1
|
Comai S, De Martin S, Mattarei A, Guidetti C, Pappagallo M, Folli F, Alimonti A, Manfredi PL. N-methyl-D-aspartate Receptors and Depression: Linking Psychopharmacology, Pathology and Physiology in a Unifying Hypothesis for the Epigenetic Code of Neural Plasticity. Pharmaceuticals (Basel) 2024; 17:1618. [PMID: 39770460 PMCID: PMC11728621 DOI: 10.3390/ph17121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators. Hyperactivity of GluN2D subtypes in specific neural circuits may underlie the pathophysiology of MDD. We hypothesize that neural plasticity is epigenetically regulated by precise Ca2+ quanta entering cells via NMDARs. Stimuli reach receptor cells (specialized cells that detect specific types of stimuli and convert them into electrical signals) and change their membrane potential, regulating glutamate release in the synaptic cleft. Free glutamate binds ionotropic glutamatergic receptors regulating NMDAR-mediated Ca2+ influx. Quanta of Ca2+ via NMDARs activate enzymatic pathways, epigenetically regulating synaptic protein homeostasis and synaptic receptor expression; thereby, Ca2+ quanta via NMDARs control the balance between long-term potentiation and long-term depression. This NMDAR Ca2+ quantal hypothesis for the epigenetic code of neural plasticity integrates recent psychopharmacology findings into established physiological and pathological mechanisms of brain function.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35121 Padua, Italy; (S.C.); (S.D.M.); (A.M.)
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
- IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35121 Padua, Italy; (S.C.); (S.D.M.); (A.M.)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35121 Padua, Italy; (S.C.); (S.D.M.); (A.M.)
| | - Clotilde Guidetti
- Child Neuropsychiatry Unit, Department of Neuroscience, IRCCS Bambino Gesù Pediatric Hospital, 00165 Rome, Italy;
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Pappagallo
- Relmada Therapeutics, Inc., Coral Gables, FL 33134, USA;
- MGGM LLC, 85 Baker Road, Kerhonkson, NY 12446, USA
| | - Franco Folli
- Department of Health Sciences, University of Milan, 20141 Milan, Italy;
| | - Andrea Alimonti
- The Institute of Oncology Research, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy
- Department of Medicine, Zurich University, 8006 Zurich, Switzerland
- Department of Medicine, University of Padua, 35122 Padua, Italy
| | - Paolo L. Manfredi
- Relmada Therapeutics, Inc., Coral Gables, FL 33134, USA;
- MGGM LLC, 85 Baker Road, Kerhonkson, NY 12446, USA
| |
Collapse
|
2
|
Namchuk AB, Tsuda MC, Lucki I, Browne CA. Kappa opioid receptor mediated operant performance in male and female rats. Pharmacol Biochem Behav 2024; 244:173847. [PMID: 39151827 DOI: 10.1016/j.pbb.2024.173847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Anhedonia and avolition are emotions frequently endorsed by individuals with stress related disorders. Kappa opioid receptor (KOR) activation can induce negative emotions and recent clinical evidence suggests that KOR antagonism can alleviate anhedonia in a transdiagnostic cohort of patients. However, the behavioral consequences of KOR activation and antagonism in modulating motivation, as assessed by schedule-controlled behavioral performance without preexisting conditions (stress or substance use), have not been formally assessed. To address this gap in the literature, this report utilized male and female Sprague Dawley rats to (1) evaluate the impact of the selective KOR agonist U50,488, on the performance of animals responding for sucrose pellets under a progressive ratio (PR) schedule and (2) determine the effects of the short-acting KOR antagonist LY2444296 alone and on U50,488 mediated reductions in PR performance. Overall, U50,488 5 mg/kg significantly reduced the breakpoint and number of rewards obtained by animals. This occurred in the absence of motor impairment and independent of evidence for satiation. LY2444296 did not alter PR performance when administered alone but effectively blocked the deficits induced by U50,488. To further delineate the behavioral alterations that underlie these reductions in responding, a more detailed analysis was conducted on PR performance in the first 15 min of the session, the period of time when animals obtained the most reinforcers. During this period, U50,488 increased the length of the post-reinforcement pause and reduced the running rate on PR schedules. These changes in behavior produced by acute activation of KORs are consistent with a reduction of effort-related motivation in rodents. These data contribute to the understanding of how KORs modulate motivation, which is critical to future efforts to evaluate performance in the context of stress and assess how KOR antagonists alleviate anhedonic behaviors associated with stress.
Collapse
Affiliation(s)
- Amanda B Namchuk
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Mumeko C Tsuda
- Preclinical Behavior & Modelling Core, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America; Preclinical Behavior & Modelling Core, Uniformed Services University, Bethesda, MD 20814, United States of America; Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Caroline A Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America.
| |
Collapse
|
3
|
Pirino BE, Hawks A, Carpenter BA, Candelas PG, Gargiulo AT, Curtis GR, Karkhanis AN, Barson JR. Kappa-opioid receptor stimulation in the nucleus accumbens shell and ethanol drinking: Differential effects by rostro-caudal location and level of drinking. Neuropsychopharmacology 2024; 49:1550-1558. [PMID: 38528134 PMCID: PMC11319348 DOI: 10.1038/s41386-024-01850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Although the kappa-opioid receptor (KOR) and its endogenous ligand, dynorphin, are believed to be involved in ethanol drinking, evidence on the direction of their effects has been mixed. The nucleus accumbens (NAc) shell densely expresses KORs, but previous studies have not found KOR activation to influence ethanol drinking. Using microinjections into the NAc shell of male and female Long-Evans rats that drank under the intermittent-access procedure, we found that the KOR agonist, U50,488, had no effect on ethanol drinking when injected into the middle NAc shell, but that it promoted intake in males and high-drinking females in the caudal NAc shell and high-drinking females in the rostral shell, and decreased intake in males and low-drinking females in the rostral shell. Conversely, injection of the KOR antagonist, nor-binaltorphimine, stimulated ethanol drinking in low-drinking females when injected into the rostral NAc shell and decreased drinking in high-drinking females when injected into the caudal NAc shell. These effects of KOR activity were substance-specific, as U50,488 did not affect sucrose intake. Using quantitative real-time PCR, we found that baseline gene expression of the KOR was higher in the rostral compared to caudal NAc shell, but that this was upregulated in the rostral shell with a history of ethanol drinking. Our findings have important clinical implications, demonstrating that KOR stimulation in the NAc shell can affect ethanol drinking, but that this depends on NAc subregion, subject sex, and ethanol intake level, and suggesting that this may be due to differences in KOR expression.
Collapse
Affiliation(s)
- Breanne E Pirino
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Annie Hawks
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Brody A Carpenter
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Pelagia G Candelas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Andrew T Gargiulo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Anushree N Karkhanis
- Department of Psychology, Binghamton University - SUNY, Binghamton, NY, 13902, USA
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
4
|
Zhu Y, Wang K, Ma T, Ji Y, Lou Y, Fu X, Lu Y, Liu Y, Dang W, Zhang Q, Yin F, Wang K, Yu B, Zhang H, Lai J, Wang Y. Nucleus accumbens D1/D2 circuits control opioid withdrawal symptoms in mice. J Clin Invest 2023; 133:e163266. [PMID: 37561576 PMCID: PMC10503809 DOI: 10.1172/jci163266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
The nucleus accumbens (NAc) is the most promising target for drug use disorder treatment. Deep brain stimulation (DBS) of NAc is effective for drug use disorder treatment. However, the mechanisms by which DBS produces its therapeutic effects remain enigmatic. Here, we define a behavioral cutoff criterion to distinguish depressive-like behaviors and non-depressive-like behaviors in mice after morphine withdrawal. We identified a basolateral amygdala (BLA) to NAc D1 medium spiny neuron (MSN) pathway that controls depressive-like behaviors after morphine withdrawal. Furthermore, the paraventricular nucleus of thalamus (PVT) to NAc D2 MSN pathway controls naloxone-induced acute withdrawal symptoms. Optogenetically induced long-term potentiation with κ-opioid receptor (KOR) antagonism enhanced BLA to NAc D1 MSN signaling and also altered the excitation/inhibition balance of NAc D2 MSN signaling. We also verified that a new 50 Hz DBS protocol reversed morphine withdrawal-evoked abnormal plasticity in NAc. Importantly, this refined DBS treatment effectively alleviated naloxone-induced withdrawal symptoms and depressive-like behaviors and prevented stress-induced reinstatement. Taken together, the results demonstrated that input- and cell type-specific synaptic plasticity underlies morphine withdrawal, which may lead to novel targets for the treatment of opioid use disorder.
Collapse
Affiliation(s)
- Yongsheng Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Kejia Wang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Tengfei Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Ji
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Yin Lou
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyu Fu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Ye Lu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Yige Liu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Wei Dang
- The Sixth Ward, Xi’an Mental Health Center, Xi’an, China
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Fangyuan Yin
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Kena Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Bing Yu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hongbo Zhang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Jianghua Lai
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Yunpeng Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Wulf HA, Browne CA, Zarate CA, Lucki I. Mediation of the behavioral effects of ketamine and (2R,6R)-hydroxynorketamine in mice by kappa opioid receptors. Psychopharmacology (Berl) 2022; 239:2309-2316. [PMID: 35459958 DOI: 10.1007/s00213-022-06118-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/12/2022] [Indexed: 11/26/2022]
Abstract
Emerging evidence has implicated the endogenous opioid system in mediating ketamine's antidepressant activity in subjects with major depressive disorder. To date, mu opioid receptors have been suggested as the primary opioid receptor of interest. However, this hypothesis relies primarily on observations that the opioid antagonist naltrexone blocked the effects of ketamine in humans and rodents. This report confirms previous findings that pretreatment with naltrexone (1 mg/kg) just prior to ketamine (10 mg/kg) administration effectively blocks the behavioral effect of ketamine in the mouse forced swim test 24 h post-treatment. Furthermore, pharmacological blockade of kappa opioid receptors prior to ketamine administration with the selective, short-acting antagonist LY2444296 successfully blocked ketamine's effects in the forced swim test. Likewise, the ability of the ketamine metabolite (2R,6R)-hydroxynorketamine to reduce immobility scores in the forced swim test was also blocked following pretreatment with either naltrexone or LY2444296. These data support a potential role of kappa opioid receptors in mediating the behavioral activity of ketamine and its non-dissociate metabolite (2R,6R)-hydroxynorketamine.
Collapse
Affiliation(s)
- Hildegard A Wulf
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Caroline A Browne
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Carlos A Zarate
- National Institute on Mental Health, MD, 20814, Bethesda, USA
| | - Irwin Lucki
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
6
|
Puls K, Olivé-Marti AL, Pach S, Pinter B, Erli F, Wolber G, Spetea M. In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist. Pharmaceuticals (Basel) 2022; 15:680. [PMID: 35745598 PMCID: PMC9229160 DOI: 10.3390/ph15060680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Kappa-opioid receptor (KOR) antagonists are promising innovative therapeutics for the treatment of the central nervous system (CNS) disorders. The new scaffold opioid ligand, Compound A, was originally found as a mu-opioid receptor (MOR) antagonist but its binding/selectivity and activation profile at the KOR and delta-opioid receptor (DOR) remain elusive. In this study, we present an in vitro, in vivo and in silico characterization of Compound A by revealing this ligand as a KOR antagonist in vitro and in vivo. In the radioligand competitive binding assay, Compound A bound at the human KOR, albeit with moderate affinity, but with increased affinity than to the human MOR and without specific binding at the human DOR, thus displaying a preferential KOR selectivity profile. Following subcutaneous administration in mice, Compound A effectively reverse the antinociceptive effects of the prototypical KOR agonist, U50,488. In silico investigations were carried out to assess the structural determinants responsible for opioid receptor subtype selectivity of Compound A. Molecular docking, molecular dynamics simulations and dynamic pharmacophore (dynophore) generation revealed differences in the stabilization of the chlorophenyl moiety of Compound A within the opioid receptor binding pockets, rationalizing the experimentally determined binding affinity values. This new chemotype bears the potential for favorable ADMET properties and holds promise for chemical optimization toward the development of potential therapeutics.
Collapse
Affiliation(s)
- Kristina Puls
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany; (K.P.); (S.P.)
| | - Aina-Leonor Olivé-Marti
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (A.-L.O.-M.); (B.P.); (F.E.)
| | - Szymon Pach
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany; (K.P.); (S.P.)
| | - Birgit Pinter
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (A.-L.O.-M.); (B.P.); (F.E.)
| | - Filippo Erli
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (A.-L.O.-M.); (B.P.); (F.E.)
| | - Gerhard Wolber
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany; (K.P.); (S.P.)
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (A.-L.O.-M.); (B.P.); (F.E.)
| |
Collapse
|
7
|
Namchuk AB, Lucki I, Browne CA. Buprenorphine as a Treatment for Major Depression and Opioid Use Disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10254. [PMID: 36177442 PMCID: PMC9518754 DOI: 10.3389/adar.2022.10254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rates of major depressive disorder (MDD) are disproportionally high in subjects with opioid use disorder (OUD) relative to the general population. MDD is often more severe in OUD patients, leading to compliance issues with maintenance therapies and poor outcomes. A growing body of literature suggests that endogenous opioid system dysregulation may play a role in the emergence of MDD. Buprenorphine, a mixed opioid receptor agonist/antagonist approved for the treatment of OUD and chronic pain, may have potential as a novel therapeutic for MDD, especially for patients with a dual diagnosis of MDD and OUD. This paper presents a comprehensive review of papers relevant to the assessment of buprenorphine as a treatment for MDD, OUD, and/or suicide compiled using electronic databases per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The principal goal of this literature review was to compile the clinical studies that have interrogated the antidepressant activity of buprenorphine in opioid naïve MDD patients and OUD patients with comorbid MDD. Evidence supporting buprenorphine's superiority over methadone for treating comorbid OUD and MDD was also considered. Finally, recent evidence for the ability of buprenorphine to alleviate suicidal ideation in both opioid-naïve patients and opioid-experienced patients was evaluated. Synthesizing all of this information, buprenorphine emerges as a potentially effective therapeutic for the dual purposes of treating MDD and OUD.
Collapse
Affiliation(s)
- Amanda B. Namchuk
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, 20814, USA
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, 20814, USA
- Department of Psychiatry, Uniformed Services University, Bethesda, Maryland, 20814, USA
| | - Caroline A. Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, 20814, USA
| |
Collapse
|
8
|
Jarończyk M, Walory J. Novel Molecular Targets of Antidepressants. Molecules 2022; 27:533. [PMID: 35056845 PMCID: PMC8778443 DOI: 10.3390/molecules27020533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Antidepressants target a variety of proteins in the central nervous system (CNS), the most important belonging to the family of G-protein coupled receptors and the family of neurotransmitter transporters. The increasing number of crystallographic structures of these proteins have significantly contributed to the knowledge of their mechanism of action, as well as to the design of new drugs. Several computational approaches such as molecular docking, molecular dynamics, and virtual screening are useful for elucidating the mechanism of drug action and are important for drug design. This review is a survey of molecular targets for antidepressants in the CNS and computer based strategies to discover novel compounds with antidepressant activity.
Collapse
|