1
|
Grempka A, Dziubak D, Puszko AK, Bachurska-Szpala P, Ivanov M, Vilarinho PM, Pulka-Ziach K, Sek S. Stimuli-Responsive Oligourea Molecular Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31817-31825. [PMID: 38848259 PMCID: PMC11194770 DOI: 10.1021/acsami.4c04767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
We have designed and synthesized a helical cysteamine-terminated oligourea foldamer composed of ten urea residues featuring side carboxyl and amine groups. The carboxyl group is located in proximity to the C-terminus of the oligourea and hence at the negative pole of the helix dipole. The amine group is located close to the N-terminus and hence at the positive pole of the helix dipole. Beyond the already remarkable dipole moment inherent in oligourea 2.5 helices, the incorporation of additional charges originating from the carboxylic and amine groups is supposed to impact the overall charge distribution along the molecule. These molecules were self-assembled into monolayers on a gold substrate, allowing us to investigate the influence of an electric field on these polar helices. By applying surface-enhanced infrared reflection-absorption spectroscopy, we proved that molecules within the monolayers tend to reorient themselves more vertically when a negative bias is applied to the surface. It was also found that surface-confined oligourea molecules affected by the external electric field tend to rearrange the electron density at urea groups, leading to the stabilization of the resonance structure with charge transfer character. The presence of the external electric field also affected the nanomechanical properties of the oligourea films, suggesting that molecules also tend to reorient in the ambient environment without an electrolyte solution. Under the same conditions, the helical oligourea displayed a robust piezoresponse, particularly noteworthy given the slender thickness of the monolayer, which measured approximately 1.2 nm. This observation demonstrates that thin molecular films composed of oligoureas may exhibit stimulus-responsive properties. This, in turn, may be used in nanotechnology systems as actuators or functional films, enabling precise control of their thickness in the range of even fractions of nanometers.
Collapse
Affiliation(s)
- Arkadiusz Grempka
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
| | - Damian Dziubak
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
| | - Anna K. Puszko
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | | | - Maxim Ivanov
- Department
of Materials and Ceramic Engineering & CICECO—Aveiro Institute
of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula M. Vilarinho
- Department
of Materials and Ceramic Engineering & CICECO—Aveiro Institute
of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Slawomir Sek
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
| |
Collapse
|
2
|
Abstract
Optical biosensors are frontrunners for the rapid and real-time detection of analytes, particularly for low concentrations. Among them, whispering gallery mode (WGM) resonators have recently attracted a growing focus due to their robust optomechanical features and high sensitivity, measuring down to single binding events in small volumes. In this review, we provide a broad overview of WGM sensors along with critical advice and additional "tips and tricks" to make them more accessible to both biochemical and optical communities. Their structures, fabrication methods, materials, and surface functionalization chemistries are discussed. We propose this reflection under a pedagogical approach to describe and explain these biochemical sensors with a particular focus on the most recent achievements in the field. In addition to highlighting the advantages of WGM sensors, we also discuss and suggest strategies to overcome their current limitations, leaving room for further development as practical tools in various applications. We aim to provide new insights and combine different knowledge and perspectives to advance the development of the next generation of WGM biosensors. With their unique advantages and compatibility with different sensing modalities, these biosensors have the potential to become major game changers for biomedical and environmental monitoring, among many other relevant target applications.
Collapse
Affiliation(s)
- Médéric Loyez
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Maxwell Adolphson
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Jie Liao
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Kowalczyk A, Kasprzak A, Ruzycka-Ayoush M, Podsiadły E, Demkow U, Grudzinski IP, Nowicka AM. Ultrasensitive voltammetric detection of SARS-CoV-2 in clinical samples. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 371:132539. [PMID: 36033923 PMCID: PMC9395233 DOI: 10.1016/j.snb.2022.132539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In every pandemic, it is critical to test as many people as possible and keep track of the number of new cases of infection. Therefore, there is a need for novel, fast and unambiguous testing methods. In this study, we designed a sandwich-type voltammetric immunosensor based on unlabeled- and labeled with a redox probe antibodies against virus spike protein for fast and ultrasensitive detection of SARS-CoV-2. The process of the preparation of the sensor layer included chemisorption of cysteamine layer and covalent anchoring of antibody specific for the S1 subunit of the S protein. The source of the voltametric signal was the antibody labeled with the redox probe, which was introduced onto biosensor surface only after the recognition of the virus. This easy-to-handle immunosensor was characterized by a wide analytical range (2.0·10-7 to 0.20 mg·L-1) and low detection limit (8.0·10-8 mg·L-1 ≡ 0.08 pg·mL-1 ≡ 4 virions·μL-1). The utility of the designed device was also evidenced by the detection of SARS-CoV-2 in the clinical samples. Moreover, the main advantage and a huge novelty of the developed device, compared to those already existing, is the moment of generating the analytical signal of the redox probe that appears only after the virus recognition. Thus, our diagnostic innovation may considerably contribute to controlling the COVID-19 pandemic. The as-developed immunosensor may well offer a novel alternative approach for viral detection that could complement or even replace the existing methods.
Collapse
Affiliation(s)
- Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Nowakowskiego 3 Str., PL 00-664 Warsaw, Poland
| | - Monika Ruzycka-Ayoush
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., PL 02-097 Warsaw, Poland
| | - Edyta Podsiadły
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B Str., PL 02-097 Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63 A Str., PL 02-091 Warsaw, Poland
| | - Ireneusz P Grudzinski
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., PL 02-097 Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Kassahun GS, Farias ED, Benizri S, Mortier C, Gaubert A, Salinas G, Garrigue P, Kuhn A, Zigah D, Barthélémy P. Electropolymerizable Thiophene-Oligonucleotides for Electrode Functionalization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26350-26358. [PMID: 35649248 DOI: 10.1021/acsami.2c02993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inserting complex biomolecules such as oligonucleotides during the synthesis of polymers remains an important challenge in the development of functionalized materials. In order to engineer such a biofunctionalized interface, a single-step method for the covalent immobilization of oligonucleotides (ONs) based on novel electropolymerizable lipid thiophene-oligonucleotide (L-ThON) conjugates was employed. Here, we report a new thiophene phosphoramidite building block for the synthesis of modified L-ThONs. The biofunctionalized material was obtained by direct electropolymerization of L-ThONs in the presence of 2,2'-bithiophene (BTh) to obtain a copolymer film on indium tin oxide electrodes. In situ electroconductance measurements and microstructural studies showed that the L-ThON was incorporated in the BTh copolymer backbone. Furthermore, the covalently immobilized L-ThON sequence showed selectivity in subsequent hybridization processes with a complementary target, demonstrating that L-ThONs can directly be used for manufacturing materials via an electropolymerization strategy. These results indicate that L-ThONs are promising candidates for the development of stable ON-based bioelectrochemical platforms.
Collapse
Affiliation(s)
- Getnet S Kassahun
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Eliana D Farias
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Sebastien Benizri
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| | - Claudio Mortier
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| | - Alexandra Gaubert
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| | - Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Patrick Garrigue
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Alexander Kuhn
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Dodzi Zigah
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
- Université de Poitiers, IC2MP UMR-CNRS 7285, 86073 Poitiers Cedex 9, France
| | - Philippe Barthélémy
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| |
Collapse
|
5
|
Misiura A, Dutta C, Leung W, Zepeda O J, Terlier T, Landes CF. The competing influence of surface roughness, hydrophobicity, and electrostatics on protein dynamics on a self-assembled monolayer. J Chem Phys 2022; 156:094707. [DOI: 10.1063/5.0078797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Surface morphology, in addition to hydrophobic and electrostatic effects, can alter how proteins interact with solid surfaces. Understanding the heterogeneous dynamics of protein adsorption on surfaces with varying roughness is experimentally challenging. In this work, we use single-molecule fluorescence microscopy to study the adsorption of α-lactalbumin protein on the glass substrate covered with a self-assembled monolayer (SAM) with varying surface concentrations. Two distinct interaction mechanisms are observed: localized adsorption/desorption and continuous-time random walk (CTRW). We investigate the origin of these two populations by simultaneous single-molecule imaging of substrates with both bare glass and SAM-covered regions. SAM-covered areas of substrates are found to promote CTRW, whereas glass surfaces promote localized motion. Contact angle measurements and atomic force microscopy imaging show that increasing SAM concentration results in both increasing hydrophobicity and surface roughness. These properties lead to two opposing effects: increasing hydrophobicity promotes longer protein flights, but increasing surface roughness suppresses protein dynamics resulting in shorter residence times. Our studies suggest that controlling hydrophobicity and roughness, in addition to electrostatics, as independent parameters could provide a means to tune desirable or undesirable protein interactions with surfaces.
Collapse
Affiliation(s)
| | - Chayan Dutta
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Wesley Leung
- Applied Physics Graduate Program, Rice University, Houston, Texas 77005, USA
| | - Jorge Zepeda O
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, USA
| | - Christy F. Landes
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
6
|
Mueller M, Bandl C, Kern W. Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions. Polymers (Basel) 2022; 14:608. [PMID: 35160597 PMCID: PMC8839765 DOI: 10.3390/polym14030608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/10/2022] Open
Abstract
Straightforward and versatile surface modification, functionalization and coating have become a significant topic in material sciences. While physical modification suffers from severe drawbacks, such as insufficient stability, chemical induced grafting processes efficiently modify organic and inorganic materials and surfaces due to covalent linkage. These processes include the "grafting from" method, where polymer chains are directly grown from the surface in terms of a surface-initiated polymerization and the "grafting to" method where a preformed (macro)-molecule is introduced to a preliminary treated surface via a coupling reaction. Both methods require an initiating species that is immobilized at the surface and can be triggered either by heat or light, whereas light induced processes have recently received increasing interest. Therefore, a major challenge is the ongoing search for suitable anchor moieties that provide covalent linkage to the surface and include initiators for surface-initiated polymerization and coupling reactions, respectively. This review containing 205 references provides an overview on photoinitiators which are covalently coupled to different surfaces, and are utilized for subsequent photopolymerizations and photocoupling reactions. An emphasis is placed on the coupling strategies for different surfaces, including oxides, metals, and cellulosic materials, with a focus on surface coupled free radical photoinitiators (type I and type II). Furthermore, the concept of surface initiation mediated by photoiniferters (PIMP) is reviewed. Regarding controlled radical polymerization from surfaces, a large section of the paper reviews surface-tethered co-initiators, ATRP initiators, and RAFT agents. In combination with photoinitiators or photoredox catalysts, these compounds are employed for surface initiated photopolymerizations. Moreover, examples for coupled photoacids and photoacid generators are presented. Another large section of the article reviews photocoupling and photoclick techniques. Here, the focus is set on light sensitive groups, such as organic azides, tetrazoles and diazirines, which have proven useful in biochemistry, composite technology and many other fields.
Collapse
Affiliation(s)
- Matthias Mueller
- Montanuniversitaet Leoben, Institute of Chemistry of Polymeric Materials, Otto-Glöckel-Straße 2, A-8700 Leoben, Austria; (C.B.); (W.K.)
| | - Christine Bandl
- Montanuniversitaet Leoben, Institute of Chemistry of Polymeric Materials, Otto-Glöckel-Straße 2, A-8700 Leoben, Austria; (C.B.); (W.K.)
| | - Wolfgang Kern
- Montanuniversitaet Leoben, Institute of Chemistry of Polymeric Materials, Otto-Glöckel-Straße 2, A-8700 Leoben, Austria; (C.B.); (W.K.)
- Polymer Competence Center Leoben GmbH, Rosegger-Strasse 12, A-8700 Leoben, Austria
| |
Collapse
|
7
|
Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022; 196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Optical fiber biosensors have attracted growing interest over the last decade and quickly became a key enabling technology, especially for the detection of biomarkers at extremely low concentrations and in small volumes. Among the many and recent fiber-optic sensing amenities, aptamers-based sensors have shown unequalled performances in terms of ease of production, specificity, and sensitivity. The immobilization of small and highly stable bioreceptors such as DNA has bolstered their use for the most varied applications e.g., medical diagnosis, food safety and environmental monitoring. This review highlights the recent advances in aptamer-based optical fiber biosensors. An in-depth analysis of the literature summarizes different fiber-optic structures and biochemical strategies for molecular detection and immobilization of receptors over diverse surfaces. In this review, we analyze the features offered by those sensors and discuss about the next challenges to be addressed. This overview investigates both biochemical and optical parameters, drawing the guiding lines for forthcoming innovations and prospects in this ever-growing field of research.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium; Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Maria C DeRosa
- Department of Chemistry, 203 Steacie Building, Carleton University, 1125, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium
| |
Collapse
|
8
|
Highly Sensitive and Cost-Effective Portable Sensor for Early Gastric Carcinoma Diagnosis. SENSORS 2021; 21:s21082639. [PMID: 33918707 PMCID: PMC8069728 DOI: 10.3390/s21082639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022]
Abstract
Facile and efficient early detection of cancer is a major challenge in healthcare. Herein we developed a novel sensor made from a polycarbonate (PC) membrane with nanopores, followed by sequence-specific Oligo RNA modification for early gastric carcinoma diagnosis. In this design, the gastric cancer antigen CA72-4 is specifically conjugated to the Oligo RNA, thereby inhibiting the electrical current through the PC membrane in a concentration-dependent manner. The device can determine the concentration of cancer antigen CA72-4 in the range from 4 to 14 U/mL, possessing a sensitivity of 7.029 µAU-1mLcm-2 with a linear regression (R2) of 0.965 and a lower detection limit of 4 U/mL. This device has integrated advantages including high specificity and sensitivity and being simple, portable, and cost effective, which collectively enables a giant leap for cancer screening technologies towards clinical use. This is the first report to use RNA aptamers to detect CA72-4 for gastric carcinoma diagnosis.
Collapse
|
9
|
A comparative study on EpCAM antibody immobilization on gold surfaces and microfluidic channels for the detection of circulating tumor cells. Colloids Surf B Biointerfaces 2020; 188:110808. [PMID: 31991289 DOI: 10.1016/j.colsurfb.2020.110808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
Abstract
Detection of circulating tumor cells (CTCs) from the bloodstream holds great importance to diagnose cancer at early stages. However, CTCs being extremely rare in blood makes them difficult to reach. In this paper, we introduced different surface modification techniques for the enrichment and detection of MCF-7 in microfluidic biosensor applications using gold surface and EpCAM antibody. Mainly, two different mechanisms were employed to immobilize the antibodies; covalent bonding and bioaffinity interaction. Self-assembled monolayers (SAMs) formed on the gold surfaces were treated further for the immobilization of the antibody. The bioaffinity-based studies were performed with streptavidin and biotinylated EpCAM over the SAM coated surfaces. The cell attachment events were monitored using fluorescent microscope. Comparisons were made considering the length and functional end of alkanethiols and the positioning of the antibody. Then, these methods were integrated into a microfluidic channel system. Surface characterizations were performed with X-ray Photoelectron Spectroscopy, Atomic Force Microscopy, and contact angle measurements. The selectivity studies were carried out with EpCAM negative K562 leukaemia cell lines and the experiments were repeated for different types of surfaces, such as glass and polymer. Studies showed that long (n>10) and aromatic ring containing alkanethiols lead to better cell capture events compared to shorter ones. Results obtained from the comparisons are of importance for the gold surface-based microfluidic biosensor designs aimed for CTC detection.
Collapse
|
10
|
Movilli J, Di Iorio D, Rozzi A, Hiltunen J, Corradini R, Huskens J. "Plug-n-Play" Polymer Substrates: Surface Patterning with Reactive-Group-Appended Poly-l-lysine for Biomolecule Adhesion. ACS APPLIED POLYMER MATERIALS 2019; 1:3165-3173. [PMID: 32954353 PMCID: PMC7493307 DOI: 10.1021/acsapm.9b00814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 06/11/2023]
Abstract
The immobilization of biomolecules onto polymeric surfaces employed in the fabrication of biomedical and biosensing devices is generally a challenging issue, as the absence of functional groups in such materials does not allow the use of common surface chemistries. Here we report the use of modified poly-l-lysine (PLL) as an effective method for the selective modification of polymeric materials with biomolecules. Cyclic olefin polymer (COP), Ormostamp, and polydimethylsiloxane (PDMS) surfaces were patterned with modified PLLs displaying either biotin or maleimide functional groups. Different patterning techniques were found to provide faithful microscale pattern formation, including micromolding in capillaries (MIMIC) and a hydrogel-based stamping device with micropores. The surface modification and pattern stability were tested with fluorescence microscopy, contact angle and X-ray photoelectron spectroscopy (XPS), showing an effective functionalization of substrates stable for over 20 days. By exploiting the strong biotin-streptavidin interaction or the thiol-maleimide coupling, DNA and PNA probes were displayed successfully on the surface of the materials, and these probes maintained the capability to specifically recognize complementary DNA sequences from solution. The printing of three different PNA-thiol probe molecules in a microarray fashion allowed selective DNA detection from a mixture of DNA analytes, demonstrating that the modified PLL methodology can potentially be used for multiplexed detection of DNA sequences.
Collapse
Affiliation(s)
- Jacopo Movilli
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| | - Daniele Di Iorio
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| | - Andrea Rozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Jussi Hiltunen
- VTT
Technical Research Center of Finland, 90570 Oulu, Finland
| | - Roberto Corradini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Jurriaan Huskens
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| |
Collapse
|
11
|
Díaz-Betancor Z, Bañuls MJ, Maquieira Á. Photoclick chemistry to create dextran-based nucleic acid microarrays. Anal Bioanal Chem 2019; 411:6745-6754. [PMID: 31482291 DOI: 10.1007/s00216-019-02050-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 11/29/2022]
Abstract
In the literature, there are reports of the utilization of various hydrogels to create generic platforms for protein microarray applications. Here, a novel strategy was developed to obtain high-performance microarrays. In it, a dextran hydrogel is used to covalently immobilize oligonucleotides and proteins. This method employs aqueous solutions of dextran methacrylate (Dx-MA), which is a biocompatible photopolymerizable monomer. Capture probes are immobilized inside the hydrogel via a light-induced thiol-acrylate coupling reaction at the same time as the dextran polymer is formed. Hydrogel microarrays based on this technique were prepared on different surfaces, such as a Blu-ray Disk and polycarbonate or alkene-functionalized glass slides, and these systems showed high probe-loading capabilities and good biorecognition yields. This methodology presents advantages such as a low cost, a short analysis time, a low limit of detection, and multiplexing capabilities, among others. Confocal fluorescence microscopy analysis demonstrated that in these hydrogel-based microarrays, receptor immobilization and the biorecognition event occurred within the hydrogel and not merely on the surface.
Collapse
Affiliation(s)
- Zeneida Díaz-Betancor
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María-José Bañuls
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Ángel Maquieira
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
12
|
Hoang J, Park CS, Lee HJ, Marquez MD, Zenasni O, Gunaratne PH, Lee TR. Quaternary Ammonium-Terminated Films Formed from Mixed Bidentate Adsorbates Provide a High-Capacity Platform for Oligonucleotide Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40890-40900. [PMID: 30335936 DOI: 10.1021/acsami.8b12244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The exposure of quaternary ammonium groups on surfaces allows self-assembled monolayers (SAMs) to serve as architectural platforms for immobilizing oligonucleotides. The current study describes the preparation of SAMs derived from four unique bidentate adsorbates containing two different ammonium termini (i.e., trimethyl- and triethyl-) and comparison to their monodentate analogs. Our studies found that SAMs derived from the bidentate adsorbates offered considerable enhancements in oligonucleotide binding when compared to SAMs derived from their monodentate analogs. The generated SAMs were analyzed using ellipsometry, X-ray photoelectron spectroscopy, contact angle goniometry, polarization modulation infrared reflection-absorption spectroscopy, and electrochemical quartz crystal microbalance. These analyses showed that the immobilization of oligonucleotides was affected by changes in the terminal functionalities and the relative packing densities of the monolayers. In efforts to enhance further the immobilization of oligonucleotides on these SAM surfaces, we explored the use of adsorbates having aliphatic linkers with systematically varying chain lengths to form binary SAMs on gold. Mixed monolayers with 50:50 ratios of adsorbates showed the greatest oligonucleotide binding. These studies lay the groundwork for oligonucleotide delivery using gold-based nanoparticles and nanoshells.
Collapse
Affiliation(s)
- Johnson Hoang
- Department of Biology and Biochemistry , University of Houston , Houston , Texas 77204-5001 , United States
| | - Chul Soon Park
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity , University of Houston , Houston , Texas 77204-5003 , United States
| | - Han Ju Lee
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity , University of Houston , Houston , Texas 77204-5003 , United States
| | - Maria D Marquez
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity , University of Houston , Houston , Texas 77204-5003 , United States
| | - Oussama Zenasni
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity , University of Houston , Houston , Texas 77204-5003 , United States
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry , University of Houston , Houston , Texas 77204-5001 , United States
| | - T Randall Lee
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
13
|
Affiliation(s)
- Emil Paleček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| | - Martin Bartošík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| |
Collapse
|
14
|
Vaknin O, Khamaisi B, Mizrahi M, Ashkenasy N. Controlling Field-Effect Transistor Biosensor Electrical Characteristics Using Immunosorbent Assay. ELECTROANAL 2011. [DOI: 10.1002/elan.201100250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Ultrasensitive electrochemical immunosensor employing glucose oxidase catalyzed deposition of gold nanoparticles for signal amplification. Biosens Bioelectron 2011; 27:53-7. [DOI: 10.1016/j.bios.2011.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 11/19/2022]
|
16
|
Palma M, Abramson J, Gorodetsky A, Nuckolls C, Sheetz MP, Wind SJ, Hone J. Controlled confinement of DNA at the nanoscale: nanofabrication and surface bio-functionalization. Methods Mol Biol 2011; 749:169-85. [PMID: 21674372 PMCID: PMC3381934 DOI: 10.1007/978-1-61779-142-0_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Nanopatterned arrays of biomolecules are a powerful tool to address fundamental issues in many areas of biology. DNA nanoarrays, in particular, are of interest in the study of DNA-protein interactions and for biodiagnostic investigations. In this context, achieving a highly specific nanoscale assembly of oligonucleotides at surfaces is critical. In this chapter, we describe a method to control the immobilization of DNA on nanopatterned surfaces; the nanofabrication and the bio-functionalization involved in the process will be discussed.
Collapse
Affiliation(s)
- Matteo Palma
- Department of Mechanical Engineering & Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Application of mass fabricated silicon-based gold transducers for amperometric biosensors. Bioelectrochemistry 2010; 80:31-7. [DOI: 10.1016/j.bioelechem.2010.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/11/2010] [Accepted: 03/14/2010] [Indexed: 11/21/2022]
|
18
|
Sam S, Chazalviel JN, Gouget-Laemmel AC, Ozanam F, Allongue P, Henry de Villeneuve C, Gabouze N, Djebbar S. Covalent immobilization of amino acids on the porous silicon surface. SURF INTERFACE ANAL 2010. [DOI: 10.1002/sia.3285] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Sam S, Touahir L, Salvador Andresa J, Allongue P, Chazalviel JN, Gouget-Laemmel AC, Henry de Villeneuve C, Moraillon A, Ozanam F, Gabouze N, Djebbar S. Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:809-14. [PMID: 19725548 DOI: 10.1021/la902220a] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Infrared spectroscopy is used to investigate the transformation of carboxyl-terminated alkyl chains immobilized on a surface into succinimidyl ester-terminated chains by reaction with an aqueous solution of N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The acid chains are covalently grafted at the surface of hydrogenated porous silicon whose large specific surface area allows for assessing the activation yield in a semiquantitative way by infrared (IR) spectroscopy and detecting trace amounts of surface products and/or reaction products of small IR cross section. In this way, we rationalize the different reaction paths and optimize the reaction conditions to obtain as pure as possible succinimidyl ester-terminated surfaces. A diagram mapping the surface composition after activation was constructed by systematically varying the solution composition. Results are accounted for by NHS surface adsorption and a kinetic competition between the various EDC-induced surface reactions.
Collapse
Affiliation(s)
- S Sam
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sheikh S, Sheng JCC, Blaszykowski C, Thompson M. New oligoethylene glycol linkers for the surface modification of an ultra-high frequency acoustic wave biosensor. Chem Sci 2010. [DOI: 10.1039/c0sc00158a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
21
|
Dinh DH, Vellutini L, Bennetau B, Dejous C, Rebière D, Pascal E, Moynet D, Belin C, Desbat B, Labrugère C, Pillot JP. Route to smooth silica-based surfaces decorated with novel self-assembled monolayers (SAMs) containing glycidyl-terminated very long hydrocarbon chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5526-5535. [PMID: 19378931 DOI: 10.1021/la804088d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Novel glycidyl-terminated organosilicon coupling agents possessing a trialkoxysilyl head group and a very long hydrocarbon chain (C22) were synthesized. Their ability to afford densely packed self-assembled monolayers (SAMs) grafted on silica-based surfaces was investigated. Transmission FT-IR spectra showed that the most regular films were obtained by using trichloracetic acid as the catalyst (10 M%). Atomic force microscopy (AFM) and optical ellipsometry were consistent with well ordered monolayers exhibiting a marked decrease of the surface roughness. Epifluorescence microscopy revealed that these SAMs possessed a better surface reactivity than monolayers obtained with the commercially available (3-glycidoxypropyl) trimethoxysilane (GPTS) upon grafting of a fluorescent probe (dansylcadaverin). Moreover, direct attachment of fluorescent antibodies (RAG-TRITC) through covalent binding led to higher mean fluorescence intensities, showing that these new SAMs possess high potential for the immobilization of biological molecules.
Collapse
Affiliation(s)
- Duy Hai Dinh
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR 5255-CNRS, 351 cours de la Libération, 33405 Talence Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Troegel D, Walter T, Burschka C, Tacke R. Synthesis and Characterization of Tris(mercaptomethyl)(2,4,6-trimethoxyphenyl)silane and Its Use for the Immobilization of the Si(CH2SH)3 Group on Silica via an Si−O−Si Linkage. Organometallics 2009. [DOI: 10.1021/om8010118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis Troegel
- Universität Würzburg, Institut für Anorganische Chemie, Am Hubland, D-97074 Würzburg, Germany
| | - Tim Walter
- Universität Würzburg, Institut für Anorganische Chemie, Am Hubland, D-97074 Würzburg, Germany
| | - Christian Burschka
- Universität Würzburg, Institut für Anorganische Chemie, Am Hubland, D-97074 Würzburg, Germany
| | - Reinhold Tacke
- Universität Würzburg, Institut für Anorganische Chemie, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
23
|
Chen L, Rengifo HR, Grigoras C, Li X, Li Z, Ju J, Koberstein JT. Spin-On End-Functional Diblock Copolymers for Quantitative DNA Immobilization. Biomacromolecules 2008; 9:2345-52. [DOI: 10.1021/bm800258g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lu Chen
- Columbia University Department of Chemical Engineering 500 West 120th Street, New York, New York 10027, and Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Hernán R. Rengifo
- Columbia University Department of Chemical Engineering 500 West 120th Street, New York, New York 10027, and Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Cristian Grigoras
- Columbia University Department of Chemical Engineering 500 West 120th Street, New York, New York 10027, and Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Xiaoxu Li
- Columbia University Department of Chemical Engineering 500 West 120th Street, New York, New York 10027, and Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Zengmin Li
- Columbia University Department of Chemical Engineering 500 West 120th Street, New York, New York 10027, and Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Jingyue Ju
- Columbia University Department of Chemical Engineering 500 West 120th Street, New York, New York 10027, and Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Jeffrey T. Koberstein
- Columbia University Department of Chemical Engineering 500 West 120th Street, New York, New York 10027, and Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
24
|
Soja GR, Mann JR, Watson DF. Temporal evolution of the composition of mixed monolayers on TiO2 surfaces: evidence for a dimerization-induced chelate effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:5249-5252. [PMID: 18399663 DOI: 10.1021/la800731p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mixed monolayers of octanoic acid (OA) and 16-mercaptohexadecanoic acid (MHDA) were adsorbed to nanocrystalline TiO(2) films from mixed solutions in tetrahydrofuran. For a range of solution compositions, the mole fraction of MHDA within the mixed monolayers (chi (MHDA,surf)) exceeded that of the coadsorption solution. In addition, chi (MHDA,surf) increased with time, while the sum of the surface coverages of MHDA and OA remained constant. To account for these effects, we propose a mechanism involving disulfide formation between the terminal thiol groups of surface-adsorbed MHDA molecules. Disulfide formation leads to an increase in the surface adduct formation constant ( K(ad)) of dimeric MHDA, causing the gradual displacement of OA from the surface. The mechanism is supported by spectroscopic evidence and desorption kinetics. These are the first examples of mixed monolayers that undergo time-dependent compositional changes as a result of covalent bond formation between surfactants. Our findings illustrate that dimerization and other intermolecular interactions between surfactants may dramatically influence the composition and terminal functionalization of a wide range of mixed monolayer systems.
Collapse
Affiliation(s)
- Gregory R Soja
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | | | | |
Collapse
|
25
|
Liu X, Zheng F, Jürgensen A, Perez-Dieste V, Petrovykh DY, Abbott NL, Himpsel FJ. Self-assembly of biomolecules at surfaces characterized by NEXAFS. CAN J CHEM 2007. [DOI: 10.1139/v07-079] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surface science has made great strides towards tailoring surface properties via self-assembly of nanoscale molecular adsorbates. It is now possible to functionalize surfaces with complex biomolecules such as DNA and proteins. This brief overview shows how NEXAFS (near edge X-ray absorption fine structure spectroscopy) can be used to characterize the assembly of biological molecules at surfaces in atom- and orbital-specific fashion. To illustrate the range of applications, we begin with simple self-assembled monolayers (SAMs), proceed to SAMs with customized terminal groups, and finish with DNA oligonucleotides and Ribonuclease A, a small protein containing 124 amino acids. The N 1s absorption edge is particularly useful for characterizing DNA and proteins because it selectively interrogates the π* orbitals in nucleobases and the peptide bonds in proteins. Information about the orientation of molecular orbitals is obtained from the polarization dependence. Quantitative NEXAFS models explain the polarization dependence in terms of molecular orientation and structure.Key words: NEXAFS, bio-interfaces, ribonuclease A, immobilization, orientation.
Collapse
|
26
|
Wernette DP, Mead C, Bohn PW, Lu Y. Surface immobilization of catalytic beacons based on ratiometric fluorescent DNAzyme sensors: a systematic study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:9513-21. [PMID: 17676880 DOI: 10.1021/la701303k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
DNAzyme-based catalytic beacons have the potential for sensing a large number of relevant analytes. Thus, a systematic investigation of factors affecting their performance when immobilized into gold-coated nanocapillary array membranes (NCAMs) was undertaken. Enzyme immobilization times were varied to determine that as little as 15 min was sufficient for ratiometric detection of Pb2+-specific activity, while immobilization density saturated after 1.5 h. Immobilization of the DNAzymes into NCAMs with 600 nm pore size resulted in higher immobilization efficiency and higher enzymatic activity than that with 200 nm pore size. A poly-T linker length between the tethering thiol and first oligonucleotide, used to extend the DNAzyme above the backfilling mercaptohexanol (MCH) monolayer, had no effect on DNAzyme activity. The backfilling method of immobilization, involving backfilling followed by hybridization, was found most effective for DNAzyme activity compared to immobilization of hybridized DNAzyme complex (a 67% loss of activity) or concurrent enzyme and MCH immobilization (75% loss of activity). The backfilling MCH monolayer provided approximately 3.5 times increase in activity compared to DNAzyme assembled without MCH, and was over 5 times more active than shorter and longer backfilling molecules tested. The immobilized DNAzyme retained its optimized performance at 50 mM NaCl. Finally, the generalized immobilization and ratiometric procedure was employed for a uranyl-specific DNAzyme with 25 +/- 15 times increase in ratio observed. These findings form a firm basis on which practical applications of catalytic beacons can be realized, including sensors for both Pb2+ and UO22+ ions.
Collapse
Affiliation(s)
- Daryl P Wernette
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
27
|
|