal development, considering the key role of the gut-placental axis. Additionally, this paper proposes potential directions for future research emphasizing the importance of mitigating the adverse outcomes of bisphenol A exposure during pregnancy in both human and animal studies.
Collapse
Affiliation(s)
- Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Nĭgde ¨Omer Halisdemir University, Nigde 51240, Turkey; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yila Bai
- Xilin Gol League Animal Husbandry Xilinhot 026000, PR China
| | - Jingwen Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi 832000, PR China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi 832000, PR China.
| |
Collapse
|
3
|
Zeng X, Cai Y, Wu M, Chen H, Sun M, Yang H. An overview of current advances in perinatal alcohol exposure and pathogenesis of fetal alcohol spectrum disorders. J Neurodev Disord 2024; 16:20. [PMID: 38643092 PMCID: PMC11031898 DOI: 10.1186/s11689-024-09537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The adverse use of alcohol is a serious global public health problem. Maternal alcohol consumption during pregnancy usually causes prenatal alcohol exposure (PAE) in the developing fetus, leading to a spectrum of disorders known as fetal alcohol spectrum disorders (FASD) and even fetal alcohol syndrome (FAS) throughout the lifelong sufferers. The prevalence of FASD is approximately 7.7 per 1,000 worldwide, and is even higher in developed regions. Generally, Ethanol in alcoholic beverages can impair embryonic neurological development through multiple pathways leading to FASD. Among them, the leading mechanism of FASDs is attributed to ethanol-induced neuroinflammatory damage to the central nervous system (CNS). Although the underlying molecular mechanisms remain unclear, the remaining multiple pathological mechanisms is likely due to the neurotoxic damage of ethanol and the resultant neuronal loss. Regardless of the molecular pathway, the ultimate outcome of the developing CNS exposed to ethanol is almost always the destruction and apoptosis of neurons, which leads to the reduction of neurons and further the development of FASD. In this review, we systematically summarize the current research progress on the pathogenesis of FASD, which hopefully provides new insights into differential early diagnosis, treatment and prevention for patents with FASD.
Collapse
Affiliation(s)
- Xingdong Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Mengyan Wu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Haonan Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
4
|
Zhang H, Zha X, Zhang B, Zheng Y, Elsabagh M, Wang H, Wang M. Gut microbiota contributes to bisphenol A-induced maternal intestinal and placental apoptosis, oxidative stress, and fetal growth restriction in pregnant ewe model by regulating gut-placental axis. MICROBIOME 2024; 12:28. [PMID: 38365714 PMCID: PMC10874076 DOI: 10.1186/s40168-024-01749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is an environmental contaminant with endocrine-disrupting properties that induce fetal growth restriction (FGR). Previous studies on pregnant ewes revealed that BPA exposure causes placental apoptosis and oxidative stress (OS) and decreases placental efficiency, consequently leading to FGR. Nonetheless, the response of gut microbiota to BPA exposure and its role in aggravating BPA-mediated apoptosis, autophagy, mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and OS of the maternal placenta and intestine are unclear in an ovine model of gestation. RESULTS Two pregnant ewe groups (n = 8/group) were given either a subcutaneous (sc) injection of corn oil (CON group) or BPA (5 mg/kg/day) dissolved in corn oil (BPA group) once daily, from day 40 to day 110 of gestation. The maternal colonic digesta and the ileum and placental tissue samples were collected to measure the biomarkers of autophagy, apoptosis, mitochondrial dysfunction, ERS, and OS. To investigate the link between gut microbiota and the BPA-induced FGR in pregnant ewes, gut microbiota transplantation (GMT) was conducted in two pregnant mice groups (n = 10/group) from day 0 to day 18 of gestation after removing their intestinal microbiota by antibiotics. The results indicated that BPA aggravates apoptosis, ERS and autophagy, mitochondrial function injury of the placenta and ileum, and gut microbiota dysbiosis in pregnant ewes. GMT indicated that BPA-induced ERS, autophagy, and apoptosis in the ileum and placenta are attributed to gut microbiota dysbiosis resulting from BPA exposure. CONCLUSIONS Our findings indicate the underlying role of gut microbiota dysbiosis and gut-placental axis behind the BPA-mediated maternal intestinal and placental apoptosis, OS, and FGR. The findings further provide novel insights into modulating the balance of gut microbiota through medication or probiotics, functioning via the gut-placental axis, to alleviate gut-derived placental impairment or FGR. Video Abstract.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, P. R. China.
| |
Collapse
|
5
|
Yang J, Qian J, Qu Y, Zhan Y, Yue H, Ma H, Li X, Man D, Wu H, Huang P, Ma L, Jiang Y. Pre-pregnancy body mass index and risk of maternal or infant complications with gestational diabetes mellitus as a mediator: A multicenter, longitudinal cohort study in China. Diabetes Res Clin Pract 2023; 198:110619. [PMID: 36906233 DOI: 10.1016/j.diabres.2023.110619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
AIMS We explored the complex relationships between pre-pregnancy body mass index (pBMI) and maternal or infant complications and the mediating role of gestational diabetes mellitus (GDM) in these relationships. METHODS Pregnant women from 24 hospitals in 15 different provinces of China were enrolled in 2017 and followed through 2018. Propensity score-based inverse probability of treatment weighting, logistic regression, restricted cubic spline models, and causal mediation analysis were utilized. In addition, the E-value method was used to evaluate unmeasured confounding factors. RESULTS A total of 6174 pregnant women were finally included. Compared to women with a normal pBMI, obese women had a higher risk for gestational hypertension (odds ratio [OR] = 5.38, 95% confidence interval [CI]: 3.48-8.34), macrosomia (OR = 2.65, 95% CI: 1.83-3.84), and large for gestational age (OR = 2.05, 95% CI: 1.45-2.88); 4.73% (95% CI: 0.57%-8.88%), 4.61% (95% CI: 0.51%-9.74%), and 5.02% (95% CI: 0.13%-10.18%) of the associations, respectively, were mediated by GDM. Underweight women had a high risk for low birth weight (OR = 1.42, 95% CI: 1.15-2.08) and small for gestational age (OR = 1.62, 95% CI: 1.23-2.11). Dose-response analyses indicated that 21.0 kg/m2 may be the appropriate tipping point pBMI for risk for maternal or infant complications in Chinese women. CONCLUSION A high or low pBMI is associated with the risk for maternal or infant complications and partly mediated by GDM. A lower pBMI cutoff of 21 kg/m2 may be appropriate for risk for maternal or infant complications in pregnant Chinese women.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Jie Qian
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Yimin Qu
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Yongle Zhan
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Hexin Yue
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Haihui Ma
- Department of Obstetrics, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101149, China.
| | - Xiaoxiu Li
- Department of Pediatric Gastroenterology, Dongguan Maternal and Child Health Care Hospital, Dongguan 523125, China.
| | - Dongmei Man
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining 272007, China.
| | - Hongguo Wu
- Department of Perinatal Health, Jiaxian Maternal and Child Health Care Hospital, Jiaxian 467199, China.
| | - Ping Huang
- Department of Nutrition, First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Liangkun Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China.
| | - Yu Jiang
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
6
|
Xu P, Dong S, Wu L, Bai Y, Bi X, Li Y, Shu C. Maternal and Placental DNA Methylation Changes Associated with the Pathogenesis of Gestational Diabetes Mellitus. Nutrients 2022; 15:nu15010070. [PMID: 36615730 PMCID: PMC9823627 DOI: 10.3390/nu15010070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is an important metabolic complication of pregnancy, which affects the future health of both the mother and the newborn. The pathogenesis of GDM is not completely clear, but what is clear is that with the development and growth of the placenta, GDM onset and blood glucose is difficult to control, while gestational diabetes patients' blood glucose drops and reaches normal after placenta delivery. This may be associated with placental secretion of insulin-like growth factor, adipokines, tumor necrosis factor-α, cytokines and insulin resistance. Therefore, endocrine secretion of placenta plays a key role in the pathogenesis of GDM. The influence of DNA methylation of these molecules and pathway-related genes on gene expression is also closely related to the pathogenesis of GDM. Here, this review attempts to clarify the pathogenesis of GDM and the related maternal and placental DNA methylation changes and how they affect metabolic pathways.
Collapse
|
7
|
Ortega MA, Fraile-Martínez O, García-Montero C, Sáez MA, Álvarez-Mon MA, Torres-Carranza D, Álvarez-Mon M, Bujan J, García-Honduvilla N, Bravo C, Guijarro LG, De León-Luis JA. The Pivotal Role of the Placenta in Normal and Pathological Pregnancies: A Focus on Preeclampsia, Fetal Growth Restriction, and Maternal Chronic Venous Disease. Cells 2022; 11:cells11030568. [PMID: 35159377 PMCID: PMC8833914 DOI: 10.3390/cells11030568] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/01/2022] Open
Abstract
The placenta is a central structure in pregnancy and has pleiotropic functions. This organ grows incredibly rapidly during this period, acting as a mastermind behind different fetal and maternal processes. The relevance of the placenta extends far beyond the pregnancy, being crucial for fetal programming before birth. Having integrative knowledge of this maternofetal structure helps significantly in understanding the development of pregnancy either in a proper or pathophysiological context. Thus, the aim of this review is to summarize the main features of the placenta, with a special focus on its early development, cytoarchitecture, immunology, and functions in non-pathological conditions. In contraposition, the role of the placenta is examined in preeclampsia, a worrisome hypertensive disorder of pregnancy, in order to describe the pathophysiological implications of the placenta in this disease. Likewise, dysfunction of the placenta in fetal growth restriction, a major consequence of preeclampsia, is also discussed, emphasizing the potential clinical strategies derived. Finally, the emerging role of the placenta in maternal chronic venous disease either as a causative agent or as a consequence of the disease is equally treated.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Madrid, Spain
- Correspondence: ; Tel.: +34-91-885-4540; Fax: +34-91-885-4885
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Miguel A. Sáez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Pathological Anatomy Service, Central University Hospital of Defence-UAH, 28047 Madrid, Spain
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, CIBEREHD, 28801 Alcalá de Henares, Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.B.); (J.A.D.L.-L.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.B.); (J.A.D.L.-L.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
8
|
Gantenbein KV, Kanaka-Gantenbein C. Highlighting the trajectory from intrauterine growth restriction to future obesity. Front Endocrinol (Lausanne) 2022; 13:1041718. [PMID: 36440208 PMCID: PMC9691665 DOI: 10.3389/fendo.2022.1041718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
During the last decades several lines of evidence reported the association of an adverse intrauterine environment, leading to intrauterine restriction, with future disease, such as obesity and metabolic syndrome, both leading to increased cardiovascular and cancer risk. The underlying explanation for this association has firstly been expressed by the Barker's hypothesis, the "thrifty phenotype hypothesis". According to this hypothesis, a fetus facing an adverse intrauterine environment adapts to this environment through a reprogramming of its endocrine-metabolic status, during the crucial window of developmental plasticity to save energy for survival, providing less energy and nutrients to the organs that are not essential for survival. This theory evolved to the concept of the developmental origin of health and disease (DOHaD). Thus, in the setting of an adverse, f. ex. protein restricted intrauterine environment, while the energy is mainly directed to the brain, the peripheral organs, f.ex. the muscles and the liver undergo an adaptation that is expressed through insulin resistance. The adaptation at the hepatic level predisposes to future dyslipidemia, the modifications at the vascular level to endothelial damage and future hypertension and, overall, through the insulin resistance to the development of metabolic syndrome. All these adaptations are suggested to take place through epigenetic modifications of the expression of genes without change of their amino-acid sequence. The epigenetic modifications leading to future obesity and cardiovascular risk are thought to induce appetite dysregulation, promoting food intake and adipogenesis, facilitating obesity development. The epigenetic modifications may even persist into the next generation even though the subsequent generation has not been exposed to an adverse intrauterine environment, a notion defined as the "transgenerational transfer of environmental information". As a consequence, if the increased public health burden and costs of non-communicable chronic diseases such as obesity, hypertension, metabolic syndrome and type 2 diabetes have to be minimized, special attention should be laid to the healthy lifestyle habits of women of reproductive age, including healthy diet and physical activity to be established long before any pregnancy takes place in order to provide the best conditions for both somatic and mental health of future generations.
Collapse
Affiliation(s)
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece
- *Correspondence: Christina Kanaka-Gantenbein, ,
| |
Collapse
|
9
|
Martín-Estal I, Castorena-Torres F. Gestational Diabetes Mellitus and Energy-Dense Diet: What Is the Role of the Insulin/IGF Axis? Front Endocrinol (Lausanne) 2022; 13:916042. [PMID: 35813659 PMCID: PMC9259869 DOI: 10.3389/fendo.2022.916042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 01/02/2023] Open
Abstract
Gestational diabetes mellitus (GDM), is one of the most important pregnancy complications affecting approximately 15% of pregnant women. It is related to several gestational adverse outcomes in the fetus, e.g., macrosomia, shoulder dystocia, stillbirth, neonatal hypoglycemia, and respiratory distress. Women with GDM have a high risk of developing type 2 diabetes in the future. The pathogenesis of GDM is not completely understood; nevertheless, two factors could contribute to its development: β-cell dysfunction and failure in insulin secretion in response to insulin resistance induced by gestation. Both processes, together with the physiological activities of the insulin-like growth factors (IGFs), play a crucial role in glucose transport to the fetus and hence, fetal growth and development. IGFs (both IGF-1 and IGF-2) and their binding proteins (IGFBPs) regulate glucose metabolism and insulin sensitivity. Maternal nutritional status determines the health of the newborn, as it has substantial effects on fetal growth and development. Maternal obesity and an energy-dense diet can cause an increase in insulin and IGF-1 serum levels, producing metabolic disorders, such as insulin resistance, GDM, and high birth weight (> 4,000 g) due to a higher level of body fat. In this way, in GDM pregnancies there is an increase in IGF-1 and IGF-2 serum levels, and a decrease in IGFBP-1 and 4 serum levels, suggesting the crucial role of the insulin/IGF system in this gestational outcome. Here, the present review tries to elucidate the role that energy-dense diets and the insulin/IGF-1 signaling pathway perform in GDM pregnancies.
Collapse
|