1
|
Acharya M, Gautam R, Yang S, Jo J, Maharjan A, Lee D, Ghimire NP, Min B, Kim C, Kim H, Heo Y. Evaluation of Artemisia dubia folium extract-mediated immune efficacy through developing a murine model for acute and chronic stages of atopic dermatitis. Lab Anim Res 2024; 40:13. [PMID: 38582857 PMCID: PMC10999079 DOI: 10.1186/s42826-024-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a biphasic type of skin inflammation characterized by a predominance of type-2 (TH2) and type-1 (TH1) helper T cell-biased immune responses at the acute and persistent chronic phases, respectively. The present study was aimed to evaluate the efficacy of Artemisia dubia folium extract (ADFE) on AD-like skin lesions through developing a murine model for acute and chronic stages of AD. To induce acute phase AD, the dorsal skin of BALB/c mice was sensitized twice a week with 1% 2, 4-dinitrochlorobenzene (DNCB), followed by challenge (twice) in the following week with 0.2% DNCB. To induce persistent chronic AD, some mice were challenged twice a week for 4 more weeks. After the second challenge, the dorsal skin was exposed to 3% ADFE (five times per week) for 2 weeks (acute phase) or 4 weeks (persistent chronic phase). RESULTS The paradigm of TH2 or TH1 predominance at the acute and chronic phase, respectively, was observed in this mouse model. During the acute phase, we observed an increased IL-4/IFN-γ ratio in splenic culture supernatants, an increased IgG1/IgG2a ratio in serum, and elevated serum IgE levels; however, the skew toward TH2 responses was diminished during the chronic stage. Compared with vehicle controls, ADFE reduced the IL-4/IFN-γ and IgG1/IgG2a ratios in acute AD, but both ratios increased during the chronic stage. CONCLUSIONS Our results suggest that ADFE concomitantly suppresses the TH2 predominant response in acute AD, as well as the TH1 predominant response in chronic AD. Thus, ADFE is a candidate therapeutic for AD.
Collapse
Affiliation(s)
- Manju Acharya
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - Ravi Gautam
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - SuJeong Yang
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - JiHun Jo
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - Anju Maharjan
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - DaEun Lee
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | | | - ByeongSun Min
- College of Pharmacy, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - ChangYul Kim
- Department of Toxicology, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yong Heo
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea.
- Department of Toxicology, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea.
| |
Collapse
|
2
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Histamine H 1 Receptor-Mediated JNK Phosphorylation Is Regulated by G q Protein-Dependent but Arrestin-Independent Pathways. Int J Mol Sci 2024; 25:3395. [PMID: 38542369 PMCID: PMC10970263 DOI: 10.3390/ijms25063395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.
Collapse
Affiliation(s)
| | | | | | | | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
3
|
Huang JL, Xu YH, Yang XW, Wang J, Zhu Y, Wu XB. Jiawei guomin decoction regulates the degranulation of mast cells in atopic dermatitis mice via the HIS/PAR-2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117485. [PMID: 38008276 DOI: 10.1016/j.jep.2023.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guomin decoction (GMD) is a traditional Chinese medicine commonly used in clinical practice. It has traditionally been used to treat all allergic diseases. Currently, Jiawei Guomin Decoction (JWGMD) is used to treat sensitive skin after initial therapy. Although it has a significant clinical therapeutic effect, the exact role of mast cell degranulation in treating atopic dermatitis (AD) is still unclear. AIM OF THE STUDY GMD and JWGMD can both treat allergic diseases, while JWGMD focuses on skin allergies. This study aims to explore the potential effect of JWGMD on the degranulation of mast cells in an AD mouse model induced by 2,4-dinitrofluorobenzene (DNFB) and investigate the effectiveness of JWGMD in alleviating disease progression to further provide specific therapeutic targets for treating AD. MATERIALS AND METHODS The scratching times and skin lesions of model mice induced by DNFB were observed, and skin tissues were collected for subsequent measurement. Histopathological changes in the back skin of mice were observed by haematoxylin eosin (H&E) staining, Toluidine blue staining was used to detect the degranulation of mouse skin mast cells, and the relationship between the expression of histamine (HIS), mast cell tryptase (MCT) and mast cell degranulation was analysed by enzyme-linked immunosorbent assay (ELISA). The expression of protease-activated receptor-2 (PAR-2), histamine 1 receptor (H1R), H2R, H4R and MCT proteins in AD mice was detected by Western blot (WB). Immunofluorescence assay (IFA) further confirmed the localization of PAR-2, H1R, H2R, H4R, and MCT proteins in the skin. Quantitative real-time PCR (qPCR) was used to determine PAR-2, H1R, H2R and H4R mRNA levels in skin lesions to further clarify the mechanism by which JWGMD amplifies mast cell degranulation in AD. In addition, a reliable ultrahigh-performance liquid chromatography-quadrupole electrostatic field orbitrap mass spectrometry (UPLC-QE-MS) nontargeted metabolomics analysis was performed to analyse the differences in metabolite abundance between GMD and JWGMD, and these results were used to identify the active components in JWGMD that may have antipruritic and anti-inflammatory properties and inhibit mast cell degranulation. RESULTS After intermittent stimulation with DNFB, the skin lesions showed extensive desquamation, dryness, scabbing, skin thickening, and slight bleeding. Both treatments alleviated this phenomenon and reduced the number of scratches, with JWGMD being the most effective. JWGMD can significantly reduce inflammatory cell infiltration, oedema, and some capillary neogenesis in mice and reduce the degranulation of mast cells. The ELISA results showed that JWGMD can increase the levels of MCT and HIS proteins. The WB and IFA results demonstrated that JWGMD reduced the expression levels of PAR-2, H1R, H4R, and MCT proteins in skin lesions, with protein localization mainly in the epidermal layer, while H2R protein levels were increased and mainly localized in the dermis. In addition, JWGMD downregulates the mRNA expression of PAR-2, H1R, H2R, and H4R. Interestingly, through UPLC-QE-MS nontargeted metabolomic analysis, we detected the anti-inflammatory and antiallergy active substances in JWGMD, such as methyl eugenol, dictamnine and sinapine. CONCLUSIONS JWGMD may alleviate itching through methyl syringol, dictamnine, sinapine and other substances, and its mechanism may be related to inhibiting the HIS/PAR-2 pathway in AD model mice and further regulating the self-amplification of mast cell degranulation. JWGMD is a potential drug for treating AD. Therefore, it deserves continuous attention and research.
Collapse
Affiliation(s)
- Jian-Li Huang
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu First People's Hospital, Chengdu, Sichuan, 610095, China.
| | - Yi-Hua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| | - Xin-Wei Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, China.
| | - Yu Zhu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, 610041, China.
| | - Xian-Bo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Differential regulation of histamine H 1 receptor-mediated ERK phosphorylation by G q proteins and arrestins. Biochem Pharmacol 2023; 213:115595. [PMID: 37201878 DOI: 10.1016/j.bcp.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Gq protein-coupled histamine H1 receptors play crucial roles in allergic and inflammatory reactions, in which the phosphorylation of extracellular signal-regulated kinase (ERK) appears to mediate the production of inflammatory cytokines. ERK phosphorylation is regulated by G protein- and arrestin-mediated signal transduction pathways. Here, we aimed to explore how H1 receptor-mediated processes of ERK phosphorylation might be differentially regulated by Gq proteins and arrestins. For this purpose, we evaluated the regulatory mechanism(s) of H1 receptor-mediated ERK phosphorylation in Chinese hamster ovary cells expressing Gq protein- and arrestin-biased mutants of human H1 receptors, S487TR and S487A, in which the Ser487 residue in the C-terminal was truncated and mutated to alanine, respectively. Immunoblotting analysis indicated that histamine-induced ERK phosphorylation was prompt and transient in cells expressing Gq protein-biased S487TR, whereas it was slow and sustained in cells expressing arrestin-biased S487A. Inhibitors of Gq proteins (YM-254890) and protein kinase C (PKC) (GF109203X), and an intracellular Ca2+ chelator (BAPTA-AM) suppressed histamine-induced ERK phosphorylation in cells expressing S487TR, but not those expressing S487A. Conversely, inhibitors of G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), clathrin (hypertonic sucrose), Raf (LY3009120), and MEK (U0126) suppressed histamine-induced ERK phosphorylation in cells expressing S487A, but not those expressing S487TR. These results suggest that H1 receptor-mediated ERK phosphorylation might be differentially regulated by the Gq protein/Ca2+/PKC and GRK/arrestin/clathrin/Raf/MEK pathways to potentially determine the early and late phases of histamine-induced allergic and inflammatory responses, respectively.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ayaka Nagata
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ryosuke Ogami
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasuhiro Ogawa
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
5
|
Wang Z, Zhao X, Zhou H, Che D, Du X, Ye D, Zeng W, Geng S. Activation of ryanodine-sensitive calcium store drives pseudo-allergic dermatitis via Mas-related G protein-coupled receptor X2 in mast cells. Front Immunol 2023; 14:1207249. [PMID: 37404822 PMCID: PMC10315577 DOI: 10.3389/fimmu.2023.1207249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Mast cell (MC) activation is implicated in the pathogenesis of multiple immunodysregulatory skin disorders. Activation of an IgE-independent pseudo-allergic route has been recently found to be mainly mediated via Mas-Related G protein-coupled receptor X2 (MRGPRX2). Ryanodine receptor (RYR) regulates intracellular calcium liberation. Calcium mobilization is critical in the regulation of MC functional programs. However, the role of RYR in MRGPRX2-mediated pseudo-allergic skin reaction has not been fully addressed. To study the role of RYR in vivo, we established a murine skin pseudo-allergic reaction model. RYR inhibitor attenuated MRGPRX2 ligand substance P (SP)-induced vascular permeability and neutrophil recruitment. Then, we confirmed the role of RYR in an MC line (LAD2 cells) and primary human skin-derived MCs. In LAD2 cells, RYR inhibitor pretreatment dampened MC degranulation (detected by β-hexosaminidase retlease), calcium mobilization, IL-13, TNF-α, CCL-1, CCL-2 mRNA, and protein expression activated by MRGPRX2 ligands, namely, compound 48/80 (c48/80) and SP. Moreover, the inhibition effect of c48/80 by RYR inhibitor was verified in skin MCs. After the confirmation of RYR2 and RYR3 expression, the isoforms were silenced by siRNA-mediated knockdown. MRGPRX2-induced LAD2 cell exocytosis and cytokine generation were substantially inhibited by RYR3 knockdown, while RYR2 had less contribution. Collectively, our finding suggests that RYR activation contributes to MRGPRX2-triggered pseudo-allergic dermatitis, and provides a potential approach for MRGPRX2-mediated disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihui Zeng
- *Correspondence: Songmei Geng, ; Weihui Zeng,
| | | |
Collapse
|
6
|
Baran J, Sobiepanek A, Mazurkiewicz-Pisarek A, Rogalska M, Gryciuk A, Kuryk L, Abraham SN, Staniszewska M. Mast Cells as a Target-A Comprehensive Review of Recent Therapeutic Approaches. Cells 2023; 12:cells12081187. [PMID: 37190096 DOI: 10.3390/cells12081187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Mast cells (MCs) are the immune cells distributed throughout nearly all tissues, mainly in the skin, near blood vessels and lymph vessels, nerves, lungs, and the intestines. Although MCs are essential to the healthy immune response, their overactivity and pathological states can lead to numerous health hazards. The side effect of mast cell activity is usually caused by degranulation. It can be triggered by immunological factors, such as immunoglobulins, lymphocytes, or antigen-antibody complexes, and non-immune factors, such as radiation and pathogens. An intensive reaction of mast cells can even lead to anaphylaxis, one of the most life-threatening allergic reactions. What is more, mast cells play a role in the tumor microenvironment by modulating various events of tumor biology, such as cell proliferation and survival, angiogenesis, invasiveness, and metastasis. The mechanisms of the mast cell actions are still poorly understood, making it difficult to develop therapies for their pathological condition. This review focuses on the possible therapies targeting mast cell degranulation, anaphylaxis, and MC-derived tumors.
Collapse
Affiliation(s)
- Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Marta Rogalska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Aleksander Gryciuk
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH-NRI, 00-791 Warsaw, Poland
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| |
Collapse
|
7
|
Yang G, Li J, Liu Y, Wu G, Mo L, Xu Z, Liao Y, Huang Q, Yang P. Targeting the RhoA-GEF-H1 pathway of mast cells attenuates experimental airway allergy. Arch Biochem Biophys 2023; 741:109597. [PMID: 37054768 DOI: 10.1016/j.abb.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Mast cells are the major effector cells in allergic diseases. RhoA and its downstream pathway is associated with the pathogenesis of airway allergy. The objective of this study is to test a hypothesis that modulating the RhoA-GEF-H1 axis in mast cells can attenuate airway allergy. An airway allergic disorder (AAD) mouse model was employed. Mast cells were isolated from AAD mouse airway tissues to be analyzed by RNA sequencing. We observed that mast cells isolated from the respiratory tract of AAD mice were resistant to apoptosis. Mast cell mediator levels in nasal lavage fluid were correlated with apoptosis resistance in AAD mice. Activation of RhoA in AAD mast cells was related to resistance to apoptosis. Mast cells isolated from the airway tissues in AAD mouse exhibited strong RhoA-GEF-H1 expression. The RhoA-GEF-H1 axis was associated with the lower FasL expression in AAD mast cells. Activation of the RhoA-GEF-H1 axis promoted the production of mediators in mast cells. Inhibition of GEF-H1 facilitated the SIT-induced mast cell apoptosis and enhanced the therapeutic efficacy of AAD. In conclusion, RhoA-GEF-H1 activities are associated with resistance to apoptosis in mast cells isolated from sites of allergic lesions. The state of apoptosis resistance in mast cells is associated with the state of AAD disease. Inhibition of GEF-H1 restores the sensitivity of mast cells to apoptosis inducers, and alleviates experimental AAD in mice.
Collapse
Affiliation(s)
- Gui Yang
- Department of Otolaryngology and Allergy, Longgang Central Hospital, Shenzhen, China
| | - Jianxiang Li
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of Otolaryngology, Jinjiang Municipal Hospital, Jinjiang, China
| | - Gaohui Wu
- Department of Otolaryngology, Jinjiang Municipal Hospital, Jinjiang, China
| | - Lihua Mo
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
| | - Ziyi Xu
- Vanke Meisha Academy, Shenzhen, China
| | - Yun Liao
- Department of Otolaryngology and Allergy, Longgang Central Hospital, Shenzhen, China
| | - Qinmiao Huang
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Pingchang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China.
| |
Collapse
|
8
|
Alcain J, Infante Cruz ADP, Barrientos G, Vanzulli S, Salamone G, Vermeulen M. Mechanisms of unconventional CD8 Tc2 lymphocyte induction in allergic contact dermatitis: Role of H3/H4 histamine receptors. Front Immunol 2022; 13:999852. [PMID: 36275674 PMCID: PMC9586454 DOI: 10.3389/fimmu.2022.999852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Histamine (HA) is a potent mediator that plays a central role in inflammation and allergy, acting through four G-protein-coupled receptors (i.e. H1–H4). HA is an accepted promoter of type 2 immunity in CD4+ T cells during hypersensitivity. Previously, we demonstrated that HA can promote antigen cross-presentation, inducing the activation of antigen-specific CD8+ T cells in an asthmatic murine model. Non-classical CD8+ T-cell profiles, such as Tc2 or Tc17, are associated with allergic disease persistence and chronicity. In this paper, we focus on the role of the H3 receptor (H3R) and the H4 receptor (H4R) in the development of allergic contact dermatitis. We were able to show that induction of the type 2 profiles associated with interleukin 13 production, both by CD4 and CD8 lymphocytes, depend on the interaction of HA with H3R and H4R. Blocking both receptors using the selective H3/H4 receptor antagonist thioperamide or the selective H4R ligand JNJ777120 reduces the inflammatory response, inducing an immunosuppressive profile associated with the increased proportion of FOXp3+ regulatory T lymphocytes and CD11b+Gr-1+ myeloid suppressor cells. Interestingly, in dendritic cells, only H4R blockade, and not H3R blockade, is capable of modulating most of the inflammatory effects observed in our model.
Collapse
Affiliation(s)
- Julieta Alcain
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán, Buenos Aires, Argentina
| | - Silvia Vanzulli
- Laboratorio de Anatomía Patológica, Instituto de Estudios Oncológicos, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gabriela Salamone
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Mónica Vermeulen,
| |
Collapse
|
9
|
Chlorogenic Acid-Loaded Mesoporous Silica Nanoparticles Modified with Hexa-Histidine Peptides Reduce Skin Allergies by Capturing Nickel. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041430. [PMID: 35209219 PMCID: PMC8876321 DOI: 10.3390/molecules27041430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Nickel-induced contact dermatitis is a severe allergic reaction to objects or environments that contain nickel. Many nanomaterials have been developed to reduce skin allergies by capturing nickel, but few agents are effective and safe. In this work, mesoporous silica nanoparticles (MSN) were synthesized and decorated with hexa-histidine peptides (denoted as MSN-His6), making it a strong nickel chelator. Subsequently, a dietary polyphenol, chlorogenic acid, was loaded into the mesopores of MSN (denoted as MSN-His6@CGA), realizing the potential of its anti-inflammatory properties. In vitro and in vivo experiments revealed that the synthesized MSN-His6@CGA nanoparticles exhibited more stable and stronger chelation, better biocompatibility, and ideal allergy-relieving ability, whether for environmental metal contamination or for allergic contact dermatitis caused by prolonged nickel exposure. Thus, the application of mesoporous silica-based nanoparticles may represent an ideal approach to alleviate skin allergies by capturing nickel, which would benefit people who suffer from metal-induced contact dermatitis.
Collapse
|
10
|
Candidate Genes of Allergic Dermatitis Are Associated with Immune Response. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8745722. [PMID: 35028126 PMCID: PMC8752225 DOI: 10.1155/2022/8745722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023]
Abstract
Allergic dermatitis (AD) is a common and burdensome inflammatory skin disease, and diagnosis is challenging. This study was conducted to identify candidate genes for AD diagnosis and underlying molecular mechanisms. Gene expression profiles were obtained from datasets GSE121212, GSE130588, and GSE157194. Use differential analysis to identify differentially expressed genes (DEGs) between AD and control. Use enrichment analysis to identify potential molecular dysregulation mechanisms. Comprehensive least absolute shrinkage and selection operator (LASSO) logistic regression, receiver operator characteristic (ROC) curve, and logistic regression analysis are used to identify candidate genes. In addition, ssGSEA and ImmPort database were used to identify AD-related immune response abnormalities. In this study, a total of 60 common genes were identified. Enrichment analysis found that these genes are mainly involved in Th17 cell immune and complement and coagulation cascades. LASSO regression analysis identified 18 feature genes, and screened genes with AUC >0.75 were selected as candidate genes. Finally, PLA2G4D, IFI6, AGR3, IGFL1, SPRR3, ATP13A5, SERPINB13, KRT16, HAS3, and CH25H were recognized as candidate genes and may be able to diagnose AD. PLA2G4D, CH25H, and IFI6 may be risk factors for AD based on logistic analysis. Furthermore, we identified the abnormalities of immune response activation in AD patients. Interestingly, PLA2G4D, CH25H, and IFI6 had positive correlations with immune cells and signaling pathways. PLA2G4D, CH25H, and IFI6 may be candidate diagnostic genes for AD. This may be related to their promotion of abnormal immune activation, especially Th17 cell immune.
Collapse
|
11
|
Kwiatkowska D, Reich A. Role of Mast Cells in the Pathogenesis of Pruritus in Mastocytosis. Acta Derm Venereol 2021; 101:adv00583. [PMID: 34642766 DOI: 10.2340/actadv.v101.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pruritus can be defined as an unpleasant sensation that evokes a desire to scratch and significantly impairs patients' quality of life. Pruritus is widely observed in many dermatoses, including mastocytosis, a rare disease characterized by abnormal accumulation of mast cells, which can involve skin, bone marrow, and other organs. Increasing evidence highlights the role of mast cells in neurogenic inflammation and itching. Mast cells release various pruritogenic mediators, initiating subsequent mutual communication with specific nociceptors on sensory nerve fibres. Among important mediators released by mast cells that induce pruritus, one can distinguish histamine, serotonin, proteases, as well as various cytokines. During neuronal-induced inflammation, mast cells may respond to numerous mediators, including neuropeptides, such as substance P, neurokinin A, calcitonin gene-related peptide, endothelin 1, and nerve growth factor. Currently, treatment of pruritus in mastocytosis is focused on alleviating the effects of mediators secreted by mast cells. However, a deeper understanding of the intricacies of the neurobiology of this disease could help to provide better treatment options for patients.
Collapse
Affiliation(s)
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Ul. Szopena 2, PL-35-055 Rzeszów, Poland.
| |
Collapse
|
12
|
Bar J, Godlewicz S, Ingber A, Sprecher E, Slodownik D. Role of Patch Testing in Chronic Spontaneous Urticaria. J Asthma Allergy 2021; 14:1075-1079. [PMID: 34456574 PMCID: PMC8387584 DOI: 10.2147/jaa.s325657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Chronic spontaneous urticaria (CSU) is a common debilitating condition. Although not completely understood, the main pathomechanism involves autoimmune-related mast-cell degranulation. Patch test (PT) is the gold standard for the diagnosis of type IV cutaneous hypersensitivity. The relevance of PT to the diagnosis of CSU is debatable. Objective We aimed at determining the role of PT in selected patients with CSU. Methods In this retrospective study, we reviewed cases of patients referred for patch testing at our clinic. We compared results of patients with CSU (n = 134) and patients with suspected allergic contact dermatitis (n = 680; control group). Results Among patients in the CSU group, 3% of patients had relevant reactions to PT, indicating that contact allergen avoidance resulted in resolution of all skin findings. Metals and textile dyes were the most relevant allergens. No significant differences were found between the groups with regard to the percentage of patients with positive PT and hapten reaction profiles. Patients from the CSU group were significantly older (4.1 years on average, P < 0.05), consisted of more females, and were less likely to have atopic trait (46% vs 58%, P<0.05). Conclusion In some of patients, PT may assist in determining the cause of CSU.
Collapse
Affiliation(s)
- Jonathan Bar
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sari Godlewicz
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Arieh Ingber
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel - Aviv University, Tel-Aviv, Israel
| | - Dan Slodownik
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel - Aviv University, Tel-Aviv, Israel
| |
Collapse
|
13
|
Wong LS, Yen YT, Lee CH. The Implications of Pruritogens in the Pathogenesis of Atopic Dermatitis. Int J Mol Sci 2021; 22:7227. [PMID: 34281281 PMCID: PMC8269281 DOI: 10.3390/ijms22137227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/17/2023] Open
Abstract
Atopic dermatitis (AD) is a prototypic inflammatory disease that presents with intense itching. The pathophysiology of AD is multifactorial, involving environmental factors, genetic susceptibility, skin barrier function, and immune responses. A recent understanding of pruritus transmission provides more information about the role of pruritogens in the pathogenesis of AD. There is evidence that pruritogens are not only responsible for eliciting pruritus, but also interact with immune cells and act as inflammatory mediators, which exacerbate the severity of AD. In this review, we discuss the interaction between pruritogens and inflammatory molecules and summarize the targeted therapies for AD.
Collapse
Affiliation(s)
- Lai-San Wong
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Yu-Ta Yen
- Department of Dermatology, Fooying University Hospital, Pingtung 928, Taiwan;
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
14
|
Role of 11β-hydroxysteroid dehydrogenase type 1 in the development of atopic dermatitis. Sci Rep 2020; 10:20237. [PMID: 33214595 PMCID: PMC7678864 DOI: 10.1038/s41598-020-77281-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory drugs, the secretion of which is mediated and controlled by the hypothalamic–pituitary–adrenal axis. However, they are also secreted de novo by peripheral tissues for local use. Several tissues express 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), including the skin. The inactive GC cortisone is converted by 11β-HSD1 to active GC cortisol, which is responsible for delayed wound healing during a systemic excess of GC. However, the role of 11β-HSD1 in inflammation is unclear. We assessed whether 11β-HSD1 affects the development of atopic dermatitis (AD) in vitro and in vivo. The expression of 11β-HSD1 in the epidermis of AD lesions was higher than that in the epidermis of healthy controls. Knockdown of 11β-HSD1 in human epidermal keratinocytes increased the production of thymic stromal lymphopoietin. In an oxazolone-induced mouse model of AD, localized inhibition of 11β-HSD1 aggravated the development of AD and increased serum cytokine levels associated with AD. Mice with whole-body knockout (KO) of 11β-HSD1 developed significantly worse AD upon induction by oxazolone. We propose that 11β-HSD1 is a major factor affecting AD pathophysiology via suppression of atopic inflammation due to the modulation of active GC in the skin.
Collapse
|
15
|
Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2020; 148:1548-1561. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
16
|
Moon PD, Han NR, Lee JS, Kim HM, Jeong HJ. p-coumaric acid, an active ingredient of Panax ginseng, ameliolates atopic dermatitis-like skin lesions through inhibition of thymic stromal lymphopoietin in mice. J Ginseng Res 2020; 45:176-182. [PMID: 33437169 PMCID: PMC7790890 DOI: 10.1016/j.jgr.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background Atopic dermatitis (AD) is associated with chronic skin inflammatory reactions. p-coumaric acid (pCA) is an active ingredient of Panax ginseng Meyer (Araliaceae). Methods Here, we estimated an anti-AD effect of pCA on activated mast cells, activated splenocytes, and a mouse model of AD. Cytokines levels were measured by ELISA and protein activation was analyzed by Western blotting. 2,4-dinitrofluorobenzene (DNFB) was used to induce AD-like skin lesions. Results The treatment with pCA suppressed the productions and mRNA expressions of thymic stromal lymphopoietin (TSLP), TNF-ɑ, IL-6, and IL-1β in HMC-1 cells. pCA downregulated the expressions of RIP2 and caspase-1, phosphorylated-(p)p38/pJNK/pERK, and pIKKβ/pIkBɑ/NF-κB in HMC-1 cells. pCA also decreased the productions of TSLP, TNF-ɑ, IL-6, IL-4, and IFN-γ in the supernatant of stimulated splenic cells. Comparing to DNFB-sensitized control group, pCA-treated group alleviated pathological changes of AD-like lesions. pCA decreased the proteins and mRNA expressions levels of TSLP, IL-6, and IL-4 in the skin lesions. Caspase-1 activation was also downregulated by pCA treatment in the AD-like lesions. The serum levels of histamine, IgE, TSLP, TNF-ɑ, IL-6, and IL-4 were suppressed following treatment with pCA. Conclusion This study suggests that pCA has the potential to improve AD by suppressing TSLP as well as inflammatory cytokines via blocking of caspase-1/NF-κB signal cascade.
Collapse
Affiliation(s)
- Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Soo Lee
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- Division of Food and Pharmaceutical Engineering, BioChip Research Center, Hoseo University, Asan, Chungnam, Republic of Korea
| |
Collapse
|
17
|
Yu B, Dai L, Chen J, Sun W, Chen J, Du L, Deng N, Chen D. Prenatal and neonatal factors involved in the development of childhood allergic diseases in Guangzhou primary and middle school students. BMC Pediatr 2019; 19:479. [PMID: 31810445 PMCID: PMC6898923 DOI: 10.1186/s12887-019-1865-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Allergic diseases, such as asthma, dermatitis, rhinitis, and eczema, are highly prevalent in Chinese school children. Environmental factors, including air pollution and automobile exhaust, play an important role in the etiology of these diseases. However, prenatal and neonatal factors, such as gender, maternal diseases during pregnancy, and premature birth, may also be associated with allergic disease occurrence. The objective of this study was to explore prenatal and neonatal factors that are involved in the development of allergic diseases among primary and middle school students in Guangzhou, China. METHODS A cross-sectional survey was launched by the Health Promotion Centre for Primary and Secondary Schools of the Guangzhou Municipality in October 2017. All primary and middle school students in Guangzhou were notified to participate in the questionnaire online under the direction of their parents. The results of the physical examination were reported by the schools' medical department. The results of the questionnaire were collected and analyzed by the researchers. The prevalence of asthma, allergic rhinitis, allergic dermatitis, and eczema was identified. RESULTS Based on reported 183,449 questionnaires and medical records, the data indicate that the sex, birth weight, neonatal feeding type, delivery mode, and students' father smoking status were significantly associated with the prevalence of all four allergic diseases in primary and middle school children. In further stratified analyses of the children with normal birth weight (2500-4000 g) and without any maternal diseases during pregnancy, the factors of male sex, high birth weight, cesarean delivery, and father smoking status all increased the risk of asthma, dermatitis, rhinitis, and eczema. Also, unlike exclusive breastfeeding, breast plus formula feeding increased these risks, but pure formula feeding had the opposite effect. CONCLUSION Prenatal and neonatal factors, including male sex, high birth weight, cesarean delivery, only child, and father smoking status are associated with the risks of allergic diseases in school children.
Collapse
Affiliation(s)
- Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China. .,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China.
| | - Lijuan Dai
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China
| | - Juanjuan Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China
| | - Wen Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China
| | - Jingsi Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China
| | - Lili Du
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China
| | - Nali Deng
- Health Promotion Centre for Primary and Secondary Schools of Guangzhou Municipality, Guangzhou, China
| | - Dunjin Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China. .,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Rd, Guangzhou, 510150, China.
| |
Collapse
|
18
|
Zhao J, Hou Y, Yin C, Hu J, Gao T, Huang X, Zhang X, Xing J, An J, Wan S, Li J. Upregulation of histamine receptor H1 promotes tumor progression and contributes to poor prognosis in hepatocellular carcinoma. Oncogene 2019; 39:1724-1738. [PMID: 31740780 PMCID: PMC7033043 DOI: 10.1038/s41388-019-1093-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
H1 histamine receptor (H1HR) belongs to the family of rhodopsin-like G-protein-coupled receptors. Recent studies have shown that H1HR expression is increased in several types of cancer. However, its functional roles in tumor progression remain largely unknown, especially in hepatocellular carcinoma (HCC). We found that H1HR is frequently unregulated in HCC, which is significantly associated with both recurrence-free survival and overall survival in HCC patients. Functional experiments revealed that H1HR promoted both the growth and metastasis of HCC cells by inducing cell cycle progression, formation of lamellipodia, production of matrix metalloproteinase 2, and suppression of cell apoptosis. Activation of cyclic adenosine monophosphate-dependent protein kinase A was found to be involved in H1HR-mediated HCC cell growth and metastasis. In addition, we found that overexpression of H1HR was mainly due to the downregulation of miR-940 in HCC cells. Moreover, the H1HR inhibitor terfenadine significantly suppressed tumor growth and metastasis in an HCC xenograft nude mice model. Our findings demonstrate that H1HR plays a critical role in the growth and metastasis of HCC cells, which provides experimental evidence supporting H1HR as a potential drug target for the treatment of HCC.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Molecular Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.,State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yiran Hou
- Medical College of Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Chun Yin
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Hu
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Tian Gao
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaojun Huang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaohong Zhang
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiaze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shaogui Wan
- Center for Molecular Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Jibin Li
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
19
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
20
|
|
21
|
Role of Histamine in Modulating the Immune Response and Inflammation. Mediators Inflamm 2018; 2018:9524075. [PMID: 30224900 PMCID: PMC6129797 DOI: 10.1155/2018/9524075] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/15/2018] [Accepted: 07/04/2018] [Indexed: 01/04/2023] Open
Abstract
Inflammatory mediators, including cytokines, histamine, bradykinin, prostaglandins, and leukotrienes, impact the immune system, usually as proinflammatory factors. Other mediators act as regulatory components to establish homeostasis after injury or prevent the inflammatory process. Histamine, a biogenic vasoactive amine, causes symptoms such as allergies and has a pleiotropic effect that is dependent on its interaction with its four histamine receptors. In this review, we discuss the dualistic effects of histamine: how histamine affects inflammation of the immune system through the activation of intracellular pathways that induce the production of inflammatory mediators and cytokines in different immune cells and how histamine exerts regulatory functions in innate and adaptive immune responses. We also evaluate the interactions between these effects.
Collapse
|
22
|
Corsini E, Engin AB, Neagu M, Galbiati V, Nikitovic D, Tzanakakis G, Tsatsakis AM. Chemical-induced contact allergy: from mechanistic understanding to risk prevention. Arch Toxicol 2018; 92:3031-3050. [PMID: 30097700 DOI: 10.1007/s00204-018-2283-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Chemical allergens are small molecules able to form a sensitizing complex once they bound to proteins. One of the most frequent manifestations of chemical allergy is contact hypersensitivity, which can have serious impact on quality of life. Allergic contact dermatitis is a predominantly CD8 + T cell-mediated immune disease, resulting in erythema and eczema. Chemical allergy is of considerable importance to the toxicologist, who has the responsibility of identifying and characterizing the allergenic potential of chemicals, and estimating the risk they pose to human health. This review aimed at exploring the phenomena of chemical-induced contact allergy starting from a mechanistic understanding, immunoregulatory mechanisms, passing through the potency of contract allergen until the hazard identification, pointing out the in vitro models for assessing contact allergen-induced cell activation and the risk prevention.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Ayşe Başak Engin
- Gazi Üniversitesi, Eczacılık Fakültesi, Toksikoloji, Hipodrom, 06330, Ankara, Turkey
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096, Bucharest, Romania
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Dragana Nikitovic
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - George Tzanakakis
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| |
Collapse
|
23
|
Lin TK, Zhong L, Santiago JL. Association between Stress and the HPA Axis in the Atopic Dermatitis. Int J Mol Sci 2017; 18:ijms18102131. [PMID: 29023418 PMCID: PMC5666813 DOI: 10.3390/ijms18102131] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis is one of the body’s neuroendocrine networks that responds to psychological stress (PS). In the skin, there exists a peripheral HPA axis similar to the central axis. Glucocorticoids (GCs) are key effector molecules of the HPA axis and are essential for cutaneous homeostasis. Atopic dermatitis (AD) is a condition typically characterized by a chronic relapsing course that often results in PS. HPA dysfunction is present in AD patients by the decreased response of GCs elevation to stress as compared to those unaffected by AD. Nevertheless, in skin, acute PS activates several metabolic responses that are of immediate benefit to the host. During the acute phase of PS, increased endogenous GCs have been shown to provide benefit rather than by aggravating cutaneous inflammatory dermatoses. However, a chronic T helper cell type 2 (Th2) predominant cytokine profile acts as a negative feedback loop to blunt the HPA axis response in AD. In this article, we reviewed the role of CRF, pro-opiomelanocortin (POMC)-derived peptides, GCs of the HPA, and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in AD, with a discussion of the pathogenetic mechanisms of inflammation and skin barrier functions, including antimicrobial defense, and their association with PS.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Lily Zhong
- Citrus Valley Medical Center, West Covina, CA 91790, USA.
| | - Juan Luis Santiago
- Dermatology Service & Translational Research Unit (UIT), Hospital General Universitario de Ciudad Real, Ciudad Real 13005, Spain.
| |
Collapse
|