1
|
Trzaskowski B, Martínez JP, Sarwa A, Szyszko B, Goddard WA. Argentophilic Interactions, Flexibility, and Dynamics of Pyrrole Cages Encapsulating Silver(I) Clusters. J Phys Chem A 2024; 128:3339-3350. [PMID: 38651289 PMCID: PMC11077489 DOI: 10.1021/acs.jpca.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Recently, pyrrole cages have been synthesized that encapsulate ion pairs and silver(I) clusters to form intricate supramolecular capsules. We report here a computational analysis of these structures using density functional theory combined with a semiempirical tight-binding approach. We find that for neutral pyrrole cages, the Gibbs free energies of formation provide reliable predictions for the ratio of bound ions. For charged pyrrole cages, we find strong argentophilic interactions between Ag ions on the basis of the calculated bond indices and molecular orbitals. For the cage with the Ag4 cluster, we find two minimum-geometry conformations that differ by only 6.5 kcal/mol, with an energy barrier <1 kcal/mol, suggesting a very flexible structure as indicated by molecular dynamics. The predicted energies of formation of [Agn⊂1]n-3+ (n = 1-5) cryptands provide low energy barriers of formation of 5-20 kcal/mol for all cases, which is consistent with the experimental data. Furthermore, we also examined the structural variability of mixed-valence silver clusters to test whether additional geometrical conformations inside the organic cage are thermodynamically accessible. In this context, we show that the time-dependent density functional theory UV-vis spectra may potentially serve as a diagnostic probe to characterize mixed-valence and geometrical configurations of silver clusters encapsulated into cryptands.
Collapse
Affiliation(s)
- Bartosz Trzaskowski
- Centre
of New Technologies, University of Warsaw, 2C Banacha Street, 02-097 Warszawa, Poland
| | - Juan Pablo Martínez
- Centre
of New Technologies, University of Warsaw, 2C Banacha Street, 02-097 Warszawa, Poland
| | - Aleksandra Sarwa
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-387 Wrocław, Poland
| | - Bartosz Szyszko
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-387 Wrocław, Poland
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91106, United States
| |
Collapse
|
2
|
Bhol M, Borkar RL, Shankar B, Panda SK, Wolff M, Sathiyendiran M. Self-Assembly of Rhenium(I) Double-Stranded Helicate and Mesocate from Flexible Ditopic Benzimidazolyl/Naphthanoimidazolyl N-Donor and Rigid Bis-Chelating Hydroxyphenylbenzimidazolyl N∩OH-Donor Ligands: Synthesis, Characterization, and Photophysical and B-DNA Docking Studies. Inorg Chem 2023; 62:11554-11569. [PMID: 37436081 DOI: 10.1021/acs.inorgchem.3c01213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The self-assembly of three rheniumtricarbonyl core-based supramolecular coordination complexes (SCCs), fac-[Re(CO)3(μ-L)(μ-L')Re(CO)3] (1-3) was carried out using Re2(CO)10, rigid bis-chelating ligand (HO∩N-Ph-N∩OH (L1) (where HO∩N = 2-hydroxyphenylbenzimidazolyl), and flexible ditopic N-donor ligands (L2 = bis(3-((1H-benzoimidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane, L3 = bis(3-((1H-naphtho[2,3-d]imidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane, L4 = bis(4-(naphtho[2,3-d]imidazol-1-yl-methyl)phenyl)methane) via a one-pot solvothermal approach. In the solid state, the dinuclear SCCs adopt heteroleptic double-stranded helicate and meso-helicate architectures. The supramolecular structures of the complexes are retained in the solution based on the 1H NMR and electrospray ionization (ESI)-mass analysis. The spectral and photophysical properties of the complexes were studied both experimentally and using time-dependent density functional theory (TDDFT) calculations. All of the supramolecules exhibited emission in both solution and solid states. Theoretical studies were conducted to determine the chemical reactivity parameters, molecular electrostatic potential surface plots, natural population, and Hirshfeld analysis for complexes 1-3. Additionally, molecular docking studies were carried out for complexes 1-3 with B-DNA.
Collapse
Affiliation(s)
- Mamina Bhol
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Reema L Borkar
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625015, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur 760010, India
| | - Mariusz Wolff
- Institut für Chemische Katalyse, Universität Wien, Währinger Straße 38-42, Wien 1090, Österreich
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9th Street, Katowice 40-006, Poland
| | | |
Collapse
|
3
|
Bhol M, Shankar B, Sathiyendiran M. Rhenium(I)-Based Heteroleptic Pentagonal Toroid-Shaped Metallocavitands: Self-Assembly and Molecular Recognition Studies. Inorg Chem 2022; 61:11497-11508. [PMID: 35820114 DOI: 10.1021/acs.inorgchem.2c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A family of neutral, heteroleptic, dinuclear M2LL'-type pentagonal toroid-shaped metallomacrocycles (1-8) were synthesized using flexible ditopic N donors (Ln = L1-L2), rigid bis-chelating ligands (H2-L' = H2-E), and Re2(CO)10 in a one-pot solvothermal self-assembly approach. The ligands and the metallomacrocycles were characterized using ATR-IR, electrospray ionization mass spectrometry, nuclear magnetic resonance, ultraviolet-visible, and emission spectroscopy methods. The molecular structures of 1, 2, 4, 6, and 7 were confirmed by an X-ray diffraction study and are similar to those of calix[5]arene. The cyclic inner cavities of the metallomacrocycles accommodate toluene/mesitylene/acetone/chlorobenzene as guest molecules that are stabilized by cumulative C-H···π and π···π interactions with the cyclic framework of metallomacrocycle. The photophysical properties of the ligands and the metallomacrocycles were studied. The host-guest recognition properties of metallocavitands 1, 2, 7, and 8 as a model host with phenol and nitrobenzene derivatives as guest molecules were studied by emission spectroscopy methods.
Collapse
Affiliation(s)
- Mamina Bhol
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625015, India
| | | |
Collapse
|
4
|
Jayapaul J, Komulainen S, Zhivonitko VV, Mareš J, Giri C, Rissanen K, Lantto P, Telkki VV, Schröder L. Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics. Nat Commun 2022; 13:1708. [PMID: 35361759 PMCID: PMC8971460 DOI: 10.1038/s41467-022-29249-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
Guest capture and release are important properties of self-assembling nanostructures. Over time, a significant fraction of guests might engage in short-lived states with different symmetry and stereoselectivity and transit frequently between multiple environments, thereby escaping common spectroscopy techniques. Here, we investigate the cavity of an iron-based metal organic polyhedron (Fe-MOP) using spin-hyperpolarized 129Xe Chemical Exchange Saturation Transfer (hyper-CEST) NMR. We report strong signals unknown from previous studies that persist under different perturbations. On-the-fly delivery of hyperpolarized gas yields CEST signatures that reflect different Xe exchange kinetics from multiple environments. Dilute pools with ~ 104-fold lower spin numbers than reported for directly detected hyperpolarized nuclei are readily detected due to efficient guest turnover. The system is further probed by instantaneous and medium timescale perturbations. Computational modeling indicates that these signals originate likely from Xe bound to three Fe-MOP diastereomers (T, C3, S4). The symmetry thus induces steric effects with aperture size changes that tunes selective spin manipulation as it is employed in CEST MRI agents and, potentially, impacts other processes occurring on the millisecond time scale.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | | | | | - Jiří Mareš
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology (MIPT), University of Oulu, 90014, Oulu, Finland
| | - Chandan Giri
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Perttu Lantto
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland.
| | | | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Zhu XW, Luo D, Zhou XP, Li D. Imidazole-based metal-organic cages: Synthesis, structures, and functions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Pachisia S, Gupta R, Gupta R. Molecular Assemblies Offering Hydrogen-Bonding Cavities: Influence of Macrocyclic Cavity and Hydrogen Bonding on Dye Adsorption. Inorg Chem 2022; 61:3616-3630. [PMID: 35156802 DOI: 10.1021/acs.inorgchem.1c03747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work presents a set of Hg macrocycles of amide-phosphine-based ligands offering H-bonding cavities of different dimensions. Such macrocycles are shown to selectively adsorb anionic dyes followed by neutral dyes as well as Prontosil, a biologically relevant antibiotic, within their cavities with the aid of H-bonding-assisted encapsulation. Kinetic experiments supported by spectroscopic and docking studies illustrate the importance of the cavity structure as well as H-bonds for the selective adsorption of dyes.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ruchika Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
7
|
Narwane M, Dorairaj DP, Chang YL, Karvembu R, Huang YH, Chang HW, Hsu SCN. Tris-(2-pyridyl)-pyrazolyl Borate Zinc(II) Complexes: Synthesis, DNA/Protein Binding and In Vitro Cytotoxicity Studies. Molecules 2021; 26:7341. [PMID: 34885924 PMCID: PMC8659194 DOI: 10.3390/molecules26237341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Zn(II) complexes bearing tris[3-(2-pyridyl)-pyrazolyl] borate (Tppy) ligand (1-3) was synthesized and examined by spectroscopic and analytical tools. Mononuclear [TppyZnCl] (1) has a Zn(II) centre with one arm (pyrazolyl-pyridyl) dangling outside the coordination sphere which is a novel finding in TppyZn(II) chemistry. In complex [TppyZn(H2O)][BF4] (2) hydrogen bonding interaction of aqua moiety stabilizes the dangling arm. In addition, solution state behaviour of complex 1 confirms the tridentate binding mode and reactivity studies show the exogenous axial substituents used to form the [TppyZnN3] (3). The complexes (1-3) were tested for their ability to bind with Calf thymus (CT) DNA and Bovine serum albumin (BSA) wherein they revealed to exhibit good binding constant values with both the biomolecules in the order of 104-105 M-1. The intercalative binding mode with CT DNA was confirmed from the UV-Visible absorption, viscosity, and ethidium bromide (EB) DNA displacement studies. Further, the complexes were tested for in vitro cytotoxic ability on four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-468, HCC1937, and Hs 578T). All three complexes (1-3) exhibited good IC50 values (6.81 to 16.87 μM for 24 h as seen from the MTS assay) results which indicated that these complexes were found to be potential anticancer agents against the TNBC cells.
Collapse
Affiliation(s)
- Manmath Narwane
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
| | - Dorothy Priyanka Dorairaj
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India;
| | - Yu-Lun Chang
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India;
| | - Yu-Han Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Sodio C. N. Hsu
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
8
|
Woods B, Silva RDM, Schmidt C, Wragg D, Cavaco M, Neves V, Ferreira VFC, Gano L, Morais TS, Mendes F, Correia JDG, Casini A. Bioconjugate Supramolecular Pd 2+ Metallacages Penetrate the Blood Brain Barrier In Vitro and In Vivo. Bioconjug Chem 2021; 32:1399-1408. [PMID: 33440122 DOI: 10.1021/acs.bioconjchem.0c00659] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The biomedical application of discrete supramolecular metal-based structures, specifically self-assembled metallacages, is still an emergent field of study. Capitalizing on the knowledge gained in recent years on the development of 3-dimensional (3D) metallacages as novel drug delivery systems and theranostic agents, we explore here the possibility to target [Pd2L4]4+ cages (L = 3,5-bis(3-ethynylpyridine)phenyl ligand) to the brain. In detail, a new water-soluble homoleptic cage (CPepH3) tethered to a blood brain barrier (BBB)-translocating peptide was synthesized by a combination of solid-phase peptide synthesis (SPPS) and self-assembly procedures. The cage translocation efficacy was assessed by inductively coupled mass spectrometry (ICP-MS) in a BBB cellular model in vitro. Biodistribution studies of the radiolabeled cage [[99mTcO4]- ⊂ CPepH3] in the CD1 mice model demonstrate its brain penetration properties in vivo. Further DFT studies were conducted to model the structure of the [[99mTcO4]- ⊂ cage] complex. Moreover, the encapsulation capabilities and stability of the cage were investigated using the [ReO4]- anion, the "cold" analogue of [99mTcO4]-, by 1H NMR spectroscopy. Overall, our study constitutes another proof-of-concept of the unique potential of supramolecular coordination complexes for modifying the physiochemical and biodistribution properties of diagnostic species.
Collapse
Affiliation(s)
- Ben Woods
- Institute of Structural and Molecular Biology and Department of Biological Sciences, School of Science, Birkbeck University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Rúben D M Silva
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa Estrada Nacional 10, 2695-066 Bobadela, LRS, Portugal
| | - Claudia Schmidt
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| | - Marco Cavaco
- Instituto de Medicina Molecular João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vera F C Ferreira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa Estrada Nacional 10, 2695-066 Bobadela, LRS, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa Estrada Nacional 10, 2695-066 Bobadela, LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, LRS, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa Estrada Nacional 10, 2695-066 Bobadela, LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa Estrada Nacional 10, 2695-066 Bobadela, LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, LRS, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| |
Collapse
|
9
|
Ako AM, Kathalikkattil AC, Elliott R, Soriano-López J, McKeogh IM, Zubair M, Zhu N, García-Melchor M, Kruger PE, Schmitt W. Synthetic Approaches to Metallo-Supramolecular Co II Polygons and Potential Use for H 2O Oxidation. Inorg Chem 2020; 59:14432-14438. [PMID: 32969214 DOI: 10.1021/acs.inorgchem.0c02182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-directed self-assembly has been applied to prepare supramolecular coordination polygons which adopt tetrahedral (1) or trigonal disklike topologies (2). In the solid state, 2 assembles into a stable halide-metal-organic material (Hal-MOM-2), which catalyzes H2O oxidation under photo- and electrocatalytic conditions, operating with a maximum TON = 78 and TOF = 1.26 s-1. DFT calculations attribute the activity to a CoIII-oxyl species. This study provides the first account of how CoII imine based supramolecules can be employed as H2O oxidation catalysts.
Collapse
Affiliation(s)
- Ayuk M Ako
- School of Chemistry & AMBER Center, Trinity College, University of Dublin, Dublin D02 PN40, Ireland
| | | | - Rory Elliott
- School of Chemistry & AMBER Center, Trinity College, University of Dublin, Dublin D02 PN40, Ireland
| | - Joaquín Soriano-López
- School of Chemistry & AMBER Center, Trinity College, University of Dublin, Dublin D02 PN40, Ireland
| | - Ian M McKeogh
- School of Chemistry & AMBER Center, Trinity College, University of Dublin, Dublin D02 PN40, Ireland
| | - Muhammad Zubair
- School of Chemistry & AMBER Center, Trinity College, University of Dublin, Dublin D02 PN40, Ireland
| | - Nianyong Zhu
- School of Chemistry & AMBER Center, Trinity College, University of Dublin, Dublin D02 PN40, Ireland
| | - Max García-Melchor
- School of Chemistry & AMBER Center, Trinity College, University of Dublin, Dublin D02 PN40, Ireland
| | - Paul E Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Wolfgang Schmitt
- School of Chemistry & AMBER Center, Trinity College, University of Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
10
|
Du K, Zemerov SD, Hurtado Parra S, Kikkawa JM, Dmochowski IJ. Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry. Inorg Chem 2020; 59:13831-13844. [PMID: 32207611 PMCID: PMC7672707 DOI: 10.1021/acs.inorgchem.9b03634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.
Collapse
|
11
|
Cooperative Binding and Stepwise Encapsulation of Drug Molecules by Sulfonylcalixarene-Based Metal-Organic Supercontainers. Molecules 2020; 25:molecules25112656. [PMID: 32521606 PMCID: PMC7321066 DOI: 10.3390/molecules25112656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
The cooperative binding behavior of a face-directed octahedral metal-organic supercontainer featuring one endo cavity and six exo cavities was thoroughly examined in chloroform solution through ultraviolet-visible (UV-Vis) titration technique using two representative drug molecules as the guests. The titration curves and their nonlinear fit to Hill equation strongly suggest the efficient encapsulation of the guest molecules by the synthetic host, which exhibit interesting cooperative and stepwise binding behavior. Based on the control experiments using tetranuclear complex as a reference, it is clear that two equivalents of the guest molecules are initially encapsulated inside the endo cavity, followed by the trapping of six additional equivalents of the drug molecules through six exo cavities (1 eq. per exo cavity), and the remaining guests are entrapped by the external pockets. The results provide an in-depth understanding of the cooperative binding behavior of metal-organic supercontainers, which opens up new opportunities for designing synthetic receptors for truly biomimetic functional applications.
Collapse
|
12
|
Kravchenko O, Varava A, Pokorny FT, Devaurs D, Kavraki LE, Kragic D. A Robotics-Inspired Screening Algorithm for Molecular Caging Prediction. J Chem Inf Model 2020; 60:1302-1316. [PMID: 32130862 PMCID: PMC7307881 DOI: 10.1021/acs.jcim.9b00945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
We define a molecular caging complex as a pair
of molecules in which one molecule (the “host” or “cage”)
possesses a cavity that can encapsulate the other molecule (the “guest”)
and prevent it from escaping. Molecular caging complexes can be useful
in applications such as molecular shape sorting, drug delivery, and
molecular immobilization in materials science, to name just a few.
However, the design and computational discovery of new caging complexes
is a challenging task, as it is hard to predict whether one molecule
can encapsulate another because their shapes can be quite complex.
In this paper, we propose a computational screening method that predicts
whether a given pair of molecules form a caging complex. Our method
is based on a caging verification algorithm that was designed by our
group for applications in robotic manipulation. We tested our algorithm
on three pairs of molecules that were previously described in a pioneering
work on molecular caging complexes and found that our results are
fully consistent with the previously reported ones. Furthermore, we
performed a screening experiment on a data set consisting of 46 hosts
and four guests and used our algorithm to predict which pairs are
likely to form caging complexes. Our method is computationally efficient
and can be integrated into a screening pipeline to complement experimental
techniques.
Collapse
Affiliation(s)
- Oleksandr Kravchenko
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biology and Health (CBH), KTH Royal Institute of Technology, 11428 Stockholm, Sweden
| | - Anastasiia Varava
- Division of Robotics, Perception and Learning (RPL), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Florian T Pokorny
- Division of Robotics, Perception and Learning (RPL), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Didier Devaurs
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP (Institute of Engineering, Université Grenoble Alpes), LJK, 38000 Grenoble, France
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Danica Kragic
- Division of Robotics, Perception and Learning (RPL), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
13
|
Yadav S, Kannan P, Qiu G. Cavity-based applications of metallo-supramolecular coordination cages (MSCCs). Org Chem Front 2020. [DOI: 10.1039/d0qo00681e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review describes cavity-based applications of cage-like SCCs such as molecular recognition and separation, stabilization of reactive species by encapsulation, as drug delivery systems and as molecular flasks.
Collapse
Affiliation(s)
- Sarita Yadav
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Palanisamy Kannan
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| |
Collapse
|
14
|
Qin QP, Zou BQ, Wang ZF, Huang XL, Zhang Y, Tan MX, Wang SL, Liang H. High in vitro and in vivo antitumor activities of luminecent platinum(II) complexes with jatrorrhizine derivatives. Eur J Med Chem 2019; 183:111727. [DOI: 10.1016/j.ejmech.2019.111727] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
|
15
|
Sujata Kundan, Bajju GD, Gupta D, Roy TK. Novel Axially Ligated Complexes of Zn(II)Porphyrin: Spectroscopic, Computational, and Antibiological Characterization. RUSS J INORG CHEM+ 2019. [DOI: 10.1134/s003602361911010x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Eskandari A, Kundu A, Ghosh S, Suntharalingam K. A Triangular Platinum(II) Multinuclear Complex with Cytotoxicity Towards Breast Cancer Stem Cells. Angew Chem Int Ed Engl 2019; 58:12059-12064. [DOI: 10.1002/anie.201905389] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Arvin Eskandari
- Department of ChemistryKing's College London London SE1 1DB UK
| | - Arunangshu Kundu
- Department of ChemistryGauhati University Guwahati Assam 781014 India
| | - Sushobhan Ghosh
- Department of ChemistryGauhati University Guwahati Assam 781014 India
| | | |
Collapse
|
17
|
Eskandari A, Kundu A, Ghosh S, Suntharalingam K. A Triangular Platinum(II) Multinuclear Complex with Cytotoxicity Towards Breast Cancer Stem Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arvin Eskandari
- Department of ChemistryKing's College London London SE1 1DB UK
| | - Arunangshu Kundu
- Department of ChemistryGauhati University Guwahati Assam 781014 India
| | - Sushobhan Ghosh
- Department of ChemistryGauhati University Guwahati Assam 781014 India
| | | |
Collapse
|
18
|
Woods B, Döllerer D, Aikman B, Wenzel MN, Sayers EJ, Kühn FE, Jones AT, Casini A. Highly luminescent metallacages featuring bispyridyl ligands functionalised with BODIPY for imaging in cancer cells. J Inorg Biochem 2019; 199:110781. [PMID: 31357067 DOI: 10.1016/j.jinorgbio.2019.110781] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 01/28/2023]
Abstract
Recently, 3-dimensional supramolecular coordination complexes of the metallacage type have been shown to hold promise as drug delivery systems for different cytotoxic agents, including the anticancer drug cisplatin. However, so far only limited information is available on their uptake and sub-cellular localisation in cancer cells. With the aim of understanding the fate of metallacages in cells by fluorescence microscopy, three fluorescent Pd2L4 metallacages were designed and synthesised by self-assembly of two types of bispyridyl ligands (L), exo-functionalised with boron dipyrromethene (BODIPY) moieties, with Pd(II) ions. The cages show high quantum yields and are moderately stable in the presence of physiologically relevant concentration of glutathione. Furthermore, the cages are able to encapsulate the anticancer drug cisplatin, as demonstrated by NMR spectroscopy. Preliminary cytotoxicity studies in a small panel of human cancer cells showed that the metallacages are scarcely toxic in vitro. The marked fluorescence due to BODIPY allowed us to visualise the cages' uptake and sub-cellular localisation inside melanoma cells using fluorescence microscopy, highlighting uptake via active transport mechanisms and accumulation in cytoplasmic vesicles.
Collapse
Affiliation(s)
- Ben Woods
- School of Chemistry, Cardiff University, Park Place, CF10 3AT Cardiff, Wales, United Kingdom
| | - Daniel Döllerer
- School of Chemistry, Cardiff University, Park Place, CF10 3AT Cardiff, Wales, United Kingdom; Molecular Catalysis, Department of Chemistry, Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany
| | - Brech Aikman
- School of Chemistry, Cardiff University, Park Place, CF10 3AT Cardiff, Wales, United Kingdom
| | - Margot N Wenzel
- School of Chemistry, Cardiff University, Park Place, CF10 3AT Cardiff, Wales, United Kingdom
| | - Edward J Sayers
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB Cardiff, Wales, United Kingdom
| | - Fritz E Kühn
- Molecular Catalysis, Department of Chemistry, Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB Cardiff, Wales, United Kingdom
| | - Angela Casini
- School of Chemistry, Cardiff University, Park Place, CF10 3AT Cardiff, Wales, United Kingdom.
| |
Collapse
|
19
|
Bursch M, Neugebauer H, Grimme S. Structure Optimisation of Large Transition-Metal Complexes with Extended Tight-Binding Methods. Angew Chem Int Ed Engl 2019; 58:11078-11087. [PMID: 31141262 DOI: 10.1002/anie.201904021] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 01/16/2023]
Abstract
Large transition-metal complexes are used in numerous areas of chemistry. Computer-aided theoretical investigations of such complexes are limited by the sheer size of real systems often consisting of hundreds to thousands of atoms. Accordingly, the development and thorough evaluation of fast semi-empirical quantum chemistry methods that are universally applicable to a large part of the periodic table is indispensable. Herein, we report on the capability of the recently developed GFNn-xTB method family for full quantum-mechanical geometry optimisation of medium to very large transition-metal complexes and organometallic supramolecular structures. The results for a specially compiled benchmark set of 145 diverse closed-shell transition-metal complex structures for all metals up to Hg are presented. Further the GFNn-xTB methods are tested on three established benchmark sets regarding reaction energies and barrier heights of organometallic reactions.
Collapse
Affiliation(s)
- Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
20
|
Bursch M, Neugebauer H, Grimme S. Structure Optimisation of Large Transition‐Metal Complexes with Extended Tight‐Binding Methods. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Markus Bursch
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn Beringstr. 4 53115 Bonn Germany
| | - Hagen Neugebauer
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn Beringstr. 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn Beringstr. 4 53115 Bonn Germany
| |
Collapse
|
21
|
Vardhan H, Nafady A, Al-Enizi AM, Khandker K, El-Sagher HM, Verma G, Acevedo-Duncan M, Alotaibi TM, Ma S. Investigation of the Anticancer Activity of Coordination-Driven Self-AssembledTwo-Dimensional Ruthenium Metalla-Rectangle. Molecules 2019; 24:E2284. [PMID: 31248221 PMCID: PMC6630691 DOI: 10.3390/molecules24122284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
Coordination-driven self-assembly is an effective synthetic tool for the construction of spatially and electronically tunable supramolecular coordination complexes (SCCs), which are useful in various applications. Herein, we report the synthesis of a two-dimensional discrete metalla-rectangle [(η6-p-cymene)4Ru4(C6H2O4)2(2)2](CF3SO3)4 (3) by the reaction of a dinuclear half-sandwich ruthenium (II) complex [Ru2(η6-p-cymene)2(C6H2O4)Cl2] (1) and bis-pyridyl amide linker (2) in the presence of AgO3SCF3. This cationic ruthenium metalla-rectangle (3) has been isolated as its triflate salt and characterized by analytical techniques including elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H-NMR), carbon nuclear magnetic resonance spectroscopy (13C-NMR), 1H-1H correlation spectroscopy (COSY), 1H-1H nuclear Overhauser effect spectroscopy (NOESY), diffusion ordered spectroscopy (DOSY), and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Significantly, the 2D cationic ruthenium metalla-rectangle showed better anticancer activity towards three different cell lines (A549, Caki-1 and Lovo) as compared with the parent ruthenium complex (1) and the commercially used drug, cisplatin.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Khalid Khandker
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Hussein M El-Sagher
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Gaurav Verma
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Mildred Acevedo-Duncan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Tawfiq M Alotaibi
- King Abdullah City for Atomic and Renewable Energy, Riyadh 11451, Saudi Arabia.
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
22
|
Pöthig A, Casini A. Recent Developments of Supramolecular Metal-based Structures for Applications in Cancer Therapy and Imaging. Theranostics 2019; 9:3150-3169. [PMID: 31244947 PMCID: PMC6567972 DOI: 10.7150/thno.31828] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The biomedical application of discrete supramolecular metal-based structures, including supramolecular coordination complexes (SCCs), is still an emergent field of study. However, pioneering studies over the last 10 years demonstrated the potential of these supramolecular compounds as novel anticancer drugs, endowed with different mechanisms of action compared to classical small-molecules, often related to their peculiar molecular recognition properties. In addition, the robustness and modular composition of supramolecular metal-based structures allows for an incorporation of different functionalities in the same system to enable imaging in cells via different modalities, but also active tumor targeting and stimuli-responsiveness. Although most of the studies reported so far exploit these systems for therapy, supramolecular metal-based structures may also constitute ideal scaffolds to develop multimodal theranostic agents. Of note, the host-guest chemistry of 3D self-assembled supramolecular structures - within the metallacages family - can also be exploited to design novel drug delivery systems for anticancer chemotherapeutics. In this review, we aim at summarizing the pivotal concepts in this fascinating research area, starting with the main design principles and illustrating representative examples while providing a critical discussion of the state-of-the-art. A section is also included on supramolecular organometallic complexes (SOCs) whereby the (organic) linker is forming the organometallic bond to the metal node, whose biological applications are still to be explored. Certainly, the myriad of possible supramolecular metal-based structures and their almost limitless modularity and tunability suggests that the biomedical applications of such complex chemical entities will continue along this already promising path.
Collapse
|
23
|
Wang H, Qiu Z, Liu H, Jayawardhana AMDS, Yue Z, Daghlas H, Bowers DJ, Datta B, Zheng YR. Nanoparticles of Metal-Organic Cages Overcoming Drug Resistance in Ovarian Cancer. Front Chem 2019; 7:39. [PMID: 30775364 PMCID: PMC6367237 DOI: 10.3389/fchem.2019.00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/14/2019] [Indexed: 01/13/2023] Open
Abstract
A long-standing challenge in the treatment of ovarian cancer is drug resistance to standard platinum-based chemotherapy. Recently, increasing attention has been drawn to the use of self-assembled metal-organic complexes as novel therapeutics for cancer treatment. However, high hydrophobicity that is often associated with these structures lowers their solubility and hinders their clinical translation. In this article, we present a proof-of-concept study of using nanoprecipitation to formulate the hydrophobic metal-organic cages and facilitate their use in treating chemoresistant ovarian cancer. The Pt6L4 Cage 1 is an octahedral cage formed by self-assembly of six 1,10-phenanthroline-Pt(II) centers and four 2,4,6-tris(4-pyridyl)-1,3,5-triazine ligands (L). Cage 1 is able to trigger DNA damage and exhibits promising in vitro potency against a panel of human ovarian cancer cell lines. However, due to the large portion of aromatic components, this cage structure has very limited solubility in cell culture media (<20μM). Notably, upon nanoformulation by using fluorescein (2) and a pegylated anionic polymer (3), the concentration of Cage 1 can reach up to 0.4 mM. Production of the nanoparticles of metal-organic cages (nMOC) is driven by the formation of the 1:1 host-guest complex of 1 and 2 in aqueous solution, which then form nanoprecipitation in presence of poly glutamic acid-b-poly ethylene glycol (3). The resulted nMOC are about 100 nm in diameter, and they serve as a delivery platform that slowly releases the therapeutic content. The use of fluorescein facilitates monitoring cell entry of nMOC and drug release using flow cytometry. Finally, comparing to cisplatin, the nMOC exhibit comparable in vitro efficacy against a panel of human cancer cell lines, and notably, it shows a much lower resistance factor against chemoresistant ovarian cancer cell lines.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemistry and Biochemistry, Integrated Sciences Building, Kent State University, Kent, OH, United States
| | - Zihan Qiu
- Department of Chemistry and Biochemistry, Integrated Sciences Building, Kent State University, Kent, OH, United States
| | - He Liu
- Science Research Laboratory, Department of Chemistry and Biochemistry, Kent State University, Kent, OH, United States
| | | | - Zhizhou Yue
- Department of Chemistry and Biochemistry, Integrated Sciences Building, Kent State University, Kent, OH, United States
| | - Hala Daghlas
- Department of Chemistry and Biochemistry, Integrated Sciences Building, Kent State University, Kent, OH, United States
| | - David J Bowers
- Department of Chemistry and Biochemistry, Integrated Sciences Building, Kent State University, Kent, OH, United States
| | - Bansidhar Datta
- Science Research Laboratory, Department of Chemistry and Biochemistry, Kent State University, Kent, OH, United States
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Integrated Sciences Building, Kent State University, Kent, OH, United States
| |
Collapse
|
24
|
Delineation of proapoptotic signaling of anthracene-shelled M2L4 metallacapsules and their synergistic activity with curcumin in cisplatin-sensitive and resistant tumor cell lines. Invest New Drugs 2019; 37:1117-1126. [DOI: 10.1007/s10637-019-00738-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/31/2019] [Indexed: 11/25/2022]
|
25
|
Train JS, Wragg AB, Auty AJ, Metherell AJ, Chekulaev D, Taylor CGP, Argent SP, Weinstein JA, Ward MD. Photophysics of Cage/Guest Assemblies: Photoinduced Electron Transfer between a Coordination Cage Containing Osmium(II) Luminophores, and Electron-Deficient Bound Guests in the Central Cavity. Inorg Chem 2019; 58:2386-2396. [DOI: 10.1021/acs.inorgchem.8b02860] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jennifer S. Train
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Ashley B. Wragg
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Alexander J. Auty
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | - Stephen P. Argent
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Michael D. Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
26
|
Jayawardhana AMDS, Qiu Z, Kempf S, Wang H, Miterko M, Bowers DJ, Zheng YR. Dual-action organoplatinum polymeric nanoparticles overcoming drug resistance in ovarian cancer. Dalton Trans 2019; 48:12451-12458. [DOI: 10.1039/c9dt01683j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This work demonstrates the development of “dual-action” organometallic polymeric nanoparticles (OPNPs) for treating drug-resistant ovarian cancer.
Collapse
Affiliation(s)
| | - Zhihan Qiu
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Susan Kempf
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Han Wang
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Mitchell Miterko
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - David J. Bowers
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| |
Collapse
|
27
|
Fang Y, Lian X, Huang Y, Fu G, Xiao Z, Wang Q, Nan B, Pellois JP, Zhou HC. Investigating Subcellular Compartment Targeting Effect of Porous Coordination Cages for Enhancing Cancer Nanotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802709. [PMID: 30222252 PMCID: PMC6563816 DOI: 10.1002/smll.201802709] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/15/2018] [Indexed: 05/13/2023]
Abstract
Understanding the key factors for successful subcellular compartment targeting for cargo delivery systems is of great interest in a variety of fields such as bionanotechnology, cell biology, and nanotherapies. However, the fundamental basis for intracellular transportation with these systems has thus far rarely been discussed. As a cargo vector, porous coordination cages (PCCs) have great potential for use in cancer nanotherapy and to elucidate fundamental insight regarding subcellular compartment targeting. Herein, it is shown that the transportation of PCC cargo vectors though various subcellular barriers of the mammalian cell can be manipulated by tuning the vector's electronic property and surface affinity. It is found that the PCCs become selectively aggregated at the cell membrane, the cytoplasm, or the nucleus, respectively. When a DNA topoisomerase inhibitor is delivered into the nucleus by a neutral and lipophilic PCC, the anticancer efficacy is dramatically improved. The findings shed light to tune the interactions at the "bio-nano" interface. This study provides a key strategy for future work in targeting specific cell organelles for cell imaging, cargo delivery, and therapy. This research also offers key insight into the engineering of nanoscopic materials for furnishing cell organelle-specificity.
Collapse
Affiliation(s)
- Yu Fang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Xizhen Lian
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guo Fu
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Zhifeng Xiao
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Qi Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
28
|
Soumya KR, Arumugam R, Shankar B, Sathiyendiran M. Sulfate Donor Based Dinuclear Heteroleptic Triple-Stranded Helicates from Sulfite and Ditopic Nitrogen Donor Ligands and Their Transformation to Dinuclear Homoleptic Double-Stranded Mesocates. Inorg Chem 2018; 57:10718-10725. [PMID: 30106570 DOI: 10.1021/acs.inorgchem.8b01343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfate donor based supramolecular coordination complexes [{ fac-Re(CO)3}(μ-SO4)(L n)2{ fac-Re(CO)3}] (1-3) were obtained using ditopic N donors (L n; n = 1-3), NaHSO3, and Re2(CO)10 in a one-pot, multicomponent, coordination-driven self-assembly approach, in which SO32- becomes oxidized to SO42- during the reaction and acts as a building framework. Complexes 1-3 were characterized using IR, ESI-TOF-MS, and 1H NMR spectroscopy. The structures of complexes 1-3 were confirmed using single-crystal X-ray diffraction analysis. The transformation of the dinuclear heteroleptic triple-stranded helicate to the dinuclear homoleptic double-stranded mesocate [{Re(CO)3Cl}2(L n)2] (L n = L1, L2, L3; 4a-6a) was achieved by the addition of BaCl2. The direct treatment of Re(CO)5X (X = Cl, Br) with L1/L2/L3 yielded the dinuclear homoleptic double-stranded helicates [{Re(CO)3X}2 (L n)2] (4b-6b and 7-9).
Collapse
Affiliation(s)
- K R Soumya
- School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | - Ramar Arumugam
- School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | - Bhaskaran Shankar
- School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | | |
Collapse
|
29
|
Yue Z, Wang H, Bowers DJ, Gao M, Stilgenbauer M, Nielsen F, Shelley JT, Zheng YR. Nanoparticles of metal-organic cages designed to encapsulate platinum-based anticancer agents. Dalton Trans 2018; 47:670-674. [PMID: 29257160 DOI: 10.1039/c7dt03537c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a novel design to use metal-organic cages (MOCs) to encapsulate Pt-based anticancer agents for delivery. A fluorescein-conjugated Pt(iv) prodrug of cisplatin is developed for its encapsulation in a cationic MOC via host-guest interactions, which then forms drug-loaded nanoparticles with an anionic polymer.
Collapse
Affiliation(s)
- Zhizhou Yue
- Department of Chemistry and Biochemistry, Kent State University, 224 Williams Hall, Kent, Ohio 44242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Messina MS, Stauber JM, Waddington MA, Rheingold AL, Maynard HD, Spokoyny AM. Organometallic Gold(III) Reagents for Cysteine Arylation. J Am Chem Soc 2018; 140:7065-7069. [PMID: 29790740 PMCID: PMC6491213 DOI: 10.1021/jacs.8b04115] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient method for chemoselective cysteine arylation of unprotected peptides and proteins using Au(III) organometallic complexes is reported. The bioconjugation reactions proceed rapidly (<5 min) at ambient temperature in various buffers and within a wide pH range (0.5-14). This approach provides access to a diverse array of S-aryl bioconjugates including fluorescent dye, complex drug molecule, affinity label, poly(ethylene glycol) tags, and a stapled peptide. A library of Au(III) arylation reagents can be prepared as air-stable, crystalline solids in one step from commercial reagents. The selective and efficient arylation procedures presented in this work broaden the synthetic scope of cysteine bioconjugation and serve as promising routes for the modification of complex biomolecules.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive East , Los Angeles , California 90095-1569 , United States
| | - Julia M Stauber
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive East , Los Angeles , California 90095-1569 , United States
| | - Mary A Waddington
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive East , Los Angeles , California 90095-1569 , United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive East , Los Angeles , California 90095-1569 , United States
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-1569 , United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive East , Los Angeles , California 90095-1569 , United States
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-1569 , United States
| |
Collapse
|
31
|
Zhou Z, Liu J, Rees TW, Wang H, Li X, Chao H, Stang PJ. Heterometallic Ru-Pt metallacycle for two-photon photodynamic therapy. Proc Natl Acad Sci U S A 2018; 115:5664-5669. [PMID: 29760069 PMCID: PMC5984529 DOI: 10.1073/pnas.1802012115] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
As an effective and noninvasive treatment of various diseases, photodynamic therapy (PTD) relies on the combination of light, a photosensitizer, and oxygen to generate cytotoxic reactive oxygen species that can damage malignant tissue. Much attention has been paid to covalent modifications of the photosensitizers to improve their photophysical properties and to optimize the pathway of the photosensitizers interacting with cells within the target tissue. Herein we report the design and synthesis of a supramolecular heterometallic Ru-Pt metallacycle via coordination-driven self-assembly. While inheriting the excellent photostability and two-photon absorption characteristics of the Ru(II) polypyridyl precursor, the metallacycle also exhibits red-shifted luminescence to the near-infrared region, a larger two-photon absorption cross-section, and higher singlet oxygen generation efficiency, making it an excellent candidate as a photosensitizer for PTD. Cellular studies reveal that the metallacycle selectively accumulates in mitochondria and nuclei upon internalization. As a result, singlet oxygen generated by photoexcitation of the metallacycle can efficiently trigger cell death via the simultaneous damage to mitochondrial function and intranuclear DNA. In vivo studies on tumor-bearing mice show that the metallacycle can efficiently inhibit tumor growth under a low light dose with minimal side effects. The supramolecular approach presented in this work provides a paradigm for the development of PDT agents with high efficacy.
Collapse
Affiliation(s)
- Zhixuan Zhou
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Heng Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China;
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112;
| |
Collapse
|
32
|
Bhuvaneswari N, Dai FR, Chen ZN. Sensitive and Specific Guest Recognition through Pyridinium-Modification in Spindle-Like Coordination Containers. Chemistry 2018; 24:6580-6585. [PMID: 29446864 DOI: 10.1002/chem.201705210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 12/13/2022]
Abstract
An elaborately designed pyridinium-functionalized octanuclear zinc(II) coordination container 1-Zn was prepared through the self-assembly of Zn2+ , p-tert-butylsulfonylcalix[4]arene, and pyridinium-functionalized angular flexible dicarboxylate linker (H2 BrL1). The structure was determined by a single-crystal X-ray diffractometer. 1-Zn displays highly sensitive and specific recognition to 2-picolylamine as revealed by drastic blueshifts of the absorption and emission spectra, ascribed to the decrease of intramolecular charge transfer (ICT) character of the container and the occurrence of intermolecular charge transfer between the host and guest molecules. The intramolecular charge transfer plays a key role in the modulation of the electronic properties and is tunable through endo-encapsulation of specific guest molecules.
Collapse
Affiliation(s)
- Nagarajan Bhuvaneswari
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Feng-Rong Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
33
|
Yue Z, Wang H, Li Y, Qin Y, Xu L, Bowers DJ, Gangoda M, Li X, Yang HB, Zheng YR. Coordination-driven self-assembly of a Pt(iv) prodrug-conjugated supramolecular hexagon. Chem Commun (Camb) 2018; 54:731-734. [PMID: 29303526 DOI: 10.1039/c7cc07622c] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article presents a new strategy to engage coordination-driven self-assembly for platinum drug delivery. The self-assembled supramolecular hexagon is conjugated with three equivalents of Pt(iv) prodrugs and displays a superior therapeutic index compared to cisplatin against a panel of human cancer cell lines.
Collapse
Affiliation(s)
- Zhizhou Yue
- Department of Chemistry and Biochemistry, Kent State University, 224 Williams Hall, Kent, Ohio 44242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nuevo D, Poyatos M, Peris E. A Dinuclear Au(I) Complex with a Pyrene-di-N-heterocyclic Carbene Linker: Supramolecular and Catalytic Studies. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00087] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Daniel Nuevo
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avda. Vicente Sos Baynat s/n, E-12071 Castellón, Spain
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avda. Vicente Sos Baynat s/n, E-12071 Castellón, Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avda. Vicente Sos Baynat s/n, E-12071 Castellón, Spain
| |
Collapse
|
35
|
Bilyachenko AN, Khrustalev VN, Zubavichus YV, Shul'pina LS, Kulakova AN, Bantreil X, Lamaty F, Levitsky MM, Gutsul EI, Shubina ES, Shul'pin GB. Heptanuclear Fe 5Cu 2-Phenylgermsesquioxane containing 2,2'-Bipyridine: Synthesis, Structure, and Catalytic Activity in Oxidation of C-H Compounds. Inorg Chem 2018; 57:528-534. [PMID: 29232118 DOI: 10.1021/acs.inorgchem.7b02881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new representative of an unusual family of metallagermaniumsesquioxanes, namely the heterometallic cagelike phenylgermsesquioxane (PhGeO2)12Cu2Fe5(O)OH(PhGe)2O5(bipy)2 (2), was synthesized and structurally characterized. Fe(III) ions of the complex are coordinated by oxa ligands: (i) cyclic (PhGeO2)12 and acyclic (Ph2Ge2O5) germoxanolates and (ii) O2- and (iii) HO- moieties. In turn, Cu(II) ions are coordinated by both oxa (germoxanolates) and aza ligands (2,2'-bipyridines). This "hetero-type" of ligation gives in sum an attractive pagoda-like molecular architecture of the complex 2. Product 2 showed a high catalytic activity in the oxidation of alkanes to the corresponding alkyl hydroperoxides (in yields up to 30%) and alcohols (in yields up to 100%) and in the oxidative formation of benzamides from alcohols (catalyst loading down to 0.4 mol % in Cu/Fe).
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Yan V Zubavichus
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Lidia S Shul'pina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Alena N Kulakova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier ENSCM, Site Triolet , Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier ENSCM, Site Triolet , Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Evgeniy I Gutsul
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Georgiy B Shul'pin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences , ulitsa Kosygina, dom 4, Moscow 119991, Russia.,Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow 117997, Russia
| |
Collapse
|
36
|
Wang Y, Huang H, Zhang Q, Zhang P. Chirality in metal-based anticancer agents. Dalton Trans 2018; 47:4017-4026. [DOI: 10.1039/c8dt00089a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chiral metal-based drugs are currently an interesting and rapidly growing field in anticancer research. Here the different chiral metal-based anticancer agents and the extent to which the chiral resolution affects their biological properties are discussed. This review will aid the design of new potent and efficient chiral metal-based anticancer drugs that exploit the unique properties combined with their potential selectivity toward targeted chiral biomolecules.
Collapse
Affiliation(s)
- Yi Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- 518060
- P. R. China
| | - Huaiyi Huang
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- 518060
- P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- 518060
- P. R. China
| |
Collapse
|
37
|
Fan QJ, Lin YJ, Hahn FE, Jin GX. Host–guest capability of a three-dimensional heterometallic macrocycle. Dalton Trans 2018; 47:2240-2246. [DOI: 10.1039/c7dt04453d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional heterometallic macrocycles with half-sandwich Rh corners were studied for their ability to trap planar and non-planar guests. Furthermore, these heterometallic macrocycles can be destroyed in the presence of a soft base to form hexanuclear triangular prism complexes.
Collapse
Affiliation(s)
- Qi-Jia Fan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Material
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
- Shanghai 200433
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Material
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
- Shanghai 200433
| | - F. Ekkehardt Hahn
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Material
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
- Shanghai 200433
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Material
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
- Shanghai 200433
| |
Collapse
|
38
|
Chakraborty S, Newkome GR. Terpyridine-based metallosupramolecular constructs: tailored monomers to precise 2D-motifs and 3D-metallocages. Chem Soc Rev 2018; 47:3991-4016. [DOI: 10.1039/c8cs00030a] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Comprehensive summary of the recent developments in the growing field of terpyridine-based, discrete metallosupramolecular architectures.
Collapse
Affiliation(s)
| | - George R. Newkome
- Department of Polymer Science
- University of Akron
- Akron
- USA
- Departments of Chemistry
| |
Collapse
|
39
|
Paul LE, Therrien B, Furrer J. The complex-in-a-complex cation [Pt(acac)2⊂(p-cym)6Ru6(tpt)2(dhnq)3]6+: Its stability towards biological ligands. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Kulakova AN, Bilyachenko AN, Levitsky MM, Khrustalev VN, Korlyukov AA, Zubavichus YV, Dorovatovskii PV, Lamaty F, Bantreil X, Villemejeanne B, Martinez J, Shul'pina LS, Shubina ES, Gutsul EI, Mikhailov IA, Ikonnikov NS, Tsareva US, Shul'pin GB. Si 10Cu 6N 4 Cage Hexacoppersilsesquioxanes Containing N Ligands: Synthesis, Structure, and High Catalytic Activity in Peroxide Oxidations. Inorg Chem 2017; 56:15026-15040. [PMID: 29185729 DOI: 10.1021/acs.inorgchem.7b02320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis, composition, and catalytic properties of a new family of hexanuclear Cu(II)-based phenylsilsesquioxanes are described here. Structural studies of 17 synthesized compounds revealed the general principle underlying their molecular topology: viz., a central metal oxide layer consisting of two Cu3 trimers is coordinated by two cyclic [PhSiO1.5]5 siloxanolate ligands to form a skewed sandwich architecture with the composition [(PhSiO1.5)10(CuO)6]2+. In addition to this O ligation by the siloxanolate rings, two opposite copper ions are additionally coordinated by the nitrogen atoms of corresponding N ligand(s), such as 2,2'-bipyridine (compounds 1-9), 1,10-phenanthroline (compounds 10-13), mixed 1,10-phenanthroline/2,2'-bipyridine (compound 14), or bathophenanthroline (compounds 15-17). Finally, the charge balance is maintained by two HO- (compounds 1-7, 10-13, and 15-17), two H3CO- (compound 8), or two CH3COO- (compounds 9 and 14) anions. Complexes 1 and 10 exhibited a high activity in the oxidative amidation oxidation of alcohols. Compounds 1, 10, and 15 are very efficient homogeneous catalysts in the oxidation of alkanes and alcohols with peroxides.
Collapse
Affiliation(s)
- Alena N Kulakova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Alexander A Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Pirogov Russian National Research Medical University , Ostrovitianov str., 1, Moscow, Russia
| | - Yan V Zubavichus
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, Moscow, Russia
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Benoît Villemejeanne
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Lidia S Shul'pina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Evgeniy I Gutsul
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Igor A Mikhailov
- Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow, Russia
| | - Nikolay S Ikonnikov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Ul'yana S Tsareva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Georgiy B Shul'pin
- Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences , ulitsa Kosygina, dom 4, Moscow, Russia
| |
Collapse
|
41
|
Casini A, Woods B, Wenzel M. The Promise of Self-Assembled 3D Supramolecular Coordination Complexes for Biomedical Applications. Inorg Chem 2017; 56:14715-14729. [PMID: 29172467 DOI: 10.1021/acs.inorgchem.7b02599] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the supramolecular chemistry field, coordination-driven self-assembly has provided the basis for tremendous growth across many subdisciplines, spanning from fundamental investigations regarding the design and synthesis of new architectures to defining different practical applications. Within this framework, supramolecular coordination complexes (SCCs), defined as large chemical entities formed from smaller precursor building blocks of ionic metal nodes and organic multidentate ligands, resulting in intricate and well-defined supramolecular structures, hold great promise. Notably, interest in the construction of discrete 3D molecular architectures, such as those offered by SCCs, has experienced extraordinary progress because of their potential application as sensors, catalysts, probes, and containers and in basic host-guest chemistry. Despite numerous synthetic efforts and a number of inherent favorable properties, the field of 3D SCCs for biomedical applications is still in its infancy. This Viewpoint focuses on 3D SCCs, specifically metallacages and helicates, first briefly presenting the fundamentals in terms of the synthesis and characterization of their host-guest properties, followed by an overview of the possible biological applications with representative examples. Thus, emphasis will be given in particular to metallacages as drug delivery systems and to chiral helicates as DNA recognition domains. Overall, we will provide an update on the state-of-the-art literature and will define the challenges in this fascinating research area at the interface of different disciplines.
Collapse
Affiliation(s)
- Angela Casini
- School of Chemistry, Cardiff University , Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Benjamin Woods
- School of Chemistry, Cardiff University , Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Margot Wenzel
- School of Chemistry, Cardiff University , Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| |
Collapse
|
42
|
Szalóki G, Croué V, Carré V, Aubriet F, Alévêque O, Levillain E, Allain M, Aragó J, Ortí E, Goeb S, Sallé M. Controlling the Host-Guest Interaction Mode through a Redox Stimulus. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709483] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- György Szalóki
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Vincent Croué
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Vincent Carré
- LCP-A2MC, FR 3624; Université de Lorraine, ICPM; 1 boulevard Arago 57078 Metz Cedex 03 France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624; Université de Lorraine, ICPM; 1 boulevard Arago 57078 Metz Cedex 03 France
| | - Olivier Alévêque
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Eric Levillain
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Magali Allain
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Juan Aragó
- Instituto de Ciencia Molecular; Universidad de Valencia; 46980 Paterna Valencia) Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular; Universidad de Valencia; 46980 Paterna Valencia) Spain
| | - Sébastien Goeb
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Marc Sallé
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| |
Collapse
|
43
|
Szalóki G, Croué V, Carré V, Aubriet F, Alévêque O, Levillain E, Allain M, Aragó J, Ortí E, Goeb S, Sallé M. Controlling the Host-Guest Interaction Mode through a Redox Stimulus. Angew Chem Int Ed Engl 2017; 56:16272-16276. [DOI: 10.1002/anie.201709483] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 11/12/2022]
Affiliation(s)
- György Szalóki
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Vincent Croué
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Vincent Carré
- LCP-A2MC, FR 3624; Université de Lorraine, ICPM; 1 boulevard Arago 57078 Metz Cedex 03 France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624; Université de Lorraine, ICPM; 1 boulevard Arago 57078 Metz Cedex 03 France
| | - Olivier Alévêque
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Eric Levillain
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Magali Allain
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Juan Aragó
- Instituto de Ciencia Molecular; Universidad de Valencia; 46980 Paterna Valencia) Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular; Universidad de Valencia; 46980 Paterna Valencia) Spain
| | - Sébastien Goeb
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Marc Sallé
- Université d'Angers, CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| |
Collapse
|
44
|
Kim TY, Digal L, Gardiner MG, Lucas NT, Crowley JD. Octahedral [Pd6
L8
]12+
Metallosupramolecular Cages: Synthesis, Structures and Guest-Encapsulation Studies. Chemistry 2017; 23:15089-15097. [DOI: 10.1002/chem.201702518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Tae Y. Kim
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - Lori Digal
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - Michael G. Gardiner
- School of Physical Sciences (Chemistry); University of Tasmania; Hobart Australia
| | - Nigel T. Lucas
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - James D. Crowley
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| |
Collapse
|
45
|
Preston D, White KF, Lewis JEM, Vasdev RAS, Abrahams BF, Crowley JD. Solid-State Gas Adsorption Studies with Discrete Palladium(II) [Pd 2 (L) 4 ] 4+ Cages. Chemistry 2017; 23:10559-10567. [PMID: 28508442 DOI: 10.1002/chem.201701477] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 01/03/2023]
Abstract
The need for effective CO2 capture systems remains high, and due to their tunability, metallosupramolecular architectures are an attractive option for gas sorption. While the use of extended metal organic frameworks for gas adsorption has been extensively explored, the exploitation of discrete metallocage architectures to bind gases remains in its infancy. Herein the solid state gas adsorption properties of a series of [Pd2 (L)4 ]4+ lantern shaped coordination cages (L = variants of 2,6-bis(pyridin-3-ylethynyl)pyridine), which had solvent accessible internal cavities suitable for gas binding, have been investigated. The cages showed little interaction with dinitrogen gas but were able to take up CO2 . The best performing cage reversibly sorbed 1.4 mol CO2 per mol cage at 298 K, and 2.3 mol CO2 per mol cage at 258 K (1 bar). The enthalpy of binding was calculated to be 25-35 kJ mol-1 , across the number of equivalents bound, while DFT calculations on the CO2 binding in the cage gave ΔE for the cage-CO2 interaction of 23-28 kJ mol-1 , across the same range. DFT modelling suggested that the binding mode is a hydrogen bond between the carbonyl oxygen of CO2 and the internally directed hydrogen atoms of the cage.
Collapse
Affiliation(s)
- Dan Preston
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Keith F White
- School of Chemistry, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - James E M Lewis
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Roan A S Vasdev
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Brendan F Abrahams
- School of Chemistry, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
46
|
Byrne K, Zubair M, Zhu N, Zhou XP, Fox DS, Zhang H, Twamley B, Lennox MJ, Düren T, Schmitt W. Ultra-large supramolecular coordination cages composed of endohedral Archimedean and Platonic bodies. Nat Commun 2017; 8:15268. [PMID: 28485392 PMCID: PMC5436142 DOI: 10.1038/ncomms15268] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/15/2017] [Indexed: 11/09/2022] Open
Abstract
Pioneered by Lehn, Cram, Peterson and Breslow, supramolecular chemistry concepts have evolved providing fundamental knowledge of the relationships between the structures and reactivities of organized molecules. A particular fascinating class of metallo-supramolecular molecules are hollow coordination cages that provide cavities of molecular dimensions promoting applications in diverse areas including catalysis, enzyme mimetics and material science. Here we report the synthesis of coordination cages with exceptional cross-sectional diameters that are composed of multiple sub-cages providing numerous distinctive binding sites through labile coordination solvent molecules. The building principles, involving Archimedean and Platonic bodies, renders these supramolecular keplerates as a class of cages whose composition and topological aspects compare to characteristics of edge-transitive {Cu2} MOFs with A3X4 stoichiometry. The nature of the cavities in these double-shell metal-organic polyhedra and their inner/outer binding sites provide perspectives for post-synthetic functionalizations, separations and catalysis. Transmission electron microscopy studies demonstrate that single molecules are experimentally accessible. Host–guest chemistry in hollow coordination cages can be exploited for a range of applications, but is often limited by inner cavity dimensions. Here, Schmitt and co-workers fabricate supramolecular keplerates that possess ultra-large cross-sectional diameters and are composed of multiple sub-cages.
Collapse
Affiliation(s)
- Kevin Byrne
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland.,CRANN Nanotechnology Institute &AMBER, Centre University of Dublin, Trinity College, Dublin 2, Ireland
| | - Muhammad Zubair
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland.,CRANN Nanotechnology Institute &AMBER, Centre University of Dublin, Trinity College, Dublin 2, Ireland
| | - Nianyong Zhu
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland.,CRANN Nanotechnology Institute &AMBER, Centre University of Dublin, Trinity College, Dublin 2, Ireland.,Institute of Molecular Functional Materials &Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Hong Kong, Hong Kong
| | - Xiao-Ping Zhou
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland.,CRANN Nanotechnology Institute &AMBER, Centre University of Dublin, Trinity College, Dublin 2, Ireland
| | - Daniel S Fox
- CRANN Nanotechnology Institute &AMBER, Centre University of Dublin, Trinity College, Dublin 2, Ireland.,School of Physics University of Dublin, Trinity College, Dublin 2, Ireland
| | - Hongzhou Zhang
- CRANN Nanotechnology Institute &AMBER, Centre University of Dublin, Trinity College, Dublin 2, Ireland.,School of Physics University of Dublin, Trinity College, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Matthew J Lennox
- Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Tina Düren
- Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Wolfgang Schmitt
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland.,CRANN Nanotechnology Institute &AMBER, Centre University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
47
|
Oldacre AN, Friedman AE, Cook TR. A Self-Assembled Cofacial Cobalt Porphyrin Prism for Oxygen Reduction Catalysis. J Am Chem Soc 2017; 139:1424-1427. [DOI: 10.1021/jacs.6b12404] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amanda N. Oldacre
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Alan E. Friedman
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Timothy R. Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
48
|
Taylor CGP, Cullen W, Collier OM, Ward MD. A Quantitative Study of the Effects of Guest Flexibility on Binding Inside a Coordination Cage Host. Chemistry 2017; 23:206-213. [PMID: 27879015 PMCID: PMC6680264 DOI: 10.1002/chem.201604796] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 12/29/2022]
Abstract
We have performed a systematic investigation of the effects of guest flexibility on their ability to bind in the cavity of a coordination cage host in water, using two sets of isomeric aliphatic ketones that differ only in the branching patterns of their alkyl chains. Apart from the expected increase in binding strength for C9 over C7 ketones associated with their greater hydrophobic surface area, within each isomeric set there is a clear inverse correlation between binding free energy and guest flexibility, associated with loss of conformational entropy. This can be parameterized by the number of rotatable C-C bonds in the guest, with each additional rotatable bond resulting in a penalty of around 2 kJ mol-1 in the binding free energy, in good agreement with values obtained from protein/ligand binding studies. We used the binding data for the new flexible guests to improve the scoring function that we had previously developed that allowed us to predict binding constants of relatively rigid guests in the cage cavity using the molecular docking programme GOLD (Genetic Optimisation of Ligand Docking). This improved scoring function resulted in a significant improvement in the ability of GOLD to predict binding constants for flexible guests, without any detriment to its ability to predict binding for more rigid guests.
Collapse
Affiliation(s)
| | - William Cullen
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | | | - Michael D. Ward
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
49
|
Vasdev RAS, Preston D, Crowley JD. Functional metallosupramolecular architectures using 1,2,3-triazole ligands: it's as easy as 1,2,3 “click”. Dalton Trans 2017; 46:2402-2414. [DOI: 10.1039/c6dt04702e] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembled metallosupramolecular architectures generated using “click” ligands have become an increasingly popular area of inorganic chemistry.
Collapse
Affiliation(s)
| | - Dan Preston
- Department of Chemistry
- University of Otago
- Dunedin 9054
- New Zealand
| | - James D. Crowley
- Department of Chemistry
- University of Otago
- Dunedin 9054
- New Zealand
| |
Collapse
|
50
|
Han J, Schmidt A, Zhang T, Permentier H, Groothuis GMM, Bischoff R, Kühn FE, Horvatovich P, Casini A. Bioconjugation strategies to couple supramolecular exo-functionalized palladium cages to peptides for biomedical applications. Chem Commun (Camb) 2017; 53:1405-1408. [DOI: 10.1039/c6cc08937b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supramolecular metallacages hold promise for targeted drug delivery.
Collapse
Affiliation(s)
- J. Han
- Department of Analytical Biochemistry
- Groningen Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
- The Netherlands
| | - A. Schmidt
- Molecular Catalysis
- Catalysis Research Center and Department of Chemistry
- Technische Universität München
- 85747 Garching bei München
- Germany
| | - T. Zhang
- Department of Analytical Biochemistry
- Groningen Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
- The Netherlands
| | - H. Permentier
- Department of Analytical Biochemistry
- Groningen Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
- The Netherlands
| | - G. M. M. Groothuis
- Dept. Pharmacokinetics
- Toxicology and Targeting
- Groningen Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
| | - R. Bischoff
- Department of Analytical Biochemistry
- Groningen Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
- The Netherlands
| | - F. E. Kühn
- Molecular Catalysis
- Catalysis Research Center and Department of Chemistry
- Technische Universität München
- 85747 Garching bei München
- Germany
| | - P. Horvatovich
- Department of Analytical Biochemistry
- Groningen Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
- The Netherlands
| | - A. Casini
- Dept. Pharmacokinetics
- Toxicology and Targeting
- Groningen Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
| |
Collapse
|