1
|
Bormann J, Rudolph F, Miller M, Waezsada S, Kirchner J, Bleiziffer S, Friedrichs KP, Rudolph V, Rudolph TK, Gerçek M. The influence of lipoprotein(a) on aortic valve calcification in patients undergoing transcatheter aortic valve replacement. Clin Res Cardiol 2024:10.1007/s00392-024-02587-z. [PMID: 39661146 DOI: 10.1007/s00392-024-02587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Elevated levels of lipoprotein(a) (Lp[a]) have been recognized as substantial risk factors for cardiovascular disease and aortic stenosis (AS). However, the specific role of Lp(a) in promoting aortic valve calcification (AVC) and influencing mortality in elderly, multimorbid patients undergoing transcatheter aortic valve replacement (TAVR) remains unclear and warrants further investigation. METHODS A retrospective analysis was conducted on all consecutive patients who underwent TAVR between August 2019 and June 2020 at our clinic. Patients with missing data or prior aortic valve replacement were excluded. The study cohort was stratified based on an Lp(a) threshold of 60 mg/dl according to guidelines for lipoprotein apheresis in UK and Germany.1,2 RESULTS: In total, 454 patients were included into the analysis. Mean age was 81 ± 6 years and patients presented with a notable cardiovascular risk profile. Lp(a) values ≥ 60 mg/dl were detected in 102 (22.5%) patients, while 352 (77.5%) had Lp(a) values < 60 mg/dl. The median calcium volume of the total cohort was 894.5 [570.8; 1,382.8] mm2. No significant difference was observed between the groups (p = 0.83). Furthermore, Lp(a) did not emerge as a statistically significant predictor of calcium levels before TAVR. Notably, male gender (B = 404.11, p < 0.001) and mean trans-valvular pressure gradient (B = 15.64, p < 0.001) were identified as the strongest coefficients within the robust regression analysis. Log-rank tests indicated no prognostic utility of Lp(a) for 30-day all-cause mortality (p = 0.30) or 40 months long-term all-cause mortality (p = 0.60). CONCLUSION Lp(a) might not exert a significant effect on calcification levels or all-cause mortality in patients undergoing TAVR. Despite the study's highly selected population, these results align with current research, supporting the assumption that the influence of Lp(a) may be confined to the early stages of AS and its progression.
Collapse
Affiliation(s)
- Johanna Bormann
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Felix Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | | | - Sara Waezsada
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Johannes Kirchner
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Sabine Bleiziffer
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Kai P Friedrichs
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Tanja K Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Muhammed Gerçek
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
2
|
Nikoli A, Orfanidou M, Goulas A, Goulis DG, Polyzos SA. Circulating lipoprotein(a) in patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. J Gastroenterol Hepatol 2024; 39:2572-2581. [PMID: 39417560 DOI: 10.1111/jgh.16768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND AND AIM Although nonalcoholic fatty liver disease (NAFLD) and lipoprotein(a) [Lp(a)] are associated with cardiovascular diseases, existing data on Lp(a) in NAFLD are conflicting. The aim of this systematic review and meta-analysis was to summarize and compare data on circulating Lp(a) between NAFLD patients and non-NAFLD controls. METHODS A systematic literature search was performed in PubMed, Scopus, and Cochrane Library. This meta-analysis included 18 studies containing data on 74 691 individuals (20 220 patients with NAFLD and 54 471 controls). RESULTS Circulating Lp(a) was similar between patients with NAFLD and controls (standardized mean difference [SMD] 0.09; 95% confidence interval [95% CI] -0.21, 0.38). The heterogeneity among studies was high (I2 = 100%); no publication bias was detected (Egger's test P = 0.941). However, in subgroup analysis, Lp(a) was lower in NAFLD patients than controls, when Lp(a) was measured with nephelometry (SMD -0.26; 95% CI -0.46, -0.06), but not turbidimetry; this analysis also resulted in mild reduction of heterogeneity within the subgroup of nephelometry (I2 = 87%). The sensitivity analyses, based on the exclusion of studies with Newcastle-Ottawa Scale score ≤6 (n = 5), studies in which liver biopsy was used for NAFLD diagnosis (n = 4) or studies that adopted the criteria of metabolic dysfunction-associated fatty liver disease (n = 2), and meta-regression analysis did not explain the high heterogeneity among studies. CONCLUSIONS Overall, circulating Lp(a) was similar between NAFLD patients and non-NAFLD controls; however, patients with NAFLD had lower circulating Lp(a) compared with controls, when Lp(a) was measured with nephelometry. These results should be cautiously interpreted, because of the high heterogeneity among studies.
Collapse
Affiliation(s)
- Aikaterini Nikoli
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Myrsini Orfanidou
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Garagoli F, Masson W, Barbagelata L. Association between elevated lipoprotein(a) levels and vulnerability of carotid atherosclerotic plaque: A systematic review. J Stroke Cerebrovasc Dis 2024; 33:108020. [PMID: 39306058 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The role of lipoprotein(a) [Lp(a)] as a potential risk factor for atherosclerotic arterial disease has been extensively studied. However, the available data regarding its association with the vulnerability of carotid atherosclerotic plaque is limited. The main objective of the present systematic review was to assess the association between elevated Lp(a) levels and carotid vulnerable plaque features. METHODS This systematic review adhered to PRISMA guidelines, conducting a comprehensive literature search to identify studies examining the association between Lp(a) levels and vulnerability of carotid atherosclerotic plaque. Experimental or observational studies were eligible, without language, country, or publication type restrictions. RESULTS Nine studies including 2058 patients were eligible for this systematic review. Five cross-sectional studies, 3 prospective/retrospective cohorts, and 1 subanalysis of a randomized controlled trial were analyzed. Two cross-sectional studies that compared Lp(a) levels between patients with and without vulnerable carotid plaque showed discordant results. Nevertheless, all the studies that evaluated the prevalence or incidence of vulnerable carotid plaque according to Lp(a) levels showed a positive association. Similarly, one study found a significant correlation between vulnerability of carotid plaque and Lp(a) levels. CONCLUSION Almost all studies analyzed in the present review showed a positive association between elevated Lp(a) levels and carotid vulnerable plaque features. However, further research is needed to clarify this issue.
Collapse
Affiliation(s)
- Fernando Garagoli
- Cardiology Department. Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.
| | - Walter Masson
- Cardiology Department. Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Leandro Barbagelata
- Cardiology Department. Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Appunni S, Rubens M, Ramamoorthy V, Saxena A, McGranaghan P, Khosla A, Doke M, Chaparro S, Jimenez J. Molecular remodeling in comorbidities associated with heart failure: a current update. Mol Biol Rep 2024; 51:1092. [PMID: 39460797 PMCID: PMC11512903 DOI: 10.1007/s11033-024-10024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Recent advances in genomics and proteomics have helped in understanding the molecular mechanisms and pathways of comorbidities and heart failure. In this narrative review, we reviewed molecular alterations in common comorbidities associated with heart failure such as obesity, diabetes mellitus, systemic hypertension, pulmonary hypertension, coronary artery disease, hypercholesteremia and lipoprotein abnormalities, chronic kidney disease, and atrial fibrillation. We searched the electronic databases, PubMed, Ovid, EMBASE, Google Scholar, CINAHL, and PhysioNet for articles without time restriction. Although the association between comorbidities and heart failure is already well established, recent studies have explored the molecular pathways in much detail. These molecular pathways demonstrate how novels drugs for heart failure works with respect to the pathways associated with comorbidities. Understanding the altered molecular milieu in heart failure and associated comorbidities could help to develop newer medications and targeted therapies that incorporate these molecular alterations as well as key molecular variations across individuals to improve therapeutic outcomes. The molecular alterations described in this study could be targeted for novel and personalized therapeutic approaches in the future. This knowledge is also critical for developing precision medicine strategies to improve the outcomes for patients living with these conditions.
Collapse
Affiliation(s)
| | - Muni Rubens
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Anshul Saxena
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Center for Advanced Analytics, Baptist Health South Florida, Miami, FL, USA
| | - Peter McGranaghan
- Semmelweis University, Budapest, Hungary.
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 10117, Berlin, Germany.
| | - Atulya Khosla
- William Beaumont University Hospital, Royal Oak, MI, USA
| | | | - Sandra Chaparro
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA
| | - Javier Jimenez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA.
- Advance Heart Failure and Pulmonary Hypertension, South Miami Hospital, Baptist Health South, Miami, FL, USA.
| |
Collapse
|
5
|
Sasamoto N, Hathaway CA, Townsend MK, Terry KL, Trabert B, Tworoger SS. Prospective Analysis of Circulating Biomarkers and Ovarian Cancer Risk in the UK Biobank. Cancer Epidemiol Biomarkers Prev 2024; 33:1347-1355. [PMID: 39007864 PMCID: PMC11446659 DOI: 10.1158/1055-9965.epi-24-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Risk factors have a limited ability to predict individuals at high risk of developing ovarian cancer among average-risk women, highlighting the need for discovery of novel biomarkers. In the UK Biobank, we investigated serum biomarkers commonly measured in clinical laboratory tests and ovarian cancer risk. METHODS We conducted a prospective analysis of 20 serum biomarkers and ovarian cancer risk in 232,037 female UK Biobank participants (including 1,122 incident ovarian cancer cases diagnosed from 2006 to 2020). Multivariable adjusted Cox proportional hazards models were used to examine associations between biomarkers and ovarian cancer risk overall and by histotype. FDR was used to account for multiple testing. RESULTS Overall, higher levels of insulin-like growth factor (IGF)-1 [RRquartile 4 vs. 1 = 0.73; 95% confidence interval (CI), 0.60-0.87; P-trend = 0.002/FDR = 0.04], HbA1c (RRquartile 4 vs. 1 = 0.74; 95% CI, 0.62-0.89; P-trend = 0.002/FDR = 0.04), and alanine aminotransferase (RRquartile 4 vs. 1 = 0.76; 95% CI, 0.63-0.91; P-trend = 0.002/FDR = 0.04) were significantly associated with lower ovarian cancer risk. When stratified by histotype, higher IGF1 levels were associated with lower risk of serous (RRquartile 4 vs. 1 = 0.73; 95% CI, 0.58-0.91; P-trend = 0.01/FDR = 0.20) and clear cell tumors (RRquartile 4 vs. 1 = 0.18; 95% CI, 0.07-0.49; P-trend = 0.001/FDR = 0.02), and higher HbA1c levels were associated with lower risk of serous tumors (RRquartile 4 vs. 1 = 0.73; 95% CI, 0.59-0.90; P-trend = 0.004/FDR = 0.08). CONCLUSIONS We observed that higher levels of circulating IGF1, HbA1c, and alanine aminotransferase were associated with lower ovarian cancer risk. IMPACT These results suggest metabolism of glucose/amino acid and insulin/IGF1 signaling pathway may be contributing to ovarian carcinogenesis. Further research is needed to replicate our findings and elucidate how systemic changes in metabolism impact ovarian carcinogenesis.
Collapse
Affiliation(s)
- Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston Massachusetts
| | | | - Mary K. Townsend
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
- Division of Oncological Sciences and the Knight Cancer Institute, Oregon Health and Science University School of Medicine, Portland, Oregon
| | - Kathryn L. Terry
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health
| | - Britton Trabert
- Department of Obstetrics and Gynecology, University of Utah and Huntsman Cancer Institute
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
- Division of Oncological Sciences and the Knight Cancer Institute, Oregon Health and Science University School of Medicine, Portland, Oregon
| |
Collapse
|
6
|
Buciu IC, Tieranu EN, Pircalabu AS, Zlatian OM, Donoiu I, Militaru C, Militaru S, Militaru C. The Relationship between Lipoprotein A and the Prevalence of Multivessel Coronary Artery Disease in Young Patients with Acute Myocardial Infarction: An Observational Study. Biomedicines 2024; 12:2159. [PMID: 39335672 PMCID: PMC11429128 DOI: 10.3390/biomedicines12092159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Cardiovascular diseases are the leading cause of mortality worldwide, with a significant impact on socioeconomic aspects. Various biomarkers have been studied in relation to the diagnosis, progression, and prognosis of atherosclerotic disease, with lipoprotein (a) [Lp (a)] standing out as an important predictor of cardiovascular risk. This observational study aimed to clarify the association between Lp (a) levels and the severity of significant multivessel coronary lesions in acute myocardial infarction (AMI) patients. Materials and Methods: Conducted at the Clinical Emergency County Hospital of Craiova, Romania, the study involved 256 young patients divided into two groups based on Lp (a) levels: Group A (Lp (a) < 30 mg/dL) and Group B (Lp (a) ≥ 30 mg/dL). Patients included young adults up to 55 years for males and 60 years for females, excluding those with familial hypercholesterolemia. Results: The study revealed a significant association between elevated Lp (a) levels and the presence of multivessel coronary lesions. Patients with Lp (a) concentrations ≥ 30 mg/dL exhibited a higher prevalence of multivessel disease compared to those with lower levels. Discussion: The findings suggest that elevated Lp (a) levels are a crucial biomarker for the risk of coronary artery disease, particularly in young patients with AMI. The study emphasizes the need for aggressive lipid management strategies and personalized treatment approaches, considering the significant role of Lp (a) in atherosclerosis and AMI. Conclusions: Lipoprotein A levels above 30 mg/dL are associated with a higher prevalence of multivessel coronary lesions. Multivariate analysis revealed that higher Lp (a) levels and lower HDL levels are linked to an increased risk of multivessel coronary lesions.
Collapse
Affiliation(s)
- Ionut Cezar Buciu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen Nicolae Tieranu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Cardiology, Craiova Emergency Clinical County Hospital, 200642 Craiova, Romania
| | | | - Ovidiu Mircea Zlatian
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Medical Laboratory, Craiova Emergency Clinical County Hospital, 200642 Craiova, Romania
| | - Ionut Donoiu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Cardiology, Craiova Emergency Clinical County Hospital, 200642 Craiova, Romania
| | - Constantin Militaru
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Cardiology, Craiova Emergency Clinical County Hospital, 200642 Craiova, Romania
- Cardiomed Hospital, 200032 Craiova, Romania
| | - Sebastian Militaru
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Cardiology, Craiova Emergency Clinical County Hospital, 200642 Craiova, Romania
- Cardiomed Hospital, 200032 Craiova, Romania
| | - Cristian Militaru
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Cardiology, Craiova Emergency Clinical County Hospital, 200642 Craiova, Romania
- Cardiomed Hospital, 200032 Craiova, Romania
| |
Collapse
|
7
|
Lejawa M, Goławski M, Fronczek M, Osadnik T, Paneni F, Ruscica M, Pawlas N, Lisik M, Banach M. Causal associations between insulin and Lp(a) levels in Caucasian population: a Mendelian randomization study. Cardiovasc Diabetol 2024; 23:316. [PMID: 39210428 PMCID: PMC11360791 DOI: 10.1186/s12933-024-02389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Numerous observational studies have demonstrated that circulating lipoprotein(a) [Lp(a)] might be inversely related to the risk of type 2 diabetes (T2D). However, recent Mendelian randomization (MR) studies do not consistently support this association. The results of in vitro research suggest that high insulin concentrations can suppress Lp(a) levels by affecting apolipoprotein(a) [apo(a)] synthesis. This study aimed to identify the relationship between genetically predicted insulin concentrations and Lp(a) levels, which may partly explain the associations between low Lp(a) levels and increased risk of T2D. METHODS Independent genetic variants strongly associated with fasting insulin levels were identified from meta-analyses of genome-wide association studies in European populations (GWASs) (N = 151,013). Summary level data for Lp(a) in the population of European ancestry were acquired from a GWAS in the UK Biobank (N = 361,194). The inverse-variance weighted (IVW) method approach was applied to perform two-sample summary-level MR. Robust methods for sensitivity analysis were utilized, such as MR‒Egger, the weighted median (WME) method, MR pleiotropy residual sum and outlier (MR-PRESSO), leave-one-out analysis, and MR Steiger. RESULTS Genetically predicted fasting insulin levels were negatively associated with Lp(a) levels (β = - 0.15, SE = 0.05, P = 0.003). The sensitivity analysis revealed that WME (β = - 0.26, SE = 0.07, P = 0.0002), but not MR‒Egger (β = - 0.22, SE = 0.13, P = 0.11), supported a causal relationship between genetically predisposed insulin levels and Lp(a). CONCLUSION Our MR study provides robust evidence supporting the association between genetically predicted increased insulin concentrations and decreased concentrations of Lp(a). These findings suggest that hyperinsulinaemia, which typically accompanies T2D, can partially explain the inverse relationship between low Lp(a) concentrations and an increased risk of T2D.
Collapse
Affiliation(s)
- Mateusz Lejawa
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland.
| | - Marcin Goławski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Martyna Fronczek
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Tadeusz Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Francesco Paneni
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Department of Cardiology, Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Natalia Pawlas
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Lisik
- Outpatient Clinic, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Jeong H, Maatouk CM, Russell MW, Singh RP. Associations between lipid abnormalities and diabetic retinopathy across a large United States national database. Eye (Lond) 2024; 38:1870-1875. [PMID: 38521836 PMCID: PMC11226450 DOI: 10.1038/s41433-024-03022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND/OBJECTIVES While dyslipidaemia has been suggested as a potential risk factor for diabetic retinopathy (DR), previous studies have reported conflicting findings. This study aimed to better characterize the relationship between abnormal serum levels of various lipid markers and the risk of the development and progression of DR. SUBJECTS/METHODS This retrospective cohort study utilized a United States national database of electronic medical records. Adults with a history of type 2 diabetes mellitus without type 1 diabetes mellitus were divided into cohorts based on the presence of abnormal serum levels of various lipid markers. Propensity score matching was performed to match cohorts with abnormal lipid levels to those with normal lipid levels on covariates. The cohorts were then compared to evaluate the hazard ratios (HR) of receiving a new DR diagnosis, pars plana vitrectomy, panretinal photocoagulation, vitreous haemorrhage, proliferative diabetic retinopathy, diabetic macular oedema (DMO), and traction retinal detachment. RESULTS The database contained 1,126,231 eligible patients (mean age: 60.8 [14.2] years; 46.0% female). Among patients without prior DR, low HDL (HR = 0.94, CI = 0.90-0.98), total cholesterol (HR = 0.88, CI = 0.85-0.91), and high triglyceride (HR = 0.91, CI = 0.86-0.97) levels were associated with a decreased risk of receiving a DR diagnosis. Among patients with preexisting DR, high LDL levels was associated with an increased risk of DMO (HR = 1.42, CI = 1.15-1.75), whereas low HDL levels was associated with a marginally decreased risk (HR = 0.92, CI = 0.85-0.99). CONCLUSIONS Elevated levels of markers of dyslipidaemia are inversely associated with the risk of receiving a DR diagnosis, but this relationship is blunted after the onset of DR.
Collapse
Affiliation(s)
- Hejin Jeong
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher M Maatouk
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Martin Health, Cleveland Clinic Florida, Stuart, FL, USA.
| |
Collapse
|
9
|
Wu L, Zhang B, Li C, Zhuang Z, Liu K, Chen H, Zhu S, Zhu J, Dai Z, Huang H, Jiang Y. PSCK9 inhibitors reduced early recurrent stroke in patients with symptomatic intracranial atherosclerotic stenosis. J Neurol Neurosurg Psychiatry 2024; 95:529-535. [PMID: 38212060 DOI: 10.1136/jnnp-2023-332392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Symptomatic intracranial atherosclerotic stenosis (ICAS) is prone to cause early recurrent stroke (ERS). Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors lower low-density lipoprotein cholesterol (LDL-C) levels and prevent cardiovascular events. This multicentre, hospital-based prospective cohort study was designed to investigate whether PCSK9 inhibitors would prevent ERS in patients with symptomatic ICAS. METHODS From 1 October 2020 to 30 September 2022, consecutive patients with acute ischaemic stroke attributed to ICAS admitted within 1 week after onset were enrolled and followed up for 1 month. Patients were divided into two groups, the PCSK9 inhibitors group receiving PCSK9 inhibitors add-on therapy, and the control group receiving statins and/or ezetimibe. The primary outcome was ERS. Cox proportional hazard models and Kaplan-Meier survival curve were used to estimate the association between PCSK9 inhibitors and ERS. RESULTS At the end of follow-up, the LDL-C levels were further lowered by PCSK9 inhibitors add-on therapy (n=232, from 3.06±1.16 mmol/L to 2.12±1.19 mmol/L) than statins and/or ezetimibe treatment (n=429, from 2.91±1.05 mmol/L to 2.64±0.86 mmol/L, p<0.001). The Kaplan-Meier survival curves showed that PCSK9 inhibitors add-on therapy significantly reduced ERS (5.59%, 24/429, vs 2.16%, 5/232; log-rank test, p=0.044). The multivariate Cox regression analysis revealed that, after adjusting for confounders with a p value less than 0.05 in univariate analysis or of particular importance, the HR was 0.335 (95% CI 0.114 to 0.986, p=0.047), compared with the control group. CONCLUSIONS In our study, PCSK9 inhibitors add-on therapy further reduced LDL-C levels and ERS in patients with symptomatic ICAS.
Collapse
Affiliation(s)
- Li Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bo Zhang
- Department of Neurology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chenghao Li
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuolin Zhuang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kang Liu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hualin Chen
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuanggen Zhu
- Department of Neurology, Shenzhen Longhua District Central Hospital, The Affiliated Hospital of Guangdong Medical University, Shenzhen, Guangdong, China
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zheng Dai
- Department of Neurology, Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Huameng Huang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yongjun Jiang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Tang Z, Lin F, Chen Z, Yu B, Liu JH, Liu X. 4'- O-MethylbavachalconeB Targeted 14-3-3ζ Blocking the Integrin β3 Early Outside-In Signal to Inhibit Platelet Aggregation and Thrombosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7043-7054. [PMID: 38509000 DOI: 10.1021/acs.jafc.3c05211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
14-3-3ζ protein, the key target in the regulation and control of integrin β3 outside-in signaling, is an attractive new strategy to inhibit thrombosis without affecting hemostasis. In this study, 4'-O-methylbavachalconeB (4-O-MB) in Psoraleae Fructus was identified as a 14-3-3ζ ligand with antithrombosis activity by target fishing combined with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis. The competitive inhibition analysis showed that 4-O-MB targeted 14-3-3ζ and blocked the 14-3-3ζ/integrin β3 interaction with inhibition constant (Ki) values of 9.98 ± 0.22 μM. Molecular docking and amino acid mutation experiments confirmed that 4-O-MB specifically bound to 14-3-3ζ through LSY9 and SER28 to regulate the 14-3-3ζ/integrin β3 interaction. Besides, 4-O-MB affected the integrin β3 early outside-in signal by inhibiting AKT and c-Src phosphorylation. Meanwhile, 4-O-MB could inhibit ADP-, collagen-, or thrombin-induced platelet aggregation function but had no effect on platelet adhesion to collagen-coated surfaces in vivo. Administration of 4-O-MB could significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings provide new prospects for the antithrombotic effects of Psoraleae Fructus and the potential application of 4-O-MB as lead compounds in the therapy of thrombosis by targeting 14-3-3ζ.
Collapse
Affiliation(s)
- Ziqi Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Fanqi Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhiwen Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ji-Hua Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
11
|
Jasti M, Islam S, Steele N, Ivy K, Maimo W, Isiadinso I. Lp(a) and risk of cardiovascular disease - A review of existing evidence and emerging concepts. J Natl Med Assoc 2023:S0027-9684(23)00141-4. [PMID: 38143155 DOI: 10.1016/j.jnma.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death among adults in the United States. There has been significant advancement in the diagnosis and treatment of atherosclerotic cardiovascular disease (ASCVD) and its underlying risk factors. In certain populations, there remains a significant residual risk despite adequate lowering of low-density lipoprotein cholesterol (LDL-C) and control of traditional risk factors. This has led to an interest in research to identify additional risk factors that contribute to atherosclerotic cardiovascular disease. Elevated lipoprotein (a) [Lp(a)] has been identified as an independent risk factor contributing to an increased risk for CVD. There are also ethnic and racial disparities in Lp(a) inheritance that need to be understood. This paper reviews the current literature on lipoprotein a, proposed mechanisms of actions for cardiovascular disease, recommendations for testing, and the current and emerging therapies for lowering Lp(a).
Collapse
Affiliation(s)
- Manasa Jasti
- Division of Cardiology, University of Tennessee Health Science Center/Ascension Saint Thomas, Nashville, TN, United States
| | - Sabrina Islam
- Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathan Steele
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Kendra Ivy
- Department of Internal Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - Willibroad Maimo
- Division of Cardiology, Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Ijeoma Isiadinso
- Division of Cardiology, Department of Medicine, Center for Heart Disease Prevention, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
12
|
Gong Q, Guo C. Genetic study of the causal effect of lipid profiles on insomnia risk: a Mendelian randomization trial. BMC Med Genomics 2023; 16:325. [PMID: 38087303 PMCID: PMC10714578 DOI: 10.1186/s12920-023-01761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVES In response to the controversy surrounding observational studies of the association between lipid profiles and the risk of insomnia, the aim of this study was to analyze lipid profiles, including triglycerides (TG), apolipoprotein A-1 (ApoA-1), apolipoprotein B (ApoB) and lipoprotein A (LPA), in a European population to further assess the causal relationship between these lipid types and insomnia. MATERIALS AND METHODS This study explores the causal effect of lipid profiles on insomnia based on a genome-wide association study (GWAS)-derived public dataset using two-sample and multivariate Mendelian randomization (MVMR) analysis. The main MR analyses used inverse variance weighting (IVW) odds ratio (OR), and the sensitivity analyses included weighted median (WM) and MR‒Egger. RESULTS Both MR and MVMR showed that lowering ApoA-1 and LPA levels had causal effects on the risk of insomnia [MR: per 10 units, ApoA-1: OR: 0.7546, 95% CI: 0.6075-0.9372, P = 0.011; LPA: OR: 0.8392, 95% CI: 0.7202-0.9778, P = 0.025; MVMR: per 10 units, ApoA-1: OR: 0.7600, 95% CI: 0.6362-0.9079, P = 0.002; LPA, OR: 0.903, 95% CI: 0.8283-0.9845, P = 0.021]. There were no causal effects of TG or ApoB on insomnia (all P > 0.05). The MR‒Egger intercept test, funnel plot, and IVW methods all suggested an absence of strong directional pleiotropy, and leave-one-out permutation analysis did not detect any single single-nucleotide polymorphism that had a strong influence on the results. CONCLUSION Elevated levels of ApoA-1 and LPA were independently and causally associated with the risk of insomnia, suggesting that elevated ApoA-1 and LPA levels may contribute to a reduced risk of insomnia.
Collapse
Affiliation(s)
- Quancai Gong
- Department of Neurology, Affiliated Hospital of Jianghan University, Wuhan, 430015, Hubei, China
| | - Canshou Guo
- Department of Neurology, Affiliated Hospital of Jianghan University, Wuhan, 430015, Hubei, China.
- , No.168, Hong Kong Road, Jiangan District, Wuhan, Hubei Province, China.
| |
Collapse
|
13
|
Rubio-Serrano J, Gullón Ojesto A, Suárez Fernández C. Clinical characteristics associated with elevated levels of lipoprotein(a) in patients with vascular risk. ADVANCES IN LABORATORY MEDICINE 2023; 4:396-401. [PMID: 38106492 PMCID: PMC10724877 DOI: 10.1515/almed-2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/01/2023] [Indexed: 12/19/2023]
Abstract
Objectives Lipoprotein(a) (Lp(a)) is increasingly used in the evaluation of patients with vascular risk due to its association with cardiovascular events. The purpose of this study was to identify the clinical characteristics of patients with elevated levels of Lp(a) attended in an outpatient vascular risk unit. Methods An observational, retrospective study was conducted to assess the clinical characteristics of patients with elevated levels of Lp(a) (≥50 mg/dL), as compared to patients with normal values (<50 mg/dL). The sample was composed of 878 patients identified as having a high vascular risk due to a diagnosis of vascular disease, attended in a vascular risk unit between 2021 and 2022. Results The highest levels of Lp(a) were independently associated with a higher probability of having a history of peripheral arterial disease (p=0.024), polygenic familial hypercholesterolemia (PH, p=0.030) and combined familial hypercholesterolemia (CFH, p=0.015); and using PCSK9 inhibitor treatment (p=0.029) and combination therapy with statins and ezetimibe (p=0.018). In contrast, there were no significant differences in relation to familial history of early cardiovascular disease (p=0.143) or personal history of cardiovascular disease (p=0.063), which contrasts with other series. Conclusions Elevated levels of Lp(a) were associated with a history of peripheral arterial disease, diagnosis of FHP and CFH, and need for more intense lipid-lowering treatments.
Collapse
Affiliation(s)
- Javier Rubio-Serrano
- La Princesa Biomedical Research Foundation, La Princesa Research Institute, Madrid, Spain
| | - Alejandra Gullón Ojesto
- Unit of Vascular Risk, Service of Internal Medicine, La Princesa University Hospital, Madrid, Spain
| | - Carmen Suárez Fernández
- Unit of Vascular Risk, Service of Internal Medicine, La Princesa University Hospital, Madrid, Spain
| |
Collapse
|
14
|
Rubio-Serrano J, Gullón Ojesto A, Suárez Fernández C. Características clínicas asociadas a niveles elevados de lipoproteína(a) en pacientes atendidos por riesgo vascular. ADVANCES IN LABORATORY MEDICINE 2023; 4:402-407. [PMID: 38106493 PMCID: PMC10724873 DOI: 10.1515/almed-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/01/2023] [Indexed: 12/19/2023]
Abstract
Objectivos La lipoproteína(a) (Lp(a)) es cada vez más relevante en la evaluación de pacientes con riesgo vascular debido a su asociación con una mayor incidencia de eventos cardiovasculares. Este estudio tiene como objetivo identificar las características clínicas de los pacientes con niveles elevados de Lp(a) atendidos en consultas externas por riesgo vascular. Métodos Estudio observacional retrospectivo en donde se compararon las características clínicas de los pacientes con niveles elevados de Lp(a) (≥50 mg/dL) con la de los pacientes con valores normales (<50 mg/dL), en un total de 878 pacientes atendidos por riesgo o enfermedad vascular durante los años 2021 y 2022. Resultados Los valores más elevados de Lp(a) se asociaron de forma independiente con una mayor probabilidad de antecedentes de enfermedad arterial periférica (p=0,024), hipercolesterolemia familiar poligénica (HFP, p=0,030) e hipercolesterolemia familiar combinada (HFC, p=0,015), el tratamiento de inhibidores de PCSK9 (p=0,029) y la combinación de estatinas y ezetimiba (p=0,018). Sin embargo, no se obtuvieron diferencias significativas para las variables antecedentes familiares de enfermedad cardiovascular precoz (p=0,143) ni para antecedentes de enfermedad cardiovascular previa (p=0,063) a diferencia de lo identificado en otras series. Conclusiones Los niveles elevados de Lp(a) se asociaron con antecedentes de enfermedad arterial periférica, diagnóstico de HFP y HFC, así como con la necesidad de utilizar tratamientos hipolipemiantes más intensos.
Collapse
Affiliation(s)
- Javier Rubio-Serrano
- Fundación de Investigación Biomédica del Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, España
| | - Alejandra Gullón Ojesto
- Unidad de Riesgo Vascular. Servicio de Medicina Interna, Hospital Universitario de La Princesa, Madrid, España
| | - Carmen Suárez Fernández
- Unidad de Riesgo Vascular. Servicio de Medicina Interna, Hospital Universitario de La Princesa, Madrid, España
| |
Collapse
|
15
|
Fogacci F, Di Micoli V, Avagimyan A, Giovannini M, Imbalzano E, Cicero AFG. Assessment of Apolipoprotein(a) Isoform Size Using Phenotypic and Genotypic Methods. Int J Mol Sci 2023; 24:13886. [PMID: 37762189 PMCID: PMC10531419 DOI: 10.3390/ijms241813886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Apolipoprotein(a) (apo(a)) is the protein component that defines lipoprotein(a) (Lp(a)) particles and is encoded by the LPA gene. The apo(a) is extremely heterogeneous in size due to the copy number variations in the kringle-IV type 2 (KIV2) domains. In this review, we aim to discuss the role of genetics in establishing Lp(a) as a risk factor for coronary heart disease (CHD) by examining a series of molecular biology techniques aimed at identifying the best strategy for a possible application in clinical research and practice, according to the current gold standard.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Valentina Di Micoli
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Ashot Avagimyan
- Pathological Anatomy Department, Yerevan State Medical University, Yerevan 0025, Armenia;
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Arrigo F. G. Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
- Cardiovascular Medicine Unit, Heart, Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40100 Bologna, Italy
| |
Collapse
|
16
|
Vinci P, Di Girolamo FG, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Altamura N, Pirulli A, Zaccari M, Biasinutto C, Roni C, Fiotti N, Schincariol P, Mangogna A, Biolo G. Lipoprotein(a) as a Risk Factor for Cardiovascular Diseases: Pathophysiology and Treatment Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6721. [PMID: 37754581 PMCID: PMC10531345 DOI: 10.3390/ijerph20186721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023]
Abstract
Cardiovascular disease (CVD) is still a leading cause of morbidity and mortality, despite all the progress achieved as regards to both prevention and treatment. Having high levels of lipoprotein(a) [Lp(a)] is a risk factor for cardiovascular disease that operates independently. It can increase the risk of developing cardiovascular disease even when LDL cholesterol (LDL-C) levels are within the recommended range, which is referred to as residual cardiovascular risk. Lp(a) is an LDL-like particle present in human plasma, in which a large plasminogen-like glycoprotein, apolipoprotein(a) [Apo(a)], is covalently bound to Apo B100 via one disulfide bridge. Apo(a) contains one plasminogen-like kringle V structure, a variable number of plasminogen-like kringle IV structures (types 1-10), and one inactive protease region. There is a large inter-individual variation of plasma concentrations of Lp(a), mainly ascribable to genetic variants in the Lp(a) gene: in the general po-pulation, Lp(a) levels can range from <1 mg/dL to >1000 mg/dL. Concentrations also vary between different ethnicities. Lp(a) has been established as one of the risk factors that play an important role in the development of atherosclerotic plaque. Indeed, high concentrations of Lp(a) have been related to a greater risk of ischemic CVD, aortic valve stenosis, and heart failure. The threshold value has been set at 50 mg/dL, but the risk may increase already at levels above 30 mg/dL. Although there is a well-established and strong link between high Lp(a) levels and coronary as well as cerebrovascular disease, the evidence regarding incident peripheral arterial disease and carotid atherosclerosis is not as conclusive. Because lifestyle changes and standard lipid-lowering treatments, such as statins, niacin, and cholesteryl ester transfer protein inhibitors, are not highly effective in reducing Lp(a) levels, there is increased interest in developing new drugs that can address this issue. PCSK9 inhibitors seem to be capable of reducing Lp(a) levels by 25-30%. Mipomersen decreases Lp(a) levels by 25-40%, but its use is burdened with important side effects. At the current time, the most effective and tolerated treatment for patients with a high Lp(a) plasma level is apheresis, while antisense oligonucleotides, small interfering RNAs, and microRNAs, which reduce Lp(a) levels by targeting RNA molecules and regulating gene expression as well as protein production levels, are the most widely explored and promising perspectives. The aim of this review is to provide an update on the current state of the art with regard to Lp(a) pathophysiological mechanisms, focusing on the most effective strategies for lowering Lp(a), including new emerging alternative therapies. The purpose of this manuscript is to improve the management of hyperlipoproteinemia(a) in order to achieve better control of the residual cardiovascular risk, which remains unacceptably high.
Collapse
Affiliation(s)
- Pierandrea Vinci
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Filippo Giorgio Di Girolamo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Emiliano Panizon
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Letizia Maria Tosoni
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Carla Cerrato
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Federica Pellicori
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Nicola Altamura
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Alessia Pirulli
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Michele Zaccari
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Chiara Biasinutto
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Chiara Roni
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Nicola Fiotti
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Paolo Schincariol
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, I.R.C.C.S “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gianni Biolo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| |
Collapse
|
17
|
Koschinsky ML, Stroes ESG, Kronenberg F. Daring to dream: Targeting lipoprotein(a) as a causal and risk-enhancing factor. Pharmacol Res 2023; 194:106843. [PMID: 37406784 DOI: 10.1016/j.phrs.2023.106843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Lipoprotein(a) [Lp(a)], a distinct lipoprotein class, has become a major focus for cardiovascular research. This review is written in light of the recent guideline and consensus statements on Lp(a) and focuses on 1) the causal association between Lp(a) and cardiovascular outcomes, 2) the potential mechanisms by which elevated Lp(a) contributes to cardiovascular diseases, 3) the metabolic insights on the production and clearance of Lp(a) and 4) the current and future therapeutic approaches to lower Lp(a) concentrations. The concentrations of Lp(a) are under strict genetic control. There exists a continuous relationship between the Lp(a) concentrations and risk for various endpoints of atherosclerotic cardiovascular disease (ASCVD). One in five people in the Caucasian population is considered to have increased Lp(a) concentrations; the prevalence of elevated Lp(a) is even higher in black populations. This makes Lp(a) a cardiovascular risk factor of major public health relevance. Besides the association between Lp(a) and myocardial infarction, the relationship with aortic valve stenosis has become a major focus of research during the last decade. Genetic studies provided strong support for a causal association between Lp(a) and cardiovascular outcomes: carriers of genetic variants associated with lifelong increased Lp(a) concentration are significantly more frequent in patients with ASCVD. This has triggered the development of drugs that can specifically lower Lp(a) concentrations: mRNA-targeting therapies such as anti-sense oligonucleotide (ASO) therapies and short interfering RNA (siRNA) therapies have opened new avenues to lower Lp(a) concentrations more than 95%. Ongoing Phase II and III clinical trials of these compounds are discussed in this review.
Collapse
Affiliation(s)
- Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
18
|
Kronenberg F, Mora S, Stroes ESG, Ference BA, Arsenault BJ, Berglund L, Dweck MR, Koschinsky ML, Lambert G, Mach F, McNeal CJ, Moriarty PM, Natarajan P, Nordestgaard BG, Parhofer KG, Virani SS, von Eckardstein A, Watts GF, Stock JK, Ray KK, Tokgözoğlu LS, Catapano AL. Frequent questions and responses on the 2022 lipoprotein(a) consensus statement of the European Atherosclerosis Society. Atherosclerosis 2023; 374:107-120. [PMID: 37188555 DOI: 10.1016/j.atherosclerosis.2023.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
In 2022, the European Atherosclerosis Society (EAS) published a new consensus statement on lipoprotein(a) [Lp(a)], summarizing current knowledge about its causal association with atherosclerotic cardiovascular disease (ASCVD) and aortic stenosis. One of the novelties of this statement is a new risk calculator showing how Lp(a) influences lifetime risk for ASCVD and that global risk may be underestimated substantially in individuals with high or very high Lp(a) concentration. The statement also provides practical advice on how knowledge about Lp(a) concentration can be used to modulate risk factor management, given that specific and highly effective mRNA-targeted Lp(a)-lowering therapies are still in clinical development. This advice counters the attitude: "Why should I measure Lp(a) if I can't lower it?". Subsequent to publication, questions have arisen relating to how the recommendations of this statement impact everyday clinical practice and ASCVD management. This review addresses 30 of the most frequently asked questions about Lp(a) epidemiology, its contribution to cardiovascular risk, Lp(a) measurement, risk factor management and existing therapeutic options.
Collapse
Affiliation(s)
- Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, and Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Lars Berglund
- Department of Internal Medicine, School of Medicine, University of California-Davis, Davis, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Chancellors Building, Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gilles Lambert
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400, Saint-Pierre, La Réunion, France
| | - François Mach
- Department of Cardiology, Geneva University Hospital, Geneva, Switzerland
| | - Catherine J McNeal
- Division of Cardiology, Department of Internal Medicine Baylor Scott & White Health, 2301 S. 31st St., Temple, TX, 76508, USA
| | - Patrick M Moriarty
- Atherosclerosis and Lipoprotein-apheresis Clinic, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; and Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus G Parhofer
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians University Klinikum, Munich, Germany
| | - Salim S Virani
- The Aga Khan University, Karachi, Pakistan; Texas Heart Institute, Baylor College of Medicine, Houston, TX, USA
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerald F Watts
- Medical School, University of Western Australia, and Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, SE-412 51, Gothenburg, Sweden
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
19
|
Catapano AL, Tokgözoğlu L, Banach M, Gazzotti M, Olmastroni E, Casula M, Ray KK. Evaluation of lipoprotein(a) in the prevention and management of atherosclerotic cardiovascular disease: A survey among the Lipid Clinics Network. Atherosclerosis 2023; 370:5-11. [PMID: 36894469 DOI: 10.1016/j.atherosclerosis.2023.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND AND AIMS The European Atherosclerosis Society (EAS) Lipid Clinics Network promoted a survey in order to identify and understand how and when lipoprotein(a) [Lp(a)] is tested and clinically evaluated in lipid clinics throughout Europe, and the challenges that may prevent evaluation from being carried out. METHODS This survey was divided into three areas of inquiry: background and clinical setting information of clinicians, questions for doctors who claimed not to measure Lp(a), in order to understand what were the reasons for not ordering the test, and questions for doctors who measure Lp(a), to investigate the use of this value in the management of patients. RESULTS A total of 151 centres clinicians filled in the survey, out of 226 invited. The proportion of clinicians who declare to routinely measure Lp(a) in clinical practice was 75.5%. The most common reasons for not ordering the Lp(a) test were the lack of reimbursement or of treatment options, the non-availability of Lp(a) test, and the high cost of performing the laboratory test. The availability of therapies targeting this lipoprotein would result in a greater propensity of clinicians to start testing Lp(a). Among those who declared to routinely measure Lp(a), the Lp(a) measurement is mostly requested to further stratify patients' cardiovascular risk, and half of them recognized 50 mg/dL (approx. 110 nmol/L) as the threshold for increased cardiovascular risk due. CONCLUSIONS These results warrant for a great deal of effort from scientific societies to address the barriers that limit the routine use of the measurement of Lp(a) concentration and to recognise the importance of Lp(a) as a risk factor.
Collapse
Affiliation(s)
- Alberico L Catapano
- IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Gora, Poland
| | | | - Elena Olmastroni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Manuela Casula
- IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London, UK
| |
Collapse
|
20
|
Poli A, Catapano AL, Corsini A, Manzato E, Werba JP, Catena G, Cetin I, Cicero AFG, Cignarella A, Colivicchi F, Consoli A, Landi F, Lucarelli M, Manfellotto D, Marrocco W, Parretti D, Perrone Filardi P, Pirillo A, Sesti G, Volpe M, Marangoni F. LDL-cholesterol control in the primary prevention of cardiovascular diseases: An expert opinion for clinicians and health professionals. Nutr Metab Cardiovasc Dis 2023; 33:245-257. [PMID: 36566123 DOI: 10.1016/j.numecd.2022.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
AIMS Although adequate clinical management of patients with hypercholesterolemia without a history of known cardiovascular disease is essential for prevention, these subjects are often disregarded. Furthermore, the scientific literature on primary cardiovascular prevention is not as rich as that on secondary prevention; finally, physicians often lack adequate tools for the effective management of subjects in primary prevention and have to face some unsolved relevant issues. This document aims to discuss and review the evidence available on this topic and provide practical guidance. DATA SYNTHESIS Available algorithms and risk charts represent the main tool for the assessment of cardiovascular risk in patients in primary prevention. The accuracy of such an estimate can be substantially improved considering the potential contribution of some additional risk factors (C-reactive protein, lipoprotein(a), family history of cardiovascular disease) and conditions (environmental pollution, sleep quality, socioeconomic status, educational level) whose impact on the cardiovascular risk has been better understood in recent years. The availability of non-invasive procedures to evaluate subclinical atherosclerosis may help to identify subjects needing an earlier intervention. Unveiling the presence of these conditions will improve cardiovascular risk estimation, granting a more appropriate intervention. CONCLUSIONS The accurate assessment of cardiovascular risk in subjects in primary prevention with the use of algorithms and risk charts together with the evaluation of additional factors will allow physicians to approach each patient with personalized strategies, which should translate into an increased adherence to therapy and, as a consequence, a reduced cardiovascular risk.
Collapse
Affiliation(s)
- Andrea Poli
- NFI - Nutrition Foundation of Italy, Milan, Italy.
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Center for the Study of Dyslipidaemias, IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Enzo Manzato
- Department of Medicine, University of Padova, Padova, Italy; SISA - Italian Society for the Study of Atherosclerosis, Italy
| | - José Pablo Werba
- Unit of Atherosclerosis Prevention, Monzino Cardiology Center, IRCCS, Milan, Italy
| | | | - Irene Cetin
- Department of Woman, Mother and Neonate Hospital Buzzi, Milan, University of Milan, Italy; SIGO - Italian Society of Gynecology and Obstetrics, Italy
| | - Arrigo F G Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, IRCCS AOU di Bologna, Bologna, Italy; SINut - Italian Nutraceutical Society, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padova, Padova, Italy; Italian Research Center for Gender Health and Medicine, Italy
| | - Furio Colivicchi
- Division of Clinical Cardiology, San Filippo Neri Hospital, Rome, Italy; ANMCO - Italian National Association of Hospital Cardiologists, Italy
| | - Agostino Consoli
- Department of Medicine and Aging Sciences, University G. D'Annunzio, Chieti, Italy; SID - Italian Society of Diabetology, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; SIGG - Italian Society of Gerontology and Geriatrics, Italy
| | - Maurizio Lucarelli
- SNaMID - National Society of Medical Education in General Practice, Italy
| | - Dario Manfellotto
- Department of Internal Medicine, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy; FADOI - Federation of Associations of Hospital Internists, Italy
| | - Walter Marrocco
- SIMPeSV and FIMMG - Italian Society of Preventive and Lifestyle Medicine and Italian Federation of General Practitioners, Italy
| | | | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy; SIC - Italian Society of Cardiology, Italy
| | - Angela Pirillo
- Center for the Study of Dyslipidaemias, IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy; Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy; SIMI - Italian Society of Internal Medicine, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Italy; SIPREC - Italian Society for Cardiovascular Prevention, Italy
| | | |
Collapse
|
21
|
Masson W, Lobo M, Barbagelata L, Molinero G, Bluro I, Nogueira JP. Elevated lipoprotein (a) levels and risk of peripheral artery disease outcomes: A systematic review. Vasc Med 2022; 27:385-391. [PMID: 35466849 DOI: 10.1177/1358863x221091320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite strong association of elevated lipoprotein (a) (Lp(a)) levels with incident coronary and cerebrovascular disease, data for incident peripheral artery disease (PAD) are less robust. The main objective of the present systematic review was to analyze the association between elevated Lp(a) levels and PAD outcomes. METHODS This systematic review was performed according to PRISMA guidelines. A literature search was performed to detect randomized clinical trials or observational studies with a cohort design that evaluated the association between Lp(a) levels and PAD outcomes. RESULTS Fifteen studies including 493,650 subjects were identified and considered eligible for this systematic review. This systematic review showed that the vast majority of the studies reported a significant association between elevated Lp(a) levels and the risk of PAD outcomes. The elevated Lp(a) levels were associated with a higher risk of incident claudication (RR: 1.20), PAD progression (HR: 1.41), restenosis (HR: 6.10), death and hospitalization related to PAD (HR: 1.37), limb amputation (HR: 22.75), and lower limb revascularization (HR: 1.29 and 2.90). In addition, the presence of elevated Lp(a) values were associated with a higher risk of combined PAD outcomes, with HRs in a range between 1.14 and 2.80, despite adjusting for traditional risk factors. Heterogeneity of results can be explained by different patient populations studied and varying Lp(a) cut-off points of Lp(a) analyzed. CONCLUSION This systematic review suggests that evidence is available to support an independent positive association between Lp(a) levels and the risk of future PAD outcomes. PROSPERO Registration No.: 289253.
Collapse
Affiliation(s)
- Walter Masson
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Buenos Aires, Argentina.,Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Martín Lobo
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Buenos Aires, Argentina.,Cardiology Department, Hospital Militar Campo de Mayo, Buenos Aires, Argentina
| | - Leandro Barbagelata
- Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Graciela Molinero
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Buenos Aires, Argentina
| | - Ignacio Bluro
- Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Juan P Nogueira
- Centro de Investigación en Endocrinología, Nutrición y Metabolismo (CIENM), Facultad de Ciencias de la Salud, Universidad Nacional de Formosa, Formosa, Formosa Province, Argentina
| |
Collapse
|
22
|
Kronenberg F. Measuring lipoprotein(a): do it without ifs and buts. Eur J Prev Cardiol 2021; 29:766-768. [PMID: 34718514 DOI: 10.1093/eurjpc/zwab180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Florian Kronenberg
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria
| |
Collapse
|