1
|
Hu D, Gao C, Li J, Tong P, Sun Y. The preparation methods and types of cell sheets engineering. Stem Cell Res Ther 2024; 15:326. [PMID: 39334404 PMCID: PMC11438047 DOI: 10.1186/s13287-024-03937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cell therapy has emerged as a viable approach for treating damaged organs or tissues, particularly with advancements in stem cell research and regenerative medicine. The innovative technique of cell sheet engineering offers the potential to create a cell-dense lamellar structure that preserves the extracellular matrix (ECM) secreted by cells, along with the cell-matrix and intercellular junctions formed during in vitro cultivation. In recent years, significant progress has been made in developing cell sheet engineering technology. A variety of novel materials and methods were utilized for enzyme-free cell detachment during the cell sheet formation process. The complexity of cell sheet structures increased to meet advanced usage demands. This review aims to provide an overview of the preparation methods and types of cell sheets, thereby enhancing the understanding of this rapidly evolving technology and offering a fresh perspective on the development and future application of cell sheet engineering.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hangzhou Chexmed Technology Co., Ltd, Hangzhou, China
| | - Ce Gao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Pei Tong
- Hunan Guangxiu Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, China.
- Hunan Guangxiu Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
2
|
Lewandrowski KU, Vira S, Elfar JC, Lorio MP. Advancements in Custom 3D-Printed Titanium Interbody Spinal Fusion Cages and Their Relevance in Personalized Spine Care. J Pers Med 2024; 14:809. [PMID: 39202002 PMCID: PMC11355268 DOI: 10.3390/jpm14080809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
3D-printing technology has revolutionized spinal implant manufacturing, particularly in developing personalized and custom-fit titanium interbody fusion cages. These cages are pivotal in supporting inter-vertebral stability, promoting bone growth, and restoring spinal alignment. This article reviews the latest advancements in 3D-printed titanium interbody fusion cages, emphasizing their relevance in modern personalized surgical spine care protocols applied to common clinical scenarios. Furthermore, the authors review the various printing and post-printing processing technologies and discuss how engineering and design are deployed to tailor each type of implant to its patient-specific clinical application, highlighting how anatomical and biomechanical considerations impact their development and manufacturing processes to achieve optimum osteoinductive and osteoconductive properties. The article further examines the benefits of 3D printing, such as customizable geometry and porosity, that enhance osteointegration and mechanical compatibility, offering a leap forward in patient-specific solutions. The comparative analysis provided by the authors underscores the unique challenges and solutions in designing cervical, and lumbar spine implants, including load-bearing requirements and bioactivity with surrounding bony tissue to promote cell attachment. Additionally, the authors discuss the clinical outcomes associated with these implants, including the implications of improvements in surgical precision on patient outcomes. Lastly, they address strategies to overcome implementation challenges in healthcare facilities, which often resist new technology acquisitions due to perceived cost overruns and preconceived notions that hinder potential savings by providing customized surgical implants with the potential for lower complication and revision rates. This comprehensive review aims to provide insights into how modern 3D-printed titanium interbody fusion cages are made, explain quality standards, and how they may impact personalized surgical spine care.
Collapse
Affiliation(s)
- Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, Division Personalized Pain Research and Education, Tucson, AZ 85712, USA
- Department of Orthopaedics, Fundación Universitaria Sanitas Bogotá, Bogotá 111321, Colombia
| | - Shaleen Vira
- Orthopedic and Sports Medicine Institute, Banner-University Tucson Campus, 755 East McDowell Road, Floor 2, Phoenix, AZ 85006, USA;
| | - John C. Elfar
- Department of Orthopaedic Surgery, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Morgan P. Lorio
- Advanced Orthopedics, 499 East Central Parkway, Altamonte Springs, FL 32701, USA;
- Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
3
|
Kowalczuk K, Mons PJ, Ulrich HF, Wegner VD, Brendel JC, Mosig AS, Schacher FH. Asymmetric Block Extension of Star-Shaped [PEG-SH] 4 - toward Poly(dehydroalanine)-Functionalized PEG Hydrogels for Catch and Release of Charged Guest Molecules. Macromol Biosci 2024; 24:e2300230. [PMID: 37572335 DOI: 10.1002/mabi.202300230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Indexed: 08/14/2023]
Abstract
With the incorporation of polyampholytic segments into soft matter, hydrogels can serve as a reservoir for a variety of charged molecules which can be caught and released upon changes in pH value. Asymmetric block extension of one arm for star-shaped poly(ethylene glycol) [PEG26 -SH]4 using short segments of polyampholytic poly(dehydroalanine) (PDha) is herein demonstrated while maintaining the functional thiol end groups for network formation. For subsequent hydrogel synthesis with up to 10 wt.% PDha a straightforward and biocompatible photoinitiated thiol-ene click reaction is exploited. The investigation of the swelling properties of the hydrogel revealed responsive behavior toward ionic strength and variations in pH value. Moreover, the reversible adsorption of the model dyes methylene blue (MB) and acid orange 7 (AO7) is investigated by UV-vis measurements and the procedure can be successfully transferred to the adsorption of the adhesion peptide RGDS resulting in an uptake of 1.5 wt% RGDS with regard to the dry weight of the hydrogel.
Collapse
Affiliation(s)
- Kathrin Kowalczuk
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07754, Jena, Germany
| | - Peter J Mons
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Hans F Ulrich
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Valentin D Wegner
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747, Jena, Germany
| | - Johannes C Brendel
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07754, Jena, Germany
| |
Collapse
|
4
|
Chhabra K, Rajasekar A. Comparison of Roughness, Wettability, and SEM Features between Sandblasted Acid-Etched and Oxidized Titanium Dental Implants. J Long Term Eff Med Implants 2024; 34:57-63. [PMID: 38842233 DOI: 10.1615/jlongtermeffmedimplants.2023049632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The surface of dental implants has undergone multiple modifications across the timeline to enhance osseointegration, thereby enhancing the success of dental implants. This study compared the surface roughness, wettability and topography of sandblasted acid-etched, and oxidized titanium dental implants. Three commercially available implants-namely, SLA, SLActive, and TiUnite-were evaluated for surface roughness in terms of Ra, Rq, and Rz; wettability in terms of contact angle (CA); and topography using scanning electron microscopy (SEM). Roughness and wettability values were compared between the three surfaces by ANOVA and pairwise comparison by Tukey's HSD post hoc testing using SPSS Software. A p value of < 0.01 was considered to be statistically significant. The TiUnite surface exhibited the highest roughness values (Ra = 1.91 ± 0.006 μm, Rq = 2.99 ± 0.005 μm, Rz = 8.37 ± 0.003 μm) followed by the SLA and SLActive surfaces. The contact angles of the SLA, SLActive, and TiUnite dental implants were 98.44 ± 0.52°, 9 ± 0.03°, and 94.39 ± 0.08°, respectively. These data demonstrated statistically significant differences between the three surfaces (p < 0.01). There were no distinct differences in SEM features between the SLA and SLActive surfaces. However, the TiUnite surface exhibited a distinctly porous morphology. Oxidized dental implants differ from sandblasted acid-etched implants in terms of roughness, wettability, and surface topography.
Collapse
Affiliation(s)
- Kshitiz Chhabra
- Department of Implantology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Arvina Rajasekar
- Department of Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
5
|
Renzi E, Piper A, Nastri F, Merkoçi A, Lombardi A. An Artificial Miniaturized Peroxidase for Signal Amplification in Lateral Flow Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207949. [PMID: 36942720 DOI: 10.1002/smll.202207949] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Signal amplification strategies are widely used for improving the sensitivity of lateral flow immunoassays (LFiAs). Herein, the artificial miniaturized peroxidase Fe(III)-MimochromeVI*a (FeMC6*a), immobilized on gold nanoparticles (AuNPs), is used as a strategy to obtain catalytic signal amplification in sandwich immunoassays on lateral flow strips. The assay scheme uses AuNPs decorated with the mini-peroxidase FeMC6*a and anti-human-IgG as a detection antibody (dAb), for the detection of human-IgG, as a model analyte. Recognition of the analyte by the capture and detection antibodies is first evidenced by the appearance of a red color in the test line (TL), due to the accumulation of AuNPs. Subsequent addition of 3,3',5,5'-tetramethylbenzidine (TMB) induces an increase of the test line color, due to the TMB being converted into an insoluble colored product, catalyzed by FeMC6*a. This work shows that FeMC6*a acts as an efficient catalyst in paper, increasing the sensitivity of an LFiA up to four times with respect to a conventional LFiA. Furthermore, FeMC6*a achieves lower limits of detection that are found in control experiments where it is replaced with horseradish peroxidase (HRP), its natural counterpart. This study represents a significant proof-of-concept for the development of more sensitive LFiAs, for different analytes, based on properly designed artificial metalloenzymes.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Andrew Piper
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| |
Collapse
|
6
|
Sun Z, Yin Z, Zhang M, Guo D, Ran F. Poloxamer 407 Combined with Polyvinylpyrrolidone To Prepare a High-Performance Poly(ether sulfone) Ultrafiltration Membrane. ACS OMEGA 2023; 8:39783-39795. [PMID: 37901513 PMCID: PMC10600910 DOI: 10.1021/acsomega.3c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Abstract
At present, the design and fabrication of polymer membranes with high permeability and good retention ability are still huge challenges. In this study, the commercial Poloxamer 407 (Pluronic F127) is selected as a multifunctional additive, and polyvinylpyrrolidone is used as a pore-forming agent to modify the poly(ether sulfone) membrane by liquid-liquid phase conversion technology to prepare an ultrafiltration membrane with excellent performance. The hydrophobic poly(propylene oxide) segment in Poloxamer 407 guarantees that this copolymer can be firmly anchored to the poly(ether sulfone) matrix, and the hydrophilic poly(ethylene oxide) segments in Poloxamer 407 impart a stronger hydrophilic nature to the modified membrane surface. Therefore, the permeability and hydrophilicity of the modified membrane are significantly improved and the modified membrane also has good stability. When the amount of Poloxamer 407 added to the casting solution reached 0.6 g, the water flux of the modified membrane was as high as 368 L m-2 h-1, and the rejection rate of bovine serum albumin was close to 98%. In the test to isolate organic small molecule dyes, the retention rate of the modified membrane to Congo red is 94.27%. In addition, the modified membrane shows an excellent water flux recovery rate and antifouling ability. It performs well in subsequent cycle tests and long-term membrane life tests and can be used repeatedly. Our work has resulted in poly(ether sulfone) membranes with good performance, which show great potential in the treatment of biomedical wastewater and the removal of industrial organic dye wastewater, it provides ideas for the development and application of amphiphilic polymer materials.
Collapse
Affiliation(s)
- Zhijiang Sun
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Zehua Yin
- Jiangsu
Solicitude Medical Technology co., Ltd., Suzhou 215100, PR China
| | - Mingyu Zhang
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Dongli Guo
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
- Jiangsu
Solicitude Medical Technology co., Ltd., Suzhou 215100, PR China
| | - Fen Ran
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
7
|
Mendes GR, Modenez IDA, Cagnani GR, Colombo RNP, Crespilho FN. Exploring Enzymatic Conformational Dynamics at Surfaces through μ-FTIR Spectromicroscopy. Anal Chem 2023; 95:11254-11262. [PMID: 37459476 DOI: 10.1021/acs.analchem.3c00872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Immobilization of proteins onto solid supports has critical industrial, technological, and medical applications, and is a daily task in chemical research. Significant conformational rearrangements often occur due to enzyme-surface interactions, and it is of broad interest to develop methods to probe and better understand these molecular-level changes that contribute to the enzyme's catalytic activity and stability. While circular dichroism is a common method for solution-phase conformational study, the application to surface-supported proteins is not trivial and spatial mapping is not viable. On the other hand, a nonlinear laser spectroscopy technique used to analyze surfaces and interfaces is not often found in most laboratories, therefore requiring an alternative and reliable method. Here, we employed high-dimensional data spectromicroscopy analysis in the infrared region (μ-FTIR) to investigate the enzyme's conformational change when adsorbed onto solid matrices, across a ca. 20 mm2 area. Alcohol dehydrogenase (ADH) enzyme was adopted as a model enzyme to interact with CaF2, Au, and Au-thiol model substrates, strategically chosen for mapping the enzyme dynamics on solid surfaces with different polarity/hydrophobicity properties and extendable to other materials. Two-dimensional chemical maps indicate that the enzyme adsorbs with different patterns in which secondary structures dynamically adjust to optimize interprotein and enzyme-surface interactions. The results suggest an experimental approach to identify and map enzyme conformational dynamics onto different solid surfaces across space and provide insights into immobilized protein structure investigations for areas such as biosensing and bioenergy.
Collapse
Affiliation(s)
- Giovana Rossi Mendes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Iago de Assis Modenez
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Giovana Rosso Cagnani
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Rafael N P Colombo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Frank Nelson Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| |
Collapse
|
8
|
Ma M, Zou F, Abudureheman B, Han F, Xu G, Xie Y, Qiao K, Peng J, Guan Y, Meng H, Zheng Y. Magnetic Microcarriers with Accurate Localization and Proliferation of Mesenchymal Stem Cell for Cartilage Defects Repairing. ACS NANO 2023; 17:6373-6386. [PMID: 36961738 DOI: 10.1021/acsnano.2c10995] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic biomaterials are widely used in the field of tissue engineering because of their functions such as drug delivery and targeted therapy. In this study, a magnetically responsive composite microcarrier was prepared through in situ polymerization of dopamine with Fe3O4 (MS) to form a complex. The magnetic composite microcarriers are paramagnetic and have certain magnetic responsiveness, suitable pore size porosity for cell growth, and good blood compatibility and biocompatibility. The bone marrow mesenchyml stem cells (BMSCs) were cultured on magnetic composite microcarriers, and a static magnetic field (SMF) was applied. The results showed that BMSCs adhered to the microcarriers proliferated under the action of horizontal and vertical forces. Magnetic composite microcarriers loaded with BMSCs were implanted into the SD rat model of cartilage defect, and a magnet was added to the operative side. After 12 weeks, cartilage regeneration was observed. The results of gross observation and histological immunostaining 1 month, 2 months, and 3 mounths after operation showed that the magnetic composite microcarriers of loaded cells promoted the early maturation of cartilage and collagen secretion, and the effect of cartilage repair was significantly better than that of the control group. Gait analysis showed that implanting magnetic composite microcarriers loaded with stem cells can reduce postoperative pain and promote limb recovery in SD rats. In conclusion, this study suggests that magnetic composite microcarriers are promising tissue-engineered scaffolds for cartilage regeneration and repair.
Collapse
Affiliation(s)
- Mengjiao Ma
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Faxing Zou
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bahatibieke Abudureheman
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feng Han
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Guoli Xu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - YaJie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Qiao
- Beijing Gerecov Technology Company Ltd., Beijing 100142, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yueping Guan
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
9
|
Vacalebre M, Frison R, Corsaro C, Neri F, Santoro A, Conoci S, Anastasi E, Curatolo MC, Fazio E. Current State of the Art and Next Generation of Materials for a Customized IntraOcular Lens according to a Patient-Specific Eye Power. Polymers (Basel) 2023; 15:polym15061590. [PMID: 36987370 PMCID: PMC10054364 DOI: 10.3390/polym15061590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Intraocular lenses (IOLs) are commonly implanted after surgical removal of a cataractous lens. A variety of IOL materials are currently available, including collamer, hydrophobic acrylic, hydrophilic acrylic, PHEMA copolymer, polymethylmethacrylate (PMMA), and silicone. High-quality polymers with distinct physical and optical properties for IOL manufacturing and in line with the highest quality standards on the market have evolved to encompass medical needs. Each of them and their packaging show unique advantages and disadvantages. Here, we highlight the evolution of polymeric materials and mainly the current state of the art of the unique properties of some polymeric systems used for IOL design, identifying current limitations for future improvements. We investigate the characteristics of the next generation of IOL materials, which must satisfy biocompatibility requirements and have tuneable refractive index to create patient-specific eye power, preventing formation of posterior capsular opacification.
Collapse
Affiliation(s)
- Martina Vacalebre
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Renato Frison
- Optical Consultant SIFI SpA, 95025 Aci Sant'Antonio (CT), Italy
| | - Carmelo Corsaro
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Fortunato Neri
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Santoro
- Dipartimento di Scienze Chimiche, Biologiche, Farmacologiche ed Ambientali (CHIBIOFARAM), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Dipartimento di Scienze Chimiche, Biologiche, Farmacologiche ed Ambientali (CHIBIOFARAM), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Elena Anastasi
- Innovation and Medical Science, SIFI SpA, 95025 Aci Sant'Antonio (CT), Italy
| | | | - Enza Fazio
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
10
|
Cieślak M, Kowalczyk D, Krzyżowska M, Janicka M, Witczak E, Kamińska I. Effect of Cu Modified Textile Structures on Antibacterial and Antiviral Protection. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6164. [PMID: 36079542 PMCID: PMC9457927 DOI: 10.3390/ma15176164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Textile structures with various bioactive and functional properties are used in many areas of medicine, special clothing, interior textiles, technical goods, etc. We investigated the effect of two different textile woven structures made of 90% polyester with 10% polyamide (PET) and 100% cotton (CO) modified by magnetron sputtering with copper (Cu) on bioactive properties against Gram-positive and Gram-negative bacteria and four viruses and also on the some comfort parameters. PET/Cu and CO/Cu fabrics have strong antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia. CO/Cu fabric has good antiviral activity in relation to vaccinia virus (VACV), herpes simplex virus type 1 (HSV-1) and influenza A virus H1N1 (IFV), while its antiviral activity against mouse coronavirus (MHV) is weak. PET/Cu fabric showed weak antiviral activity against HSV-1 and MHV. Both modified fabrics showed no significant toxicity in comparison to the control medium and pristine fabrics. After Cu sputtering, fabric surfaces became hydrophobic and the value of the surface free energy was over four times lower than for pristine fabrics. The modification improved thermal conductivity and thermal diffusivity, facilitated water vapour transport, and air permeability did not decrease.
Collapse
Affiliation(s)
- Małgorzata Cieślak
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Dorota Kowalczyk
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Małgorzata Krzyżowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Martyna Janicka
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Ewa Witczak
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Irena Kamińska
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| |
Collapse
|
11
|
Chan D, Chien JC, Axpe E, Blankemeier L, Baker SW, Swaminathan S, Piunova VA, Zubarev DY, Maikawa CL, Grosskopf AK, Mann JL, Soh HT, Appel EA. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109764. [PMID: 35390209 PMCID: PMC9793805 DOI: 10.1002/adma.202109764] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/04/2022] [Indexed: 05/29/2023]
Abstract
Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices.
Collapse
Affiliation(s)
- Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jun-Chau Chien
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eneko Axpe
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Louis Blankemeier
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Samuel W Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Spinal Implant Osseointegration and the Role of 3D Printing: An Analysis and Review of the Literature. Bioengineering (Basel) 2022; 9:bioengineering9030108. [PMID: 35324797 PMCID: PMC8944949 DOI: 10.3390/bioengineering9030108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
The use of interbody implants for spinal fusion has been steadily increasing to avoid the risks of complications and donor site morbidity when using autologous bone. Understanding the pros and cons of various implant designs can assist the surgeon in choosing the ideal interbody for each individual patient. The goal of these interbody cages is to promote a surface area for bony ingrowth while having the biomechanical properties to support the axial skeleton. Currently, the majority of interbody implants consists of metal or polyether ether ketone (PEEK) cages with bone graft incorporated inside. Titanium alloy implants have been commonly used, however, the large difference in modulus of elasticity from bone has inherent issues. PEEK implants have a desirable surface area with the benefit of a modulus of elasticity closer to that of bone. Unfortunately, clinically, these devices have had increased risk of subsidence. More recently, 3D printed implants have come into the market, providing mechanical stability with increased surface design for bony ingrowth. While clinical outcomes studies are limited, early results have demonstrated more reliable and quicker fusion rates using 3D custom interbody devices. In this review, we discuss the biology of osseointegration, the use of surface coated implants, as well as the potential benefits of using 3D printed interbodies.
Collapse
|
13
|
Kołbuk D, Ciechomska M, Jeznach O, Sajkiewicz P. Effect of crystallinity and related surface properties on gene expression of primary fibroblasts. RSC Adv 2022; 12:4016-4028. [PMID: 35425452 PMCID: PMC8980997 DOI: 10.1039/d1ra07237d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
The biomaterial-cells interface is one of the most fundamental issues in tissue regeneration. Despite many years of scientific work, there is no clear answer to what determines the desired adhesion of cells and the synthesis of ECM proteins. Crystallinity is a characteristic of the structure that influences the surface and bulk properties of semicrystalline polymers used in medicine. The crystallinity of polycaprolactone (PCL) was varied by changing the molecular weight of the polymer and the annealing procedure. Measurements of surface free energy showed differences related to substrate crystallinity. Additionally, the water contact angle was determined to characterise surface wettability which was crucial in the analysis of protein absorption. X-ray photoelectron spectroscopy was used to indicate oxygen bonds amount on the surface. Finally, the impact of the crystallinity, and related properties were demonstrated on dermal fibroblasts' response. Cellular proliferation and expression of selected genes: α-SMA, collagen I, TIMP, integrin were analysed.
Collapse
Affiliation(s)
- Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5b 02-106 Warsaw Poland
| | - Marzena Ciechomska
- National Institute of Geriatrics, Rheumatology and Rehabilitation Spartańska 1 02-637 Warsaw Poland
| | - Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5b 02-106 Warsaw Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5b 02-106 Warsaw Poland
| |
Collapse
|
14
|
Masoudi S, Willcox M. Development of an enzymatic method for the evaluation of protein deposition on contact lenses. BIOFOULING 2022; 38:84-99. [PMID: 35016572 DOI: 10.1080/08927014.2021.2019225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate a new digestion method to quantify protein deposition on contact lenses. Four silicone hydrogel and one hydrogel contact lens material were incubated in lactoferrin, lysozyme, immunoglobulin A, and bovine serum albumin solutions at approximate physiological concentrations and temperature. Immobilized trypsin was used to digest the protein deposits from the contact lens surfaces. The total protein absorbed to lenses was extracted and digested using sequencing grade trypsin. The tryptic peptides were quantified using selected reaction monitoring mass spectrometry. The concentration of surface protein deposits was either lower than or the same as the total protein for all lens types and proteins. Immobilised trypsin can digest protein deposits from the surface of contact lenses. This ability to analyse the amount of protein at a contact lens surface may help in elucidating the effect of surface deposition on clinical outcomes during lens wear.
Collapse
Affiliation(s)
- Simin Masoudi
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Wei Y, Zhou W, Wu Y, Zhu H. High Sensitivity Label-Free Quantitative Method for Detecting Tumor Biomarkers in Human Serum by Optical Microfiber Couplers. ACS Sens 2021; 6:4304-4314. [PMID: 34806360 DOI: 10.1021/acssensors.1c01031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Label-free optical fiber immunosensors have attracted widespread attention in recent decades due to their high sensitivity. However, nonspecific adsorption in serum has remained a critical bottleneck in existing label-free fiber optic biosensors, which hinders their widespread use in diagnostics. In addition, individual differences in clinical human serum (HS) negatively impact biosensing results. In this work, the modified serum preadsorption strategy was applied to reduce nonspecific adsorption by forming a saturated antifouling interface on an optical microfiber coupler (OMC). Furthermore, to reduce the effect of the differences between individual HS samples, we proposed a new method where Sigma HS was used as a wavelength shift reference due to being close to clinical serum compared to other serums. Sigma HS was used first to reduce the differences in immune sensors before performing a clinical sample test in which quantitative detection was achieved based on the independent calibration of several sensors with wide dynamic ranges via dissociation processes. The individual differences in 25% HS were corrected by 30% Sigma HS. As a proof of concept, the label-free OMC immune sensor demonstrates good sensitivity and specificity for the detection of carcinoembryonic antigen (CEA) in 25% Sigma HS at different concentrations. The detection limit of CEA reached as low as 34.6 fg/mL (0.475 fM). Additionally, label-free quantitative detection of CEA using this OMC immune sensor was verified experimentally according to the calibration line, and the results agree well with clinical examination detection. To our knowledge, it is the first study to employ an OMC immune sensor in point-of-care label-free quantitative detection for clinical HS.
Collapse
Affiliation(s)
- Youlian Wei
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Wenchao Zhou
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Yihui Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Hongquan Zhu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
16
|
Wang Y, Zhang B, Dodiuk H, Kenig S, Barry C, Ratto J, Mead J, Jia Z, Turkoglu S, Zhang J. Effect of Protein Adsorption on Air Plastron Behavior of a Superhydrophobic Surface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58096-58103. [PMID: 34813281 DOI: 10.1021/acsami.1c15981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein fouling on critical biointerfaces causes significant public health and clinical ramifications. Multiple strategies, including superhydrophobic (SHP) surfaces and coatings, have been explored to mitigate protein adsorption on solid surfaces. SHP materials with underwater air plastron (AP) layers hold great promise by physically reducing the contact area between a substrate and protein molecules. However, sustaining AP stability or lifetime is crucial in determining the durability and long-term applications of SHP materials. This work investigated the effect of protein on the AP stability using model SHP substrates, which were prepared from a mixture of silica nanoparticles and epoxy. The AP stability was determined using a submersion test with real-time visualization. The results showed that AP stability was significantly weakened by protein solutions compared to water, which could be attributed to the surface tension of protein solutions and protein adsorption on SHP substrates. The results were further examined to reveal the correlation between protein fouling and accelerated AP dissipation on SHP materials by confocal fluorescent imaging, surface energy measurement, and surface robustness modeling of the Cassie-Baxter to Wenzel transition. The study reveals fundamental protein adsorption mechanisms on SHP materials, which could guide future SHP material design to better mitigate protein fouling on critical biointerfaces.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Plastics Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering & Biotechnology Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Boce Zhang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611, United States
| | - Hanna Dodiuk
- Department of Plastics Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Polymer Materials Engineering Department, The Pernick Faculty of Engineering, Shenkar College of Engineering Design and Art, Ramat Gan 5211401, Israel
| | - Shmuel Kenig
- Department of Plastics Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Polymer Materials Engineering Department, The Pernick Faculty of Engineering, Shenkar College of Engineering Design and Art, Ramat Gan 5211401, Israel
| | - Carol Barry
- Department of Plastics Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - JoAnn Ratto
- The U.S. Army, Combat Capabilities Development Command - Soldier Center (DEVCOM Soldier Center), Natick, Massachusetts 01760, United States
| | - Joey Mead
- Department of Plastics Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Zhen Jia
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611, United States
| | - Sevil Turkoglu
- Department of Plastics Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Jinde Zhang
- Department of Plastics Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| |
Collapse
|
17
|
Somarathne RP, Chappell ER, Perera YR, Yadav R, Park JY, Fitzkee NC. Understanding How Staphylococcal Autolysin Domains Interact With Polystyrene Surfaces. Front Microbiol 2021; 12:658373. [PMID: 34093472 PMCID: PMC8170090 DOI: 10.3389/fmicb.2021.658373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Biofilms, when formed on medical devices, can cause malfunctions and reduce the efficiency of these devices, thus complicating treatments and serving as a source of infection. The autolysin protein of Staphylococcus epidermidis contributes to its biofilm forming ability, especially on polystyrene surfaces. R2ab and amidase are autolysin protein domains thought to have high affinity to polystyrene surfaces, and they are involved in initial bacterial attachment in S. epidermidis biofilm formation. However, the structural details of R2ab and amidase binding to surfaces are poorly understood. In this study, we have investigated how R2ab and amidase influence biofilm formation on polystyrene surfaces. We have also studied how these proteins interact with polystyrene nanoparticles (PSNPs) using biophysical techniques. Pretreating polystyrene plates with R2ab and amidase domains inhibits biofilm growth relative to a control protein, indicating that these domains bind tightly to polystyrene surfaces and can block bacterial attachment. Correspondingly, we find that both domains interact strongly with anionic, carboxylate-functionalized as well as neutral, non-functionalized PSNPs, suggesting a similar binding interaction for nanoparticles and macroscopic surfaces. Both anionic and neutral PSNPs induce changes to the secondary structure of both R2ab and amidase as monitored by circular dichroism (CD) spectroscopy. These changes are very similar, though not identical, for both types of PSNPs, suggesting that carboxylate functionalization is only a small perturbation for R2ab and amidase binding. This structural change is also seen in limited proteolysis experiments, which exhibit substantial differences for both proteins when in the presence of carboxylate PSNPs. Overall, our results demonstrate that the R2ab and amidase domains strongly favor adsorption to polystyrene surfaces, and that surface adsorption destabilizes the secondary structure of these domains. Bacterial attachment to polystyrene surfaces during the initial phases of biofilm formation, therefore, may be mediated by aromatic residues, since these residues are known to drive adsorption to PSNPs. Together, these experiments can be used to develop new strategies for biofilm eradication, ensuring the proper long-lived functioning of medical devices.
Collapse
Affiliation(s)
- Radha P. Somarathne
- Department of Chemistry, Mississippi State University, Mississippi State, MS, United States
| | - Emily R. Chappell
- Department of Chemistry, Mississippi State University, Mississippi State, MS, United States
| | - Y. Randika Perera
- Department of Biochemistry, Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Rahul Yadav
- Department of Chemistry, Mississippi State University, Mississippi State, MS, United States
| | - Joo Youn Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
18
|
Fries MR, Conzelmann NF, Günter L, Matsarskaia O, Skoda MWA, Jacobs RMJ, Zhang F, Schreiber F. Bulk Phase Behavior vs Interface Adsorption: Specific Multivalent Cation and Anion Effects on BSA Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:139-150. [PMID: 33393312 DOI: 10.1021/acs.langmuir.0c02618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Proteins are ubiquitous and play a critical role in many areas from living organisms to protein microchips. In humans, serum albumin has a prominent role in the foreign body response since it is the first protein which will interact with, e.g., an implant or stent. In this study, we focused on the influence of salts (i.e., different cations (Y3+, La3+) and anions (Cl-, I-) on bovine serum albumin (BSA) in terms of its bulk behavior as well as the role of charges for protein adsorption at the solid-liquid interface in order to understand and control the underlying molecular mechanisms and interactions. This is part of our group's effort to gain a deeper understanding of protein-protein and protein-surface interactions in the presence of multivalent ions. In the bulk, we established two new phase diagrams and found not only multivalent cation-triggered phase transitions, but also a dependence of the protein behavior on the type of anion. The attractive interactions between proteins were observed to increase from Cl- < NO3- < I-, resulting in iodide preventing re-entrant condensation and promoting liquid-liquid phase separation in bulk. Using ellipsometry and a quartz-crystal microbalance with dissipation (QCM-D), we obtained insight into the growth of the protein adsorption layer. Importantly, we found that phase transitions at the substrate can be triggered by certain interface properties, whether they exist in the bulk solution or not. Through the use of a hydrophilic, negatively charged surface (native silica), the direct binding of anions to the interface was prevented. Interestingly, this led to re-entrant adsorption even in the absence of re-entrant condensation in bulk. However, the overall amount of adsorbed protein was enhanced through stronger attractive protein-protein interactions in the presence of iodide salts. These findings illustrate how carefully chosen surface properties and salts can directly steer the binding of anions and cations, which guide protein behavior, thus paving the way for specific/triggered protein-protein, protein-salt, and protein-surface interactions.
Collapse
Affiliation(s)
- Madeleine R Fries
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Nina F Conzelmann
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Luzie Günter
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin (ILL), CS20156, F-38042 Grenoble, France
| | - Maximilian W A Skoda
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, United Kingdom
| | - Robert M J Jacobs
- Department for Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Fajun Zhang
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Parisi L, Rivara F, Costa CA, Abuna RP, Palioto DB, Macaluso GM. Aptamers recognizing fibronectin confer improved bioactivity to biomaterials and promote new bone formation in a periodontal defect in rats. Biomed Mater 2020; 16:015016. [PMID: 33325378 DOI: 10.1088/1748-605x/abb6b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of alloplastic materials in periodontal regenerative therapies is limited by their incapacity to establish a dynamic dialog with the surrounding milieu. The aim of the present study was to control biomaterial surface bioactivity by introducing aptamers to induce the selective adsorption of fibronectin from blood, thus promoting platelets activation in vitro and bone regeneration in vivo. A hyaluronic acid/polyethyleneglycole-based hydrogel was enriched with aptamers selected for recognizing and binding fibronectin. In vitro, the capacity of constructs to support osteoblast adhesion, as well as platelets aggregation and activation was assessed by chemiluminescence within 24 h. Matrices were then evaluated in a rat periodontal defect to assess their regenerative potential by microcomputed tomography (µCT) and their osteogenic capacity by Luminex assay 5, 15 and 30 d postoperatively. Aptamers were found to confer matrices the capacity of sustaining firm cell adhesion (p = 0.0377) and to promote platelets activation (p = 0.0442). In vivo, aptamers promoted new bone formation 30 d post-operatively (p < 0.001) by enhancing osteoblastic lineage commitment maturation. Aptamers are a viable surface modification, which confers alloplastic materials the potential capacity to orchestrate blood clot formation, thus controlling bone healing.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland
| | - Federico Rivara
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Camila A Costa
- Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
- Department of Stomatological Sciences, School of Dentistry, Federal University of Goias, Avenida Arumã, Goiâna, GO 74835-320, Brazil
| | - Rodriguo Pf Abuna
- Cell Culture Laboratory, School of Dentistry of Ribeirao Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
- Fiocruz-Bi-Instituional Translational Medicine Project, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Rua dos Técnicos, Ribeirão Preto, SP 14040-030, Brazil
| | - Daniela B Palioto
- Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, Parma 43124, Italy
| |
Collapse
|
20
|
Wang X, Yang X, Chen H, Yang X, Xu Z. Entropy-Enthalpy Compensation in Peptide Adsorption on Solid Surfaces: Dependence on Surface Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10822-10829. [PMID: 32813538 DOI: 10.1021/acs.langmuir.0c01845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although protein adsorption at the solid-water interface is of immense importance, understanding the crucial role of the water phase in mediating protein-surface interactions is lacking, particularly due to the lack of fundamental thermodynamic data. Herein, we have performed complicated free energy calculations and successfully extracted the entropy and enthalpy changes of molecular adsorption on solids. Using the gold and graphene as the surface models with distinct affinities to the water phase, we successfully unravel the sharply opposite manners of entropy-enthalpy compensation in driving water and tripeptide adsorptions on two surfaces. Though the thermodynamic features of water adsorption on surface are enthalpically dominated based on the positions of free energy barriers and minima, the favorable entropy term significantly decreases the free energy barrier and further stabilizes the adsorbate at the adsorption site on the graphene surface. For the peptide, the shape of the adsorption free energy profile is jointly determined by the enthalpy and entropy changes, which, however, alternatively act the driving force to promote the peptide adsorption on the Au surface and graphene surface. The distinct structural and dynamic properties of solid-liquid interfaces account for the special role of the interfacial water phase in regulating the competitive relationship between the entropy and enthalpy variations.
Collapse
Affiliation(s)
- Xiang Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
| | - Xiao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
| | - Huijun Chen
- Obstetrics and Gynecology Department, Zhongnan Hospital of Wuhan University, #169 East Lake Road, Wuchang District, Wuhan 430017, China
| | - Xiaoning Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
| | - Zhijun Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
- Zhangjiagang Institute of Nanjing Tech University, Jiangfanlu 8, Zhangjiagang 215699, China
| |
Collapse
|
21
|
Molecular dynamics simulation of homology modeled glomalin related soil protein (Rhizophagus irregularis) complexed with soil organic matter model. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00590-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Titanium dental implants hydrophilicity promotes preferential serum fibronectin over albumin competitive adsorption modulating early cell response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111307. [PMID: 32919668 DOI: 10.1016/j.msec.2020.111307] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 11/21/2022]
Abstract
In vitro studies have consistently shown that titanium surface wettability affects the response of osteoprogenitors, leading to important advances in the clinical osseointegration of dental implants. However, the underlying molecular mechanisms remain unknown. Since surface conditioning by blood components initiates within milliseconds after insertion, it is reasonable to hypothesize that the amount and the type of blood proteins adsorbed influences the interaction between the implant surface and osteoprogenitors. To test this hypothesis, titanium implant surfaces with different characteristics, in terms of topography and wettability, have been conditioned with selected plasma proteins. Pure fibronectin (HFN) and albumin (HSA) solutions, or their mixture at the relative plasma concentrations were allowed to adsorb on titanium surfaces for 60 min. Protein adsorption was monitored by Bradford assay, while the contribution of HSA and HFN in forming the microfilm layer at the interface was studied by Western Blot. Subsequently, the same protein-conditioned surfaces were used to culture C2C12 cells, thus studying their capacity to adhere and to spread after 3 h. Cell viability was evaluated up to 7 days, while the expression of osteogenic genes was assessed after 3 days. Under competitive adsorption conditions, hydrophilicity promotes the selectivity of titanium for HFN regardless of the surface microtopography. As a consequence of selective HFN adsorption, cells on hydrophilic surfaces displayed enhanced adhesion and spreading, as well as increased proliferation. On the other hand, selective HFN adsorption did not appreciably affect cell differentiation. These data suggest that implant surface hydrophilicity plays a key role in guiding the selective adsorption of specific proteins from blood plasma. Moreover, the selective adsorption of HFN, as a consequence of surface hydrophilicity, was found to account for early cell responses amelioration. Thus, titanium surface hydrophilicity contributes to the clinical success of dental implant by selectively controlling protein adsorption at the interface.
Collapse
|
23
|
Fries MR, Stopper D, Skoda MWA, Blum M, Kertzscher C, Hinderhofer A, Zhang F, Jacobs RMJ, Roth R, Schreiber F. Enhanced protein adsorption upon bulk phase separation. Sci Rep 2020; 10:10349. [PMID: 32587383 PMCID: PMC7316800 DOI: 10.1038/s41598-020-66562-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Abstract
In all areas related to protein adsorption, from medicine to biotechnology to heterogeneous nucleation, the question about its dominant forces and control arises. In this study, we used ellipsometry and quartz-crystal microbalance with dissipation (QCM-D), as well as density-functional theory (DFT) to obtain insight into the mechanism behind a wetting transition of a protein solution. We established that using multivalent ions in a net negatively charged globular protein solution (BSA) can either cause simple adsorption on a negatively charged interface, or a (diverging) wetting layer when approaching liquid-liquid phase separation (LLPS) by changing protein concentration (cp) or temperature (T). We observed that the water to protein ratio in the wetting layer is substantially larger compared to simple adsorption. In the corresponding theoretical model, we treated the proteins as limited-valence (patchy) particles and identified a wetting transition for this complex system. This wetting is driven by a bulk instability introduced by metastable LLPS exposed to an ion-activated attractive substrate.
Collapse
Affiliation(s)
- Madeleine R Fries
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany
| | - Daniel Stopper
- Institute for Theoretical Physics, Auf der Morgenstelle 14, University of Tübingen, 72076, Tübingen, Germany
| | - Maximilian W A Skoda
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford-Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| | - Matthias Blum
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany
| | - Christoph Kertzscher
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany
| | - Alexander Hinderhofer
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany
| | - Fajun Zhang
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany
| | - Robert M J Jacobs
- Surface Analysis Facility, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Roland Roth
- Institute for Theoretical Physics, Auf der Morgenstelle 14, University of Tübingen, 72076, Tübingen, Germany.
| | - Frank Schreiber
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
24
|
Haindl SMH, Doppleb O, Förster L, Wraage S, Reiche A. Study of Protein Adsorption During Sterile Filtration of Protein Formulations by ILC. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.201900185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Susanne Maria Hilda Haindl
- Sartorius Stedim Biotech GmbH August-Spindler-Straße 11 37089 Göttingen Germany
- Leibniz-Universität HannoverInstitut für Technische Chemie Callinstraße 5 30167 Hannover Germany
| | - Olivia Doppleb
- Sartorius Stedim Biotech GmbH August-Spindler-Straße 11 37089 Göttingen Germany
- Clausthal University of Technology, Institut für Physikalische Chemie Arnold-Sommerfeld-Straße 4 38678 Clausthal-Zellerfeld Germany
| | - Lucas Förster
- Sartorius Stedim Biotech GmbH August-Spindler-Straße 11 37089 Göttingen Germany
- Georg-August-Universität GöttingenInstitut für Organische und Biomolekulare Chemie Tammannstraße 2 37077 Göttingen Germany
| | - Sophia Wraage
- Sartorius Stedim Biotech GmbH August-Spindler-Straße 11 37089 Göttingen Germany
| | - Annette Reiche
- Sartorius Stedim Biotech GmbH August-Spindler-Straße 11 37089 Göttingen Germany
| |
Collapse
|
25
|
Penna M, Yarovsky I. Nanoscale in silico classification of ligand functionalised surfaces for protein adsorption resistance. NANOSCALE 2020; 12:7240-7255. [PMID: 32196038 DOI: 10.1039/c9nr10009a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-specific protein adsorption represents a significant challenge for the design of efficient and safe nanoparticles for biomedical applications since it may prevent functional ligands to target the desired specific receptors which can limit the efficacy of novel drug delivery systems and biosensors. The biofilm formation initiated by protein adsorption on surfaces limits the lifetime and safety of medical implants and tissue regenerative scaffolds. The development of biofouling resistant surfaces is therefore a major goal for the widespread uptake of nanomedicine. Here, we provide a relatively simple computational screening method based on the rational physically grounded criteria that may suffice in selection of surface grafted ligands for protein rejection, and test whether these criteria can be extrapolated from a specific protein to generic protein-resistant surfaces. Using all-atom molecular dynamics simulations we characterise four types of ligand functionalised surfaces at aqueous interfaces in terms of the surface hydrophobicity and ligand dynamics. We demonstrate how our hypothesised interfacial design based on the select physical characteristics of the ligated surfaces can enable the rejection of a protein from the surface. The ligand screening procedure and the detailed atomistic characterisation of the protein rejection process presented suggest that minimizing the adsorption of surface active proteins requires specific surface topographies and ligand chemistries that are able to maximise the entropic penalty associated with the restriction of the ligand dynamics and trapping interfacial water by adsorbed proteins.
Collapse
Affiliation(s)
- Matthew Penna
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | | |
Collapse
|
26
|
Latour RA. Fundamental Principles of the Thermodynamics and Kinetics of Protein Adsorption to Material Surfaces. Colloids Surf B Biointerfaces 2020; 191:110992. [PMID: 32268265 DOI: 10.1016/j.colsurfb.2020.110992] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 01/13/2023]
Abstract
Protein adsorption is important for essentially any process that involves the contact of a protein-containing solution and a material surface, with the resulting formation of the adsorbed layer of protein determined by the thermodynamics and kinetics of the system involved. This paper presents an overview of the fundamentals of these processes. First, the hierarchical structure of proteins and the types of bonding that stabilize a protein's native-state structure are presented. This section is then followed by a section presenting the thermodynamic driving forces that influence the way that proteins adsorb and conformationally change for three characteristically different types of surface chemistries: nonpolar (hydrophobic) surfaces, neutral hydrophilic surfaces, and charged surfaces. The final section of this paper addresses how kinetics and thermodynamics combine together to influence protein adsorption behavior, followed by concluding remarks.
Collapse
Affiliation(s)
- Robert A Latour
- McQueen-Quattlebaum Professor Department of Bioengineering, Clemson University, Clemson, SC, United States.
| |
Collapse
|
27
|
Mannarino MM, Bassett M, Donahue DT, Biggins JF. Novel high-strength thromboresistant poly(vinyl alcohol)-based hydrogel for vascular access applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:601-621. [PMID: 31900047 DOI: 10.1080/09205063.2019.1706148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Adherence of proteins, cells, and microorganisms to the surface of biomaterials used for vascular access contribute to device failure by thrombosis, occlusions, and infections. Current technologies for inhibiting these complications are limited to coatings and additives that are limited in duration of efficacy and often induce adverse side effects. In this work, we developed a novel composite hydrogel structure comprising of a porous poly(vinyl alcohol) (PVA) that is impregnated with poly(acrylic acid) (PAA) and heat treated to create a physically cross-linked high-strength hydrogel material. The swelling and mechanical properties can be controlled by the temperature and duration of heat treatment to increase the cross-link density of the matrix. The heat treated composite PVA/PAA hydrogel exhibits both the mechanical strength and durability of thermoplastic polyurethanes (TPUs) and the inherently non-thrombogenic surface functionality of PVA-based hydrogels without the use of chemical cross-linking agents. The composite hydrogels were found to maintain their mechanical integrity and surface functionality after accelerated aging in a simulated-use in vitro model for 162.5 days real-time equivalent. Relative to commercial catheter materials, the composite PVA/PAA hydrogel exhibited up to an average of 97% reduction in platelet adhesion when exposed to an in vitro blood loop model and a lower rate of tip occlusion due to thrombosis. This high-strength thromboresistant hydrogel could have a major impact as a novel biomaterial for use in vascular access applications to improve patient health.
Collapse
|
28
|
Sefton MV, Gorbet MB. Nonthrombogenic Treatments and Strategies. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Hou RQ, Scharnagl N, Willumeit-Römer R, Feyerabend F. Different effects of single protein vs. protein mixtures on magnesium degradation under cell culture conditions. Acta Biomater 2019; 98:256-268. [PMID: 30771533 DOI: 10.1016/j.actbio.2019.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
Abstract
Bovine serum albumin (BSA) or fetal bovine serum (FBS), as the protein component, is usually added into solution to study the influence of proteins on Mg degradation. However, the specific character of proteins used and the interaction between organic molecules in FBS do not draw enough attention. This study investigated the influence of BSA, fibrinogen (Fib) and FBS on Mg degradation in Hanks' balanced salt solution without (HBSS) or with calcium (HBSSCa) and Dulbecco's modified eagle medium Glutamax-I (DMEM). The results reveal that the effect of BSA, Fib and FBS on the degradation rate of Mg is time- and media-dependent, as a result of the overlap of protein adsorption, binding/chelating to ions and interaction between organic molecules. The binding/chelating of proteins and/or the possible effect of proteins on the kinetics of products formation lead to the formation of different degradation precipitates on Mg surface in HBSS. The interaction between proteins and Ca2+/PO43- accelerates the formation of Ca-P salts in HBSSCa and DMEM, thereby impeding the degradation of Mg. Moreover, the interplay between organic molecules and the specific character of proteins are highlighted by the cooperative (in media + FBS) or competitive (in DMEM + BSA + Fib) effect of proteins in the presence of more kinds of proteins and the different effect of BSA and Fib on the degradation of Mg. Therefore, the addition of proteins to testing medium is necessary for in vitro tests and DMEM + 10% FBS is recommended as the in vitro testing medium to present an in vivo-like degradation for Mg. STATEMENT OF SIGNIFICANCE: The present study emphasizes the difference between proteins, and the difference between single protein and protein mixture in view of the effect on Mg degradation. The results highlight the importance of the interaction between proteins in media, which can increase or decrease the degradation of Mg compared to the single protein. It can aid other researchers to understand the effect of proteins on Mg degradation and to pay more attention to the interaction of organic molecules on Mg degradation when more kinds of organic molecules are used in medium, especially for FBS. The submitted work could be of significant importance to other researchers working in the related fields, thus appealing to the readers of Acta Biomaterialia.
Collapse
|
30
|
Toffoli A, Parisi L, Bianchi MG, Lumetti S, Bussolati O, Macaluso GM. Thermal treatment to increase titanium wettability induces selective proteins adsorption from blood serum thus affecting osteoblasts adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110250. [PMID: 31761226 DOI: 10.1016/j.msec.2019.110250] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To investigate how a thermal treatment to increase titanium wettability influences proteins adsorption from blood serum and osteoblasts responses. METHODS Titanium discs with machined or micro-rough profiles were thermally treated to obtain hydrophilic surfaces. The adsorption kinetics of two representative serum proteins were determined by Bradford assay, while the stable protein adsorption pattern from blood serum was investigated by SDS-PAGE and Western Blot analysis. Subsequently, MC3T3-E1 cells were cultured on titanium for 24h and assayed for adhesion and morphology. RESULTS Thermally-induced hydrophilicity dramatically improved the capacity of titanium to selectively adsorb fibronectin and fibrinogen from blood serum, without evident influence on other representative serum proteins. The selective adsorption of fibronectin was linked to the improved capacity of MC3T3-E1 cells to adhere and spread on hydrophilic surfaces. SIGNIFICANCE We identified a potential method to improve selective protein adsorption on titanium by enhancing implant surface wettability through a thermal treatment. Selective fibronectin adsorption was further indicated as the responsible for improved osteoblasts adhesion. Targeting specific cell response by selective protein adsorption appears to be crucial to conceive even more performant therapies.
Collapse
Affiliation(s)
- Andrea Toffoli
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | - Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | | | - Simone Lumetti
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | - Ovidio Bussolati
- Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, 43124, Parma, PR, Italy.
| |
Collapse
|
31
|
Rahman SM, Hlady V. Downstream platelet adhesion and activation under highly elevated upstream shear forces. Acta Biomater 2019; 91:135-143. [PMID: 31004847 DOI: 10.1016/j.actbio.2019.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Elevated shear force caused by an anastomotic stenosis is a common complication at the blood vessel-vascular implant interface. Although elevated shear forces were found to cause platelet aggregation around a stenotic region, transient platelet exposure to elevated shear forces and subsequent downstream events occurring under lower shear force were not extensively studied. We hypothesize that effects of elevated shear forces on pre-activation of platelets for downstream adhesion and activation are relevant in understanding the increased thrombotic risk associated with blood-contacting devices. We designed a microfluidic flow system to mimic the hemodynamic environment of vasculature with an upstream anastomotic stenosis with five wall shear strain rates ranging from 1620 s-1 to 11560 s-1. Under shear flow conditions, transient exposure of whole blood to elevated shear forces resulted in higher downstream platelet adhesion onto three different immobilized platelet agonists: fibrinogen, collagen, or von Willebrand factor. Platelet expression of four activation markers (P-selectin, GPIIb/IIIa, lysosomal glycoprotein, and phosphatidylserine) significantly increased after transient exposure to higher upstream wall shear strain rates of 2975-11560 s-1. A significant lysis was observed when platelets were primed by upstream wall shear strain rate of 11560 s-1. These experimental results could be helpful to understand how altered hemodynamics around an anastomotic stenosis promotes thrombus formation downstream. STATEMENT OF SIGNIFICANCE: Studying the downstream response of platelets following transient exposure to an upstream agonist is important because of significant clinical implications to the implantation of vascular devices. Due to intimal fibrous hyperplasia, vascular biomaterials such as synthetic small-diameter vascular grafts sometimes become stenotic (narrow), leading to transient platelet exposure to elevated shear forces. In this study, a microfluidic flow system was developed to mimic a stenosed vascular graft and to investigate how highly elevated, transient upstream shear forces, typically found in severe stenosis, results in the pre-activation of platelets for downstream adhesion and activation. The findings of the present study have implications for optimizing the design of blood-contacting biomaterials in order to minimize thrombotic risk associated with transiently elevated shear forces. The findings also provide additional insights into the mechanisms of thrombus formation at the post-stenotic regions of vascular implants.
Collapse
|
32
|
Liang C, Liu Y, Niu A, Liu C, Li J, Ning D. Smartphone-app based point-of-care testing for myocardial infarction biomarker cTnI using an autonomous capillary microfluidic chip with self-aligned on-chip focusing (SOF) lenses. LAB ON A CHIP 2019; 19:1797-1807. [PMID: 30976769 DOI: 10.1039/c9lc00259f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cardiovascular disease is one of the most common causes of mortality in the world. Most of the diagnostic processes usually require bulky instruments and trained professionals, which cannot meet the demand for fast, early and regular bedside diagnosis. In this paper, a bespoke app on a smartphone and an autonomous capillary microfluidic chip (ACMC) are combined to realize the point-of-care testing of cardiac troponin I (cTnI). The smartphone-app-ACMC platform was based on the sandwich immunofluorescence principle and featured self-aligned on-chip focusing (SOF) lenses which can avoid the complex optical coupling process. The operator only needs to introduce 100 μl sample into the ACMC, where the priming, time-delaying, mixing and washing steps for the assay can be accomplished automatically. With the help of the bespoke app and a palm-sized optical attachment, the smartphone can capture fluorescence images, process fluorescence intensity information, output detection results and save the results for long-term monitoring. Our results showed that within 12 min, the detection limit of 78 pg ml-1 and 94 pg ml-1 for cTnI was attained in buffer and spiked human serum, respectively. Our proposed platform has the potential to be applied in the POCT field especially for some resource-limited settings.
Collapse
Affiliation(s)
- Chao Liang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China.
| | | | | | | | | | | |
Collapse
|
33
|
Parisi L, Toffoli A, Bianchi MG, Bergonzi C, Bianchera A, Bettini R, Elviri L, Macaluso GM. Functional Fibronectin Adsorption on Aptamer-Doped Chitosan Modulates Cell Morphology by Integrin-Mediated Pathway. MATERIALS 2019; 12:ma12050812. [PMID: 30857264 PMCID: PMC6427328 DOI: 10.3390/ma12050812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022]
Abstract
A decisive step in cell-biomaterial interaction is represented by the adsorption of proteins at the interface, whose fine control may be useful to trigger proper cell response. To this purpose, we can selectively control protein adsorption on biomaterials by means of aptamers. Aptamers selected to recognize fibronectin dramatically enhance chitosan ability to promote cell proliferation and adhesion, but the underlying biological mechanism remains unknown. We supposed that aptamers contributed to ameliorate the adsorption of fibronectin in an advantageous geometrical conformation for cells, thus regulating their morphology by the proper activation of the integrin-mediated pathway. We investigated this possibility by culturing epithelial cells on chitosan enriched with increasing doses of aptamers in the presence or in the absence of cytoskeleton pharmacological inhibitors. Our results showed that aptamers control cell morphology in a dose dependent manner (p < 0.0001). Simultaneously, when the inhibition of actin polymerization was induced, the control of cell morphology was attenuated (p < 0.0001), while no differences were detected when cells contractility was challenged (p > 0.05). Altogether, our data provide evidence that aptamers contribute to control fibronectin adsorption on biomaterials by preserving its conformation and thus function. Furthermore, our work provides a new insight into a new way to accurately tailor material surface bioactivity.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Massimiliano G Bianchi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Carlo Bergonzi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Annalisa Bianchera
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Ruggero Bettini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Lisa Elviri
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- IMEM-CNR National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| |
Collapse
|
34
|
Ma H, Hua Y, Zhu C, Hou Z, Zhao B, Pu Y, Cai Z, Zhang L, Li T, Xu J. Reaction Kinetics at PDMS-E Emulsion Droplet-Gelatin Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:894-900. [PMID: 30607955 DOI: 10.1021/acs.langmuir.8b03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, interfacial reaction kinetics between α-[3-(2,3-epoxypropoxy)propyl]-ω-butyl-polydimethylsiloxane emulsion droplets with different sizes and gelatin was studied. The results of amino conversion rate determination show that the reaction proceeded in two steps. Fluorescence spectra analysis indicates that step 1 (0-2 h) should be the adsorption of gelatin on droplet surface. In step 2 (2-13 h), amino conversion rate increased rapidly. The reaction rate in step 2 ( k2) was obtained by using the 2nd-order approach to model the grafting reaction kinetics. The quantitative relationships among amino conversion rate, droplet size, the concentration of surfactant, reaction temperature, and time were described by linear regression models in given ranges of conditions in step 2. Thermodynamic analysis indicates that the interfacial reaction is an endothermic reaction. After 13 h, the reaction was almost stopped.
Collapse
Affiliation(s)
- Huijun Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering; College of Mathematics and Statistics , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Yuai Hua
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering; College of Mathematics and Statistics , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Cong Zhu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering; College of Mathematics and Statistics , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250100 , P. R. China
| | - Bo Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering; College of Mathematics and Statistics , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Yongli Pu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering; College of Mathematics and Statistics , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Zhaoning Cai
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering; College of Mathematics and Statistics , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Liangli Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering; College of Mathematics and Statistics , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering; College of Mathematics and Statistics , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering; College of Mathematics and Statistics , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| |
Collapse
|
35
|
Contreras-Naranjo JE, Aguilar O. Suppressing Non-Specific Binding of Proteins onto Electrode Surfaces in the Development of Electrochemical Immunosensors. BIOSENSORS 2019; 9:E15. [PMID: 30669262 PMCID: PMC6468902 DOI: 10.3390/bios9010015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
Electrochemical immunosensors, EIs, are systems that combine the analytical power of electrochemical techniques and the high selectivity and specificity of antibodies in a solid phase immunoassay for target analyte. In EIs, the most used transducer platforms are screen printed electrodes, SPEs. Some characteristics of EIs are their low cost, portability for point of care testing (POCT) applications, high specificity and selectivity to the target molecule, low sample and reagent consumption and easy to use. Despite all these attractive features, still exist one to cover and it is the enhancement of the sensitivity of the EIs. In this review, an approach to understand how this can be achieved is presented. First, it is necessary to comprise thoroughly all the complex phenomena that happen simultaneously in the protein-surface interface when adsorption of the protein occurs. Physicochemical properties of the protein and the surface as well as the adsorption phenomena influence the sensitivity of the EIs. From this point, some strategies to suppress non-specific binding, NSB, of proteins onto electrode surfaces in order to improve the sensitivity of EIs are mentioned.
Collapse
Affiliation(s)
- Jesús E Contreras-Naranjo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias. Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico.
| | - Oscar Aguilar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias. Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico.
| |
Collapse
|
36
|
Attwood SJ, Kershaw R, Uddin S, Bishop SM, Welland ME. Understanding how charge and hydrophobicity influence globular protein adsorption to alkanethiol and material surfaces. J Mater Chem B 2019; 7:2349-2361. [DOI: 10.1039/c9tb00168a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Globular protein adsorption to surfaces is predictable when charge and hydrophobicity is carefully controlled.
Collapse
Affiliation(s)
| | | | - Shahid Uddin
- Department of Dosage Form Design and Development
- MedImmune Ltd
- Cambridge CB21 6GH
- UK
| | - Steven M. Bishop
- Department of Dosage Form Design and Development
- MedImmune
- Gaithersburg
- USA
| | | |
Collapse
|
37
|
The inflammasome in host response to biomaterials: Bridging inflammation and tissue regeneration. Acta Biomater 2019; 83:1-12. [PMID: 30273748 DOI: 10.1016/j.actbio.2018.09.056] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/05/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The development of new biomaterials to be used in tissue engineering applications is creating new solutions for a range of healthcare problems. The trend in biomaterials research has shifted from biocompatible "immune-evasive" biomaterials to "immune-interactive" materials that modulate the inflammatory response supporting implant integration as well as improving healing and tissue regeneration. Inflammasomes are large intracellular multiprotein complexes that are key players in host defence during innate immune responses and assemble after recognition of pathogens or danger signals. The process of biomaterial implantation causes injury to tissues that will consequently release danger signals that could be sensed by the inflammasome. There are increasing evidences that the inflammasome has a role in several inflammatory processes, from pathogen clearance to chronic inflammation or tissue repair. Thus, modulation of the inflammasome activity appears as an important target in the development of effective approaches in regenerative medicine. In this review, we discuss the main points of the current understanding on the host response to implanted biomaterials and how the paradigm of "immune-evasive" biomaterials has shifted over the last years; the significance of the inflammasome in the inflammatory response to biomaterials; and the growing idea that the immune system is of key importance in an effective tissue repair and regeneration. STATEMENT OF SIGNIFICANCE: We herein discuss the main points of the current understanding on the host response to implanted biomaterials and how the paradigm of "immune-evasive" biomaterials has shifted to "immune-interactive" over the last years; the significance of the inflammasome in the inflammatory response to biomaterials; and the growing idea that the immune system is of key importance in an effective tissue repair and regeneration, supporting the emerging concept of Regenerative Immunology. The inflammasome is a recent and central concept in immunology research. Since the beginning of this century the inflammasome is viewed as key platform of the innate immune response. We believe that, successful modulation of the inflammasome activity will become a milestone in the fields of tissue engineering and regenerative medicine.
Collapse
|
38
|
Bins-Ely L, Cesca K, Souza FS, Porto L, Spinelli A, Magini R, Henriques B, Souza JCM. On the increase of the chemical reactivity of cp titanium and Ti6Al4V at low electrical current in a protein-rich medium. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Controllable and durable release of BMP-2-loaded 3D porous sulfonated polyetheretherketone (PEEK) for osteogenic activity enhancement. Colloids Surf B Biointerfaces 2018; 171:668-674. [DOI: 10.1016/j.colsurfb.2018.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 01/07/2023]
|
40
|
Proliferation of Osteoblasts on Laser-Modified Nanostructured Titanium Surfaces. MATERIALS 2018; 11:ma11101827. [PMID: 30261588 PMCID: PMC6213816 DOI: 10.3390/ma11101827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Nanostructured titanium has become a useful material for biomedical applications such as dental implants. Certain surface properties (grain size, roughness, wettability) are highly expected to promote cell adhesion and osseointegration. The aim of this study was to compare the biocompatibilities of several titanium materials using human osteoblast cell line hFOB 1.19. Eight different types of specimens were examined: machined commercially pure grade 2 (cpTi2) and 4 (cpTi4) titanium, nanostructured titanium of the same grades (nTi2, nTi4), and corresponding specimens with laser-treated surfaces (cpTi2L, cpTi4L, nTi2L, nTi4L). Their surface topography was evaluated by means of scanning electron microscopy. Surface roughness was measured using a mechanical contact profilometer. Specimens with laser-treated surfaces had significantly higher surface roughness. Wettability was measured by the drop contact angle method. Nanostructured samples had significantly higher wettability. Cell proliferation after 48 hours from plating was assessed by viability and proliferation assay. The highest proliferation of osteoblasts was found in nTi4 specimens. The analysis of cell proliferation revealed a difference between machined and laser-treated specimens. The mean proliferation was lower on the laser-treated titanium materials. Although plain laser treatment increases surface roughness and wettability, it does not seem to lead to improved biocompatibility.
Collapse
|
41
|
Xu Z, Yang X, Wei Q, Zhao W, Cui B, Yang X, Sahai N. Quantitatively Identifying the Roles of Interfacial Water and Solid Surface in Governing Peptide Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7932-7941. [PMID: 29888924 DOI: 10.1021/acs.langmuir.8b01189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Although the water phase at the surface/water interface has been recognized as three types: bulk water, intermediate water phase and surface-bound water layers, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution from the surface-peptide interactions is thermodynamically favorable to peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, due to the controlling contribution of peptide-surface interaction in the intermediate water phase. The surface-bound water layers are observed as the origin of bioresistance of solid surfaces toward the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force, in contrast to the observation on the hydrophilic surface.
Collapse
Affiliation(s)
| | | | | | - Weilong Zhao
- Department of Polymer Science , University of Akron , Akron , Ohio 44325-3909 , United States
| | | | | | - Nita Sahai
- Department of Polymer Science , University of Akron , Akron , Ohio 44325-3909 , United States
| |
Collapse
|
42
|
Rahman SM, Eichinger CD, Hlady V. Effects of upstream shear forces on priming of platelets for downstream adhesion and activation. Acta Biomater 2018; 73:228-235. [PMID: 29654993 DOI: 10.1016/j.actbio.2018.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/27/2023]
Abstract
Platelets in flowing blood are sometimes exposed to elevated shear forces caused by anastomotic stenosis at the blood vessel-vascular implant interface. The objective of this study was to determine how effective upstream shear forces are in priming platelets for downstream adhesion and activation. Flow chambers with upstream stenotic regions (shear rates of 400-1000 s-1) were manufactured by relief molding of polydimethylsiloxane. Downstream from the stenotic regions, microcontact printing was used to covalently immobilize three different proteins (fibrinogen, collagen, or von Willebrand factor) to serve as platelet capture agents. Anticoagulated whole blood was perfused through the flow chambers and platelet adhesion to the downstream capture region was quantified. It was found that transient exposure of platelets to increased shear forces resulted in higher platelet adhesion on all three proteins. The duration of the platelet exposure to elevated shear forces was varied by changing the length of the stenotic regions. The results indicated that, in addition to the magnitude of shear forces, the duration of exposure to these forces was also an important factor in priming platelets. The effect of upstream shear forces on platelet activation was assessed by quantifying P-selectin, integrin αIIbβ3, lysosomal glycoprotein, and phosphatidylserine exposure using flow cytometry. The results suggested that increased shear forces were capable of increasing the priming of platelets for downstream activation. This study implicates the anastomotic region(s) of vascular implants as a locus of platelet pre-activation that may lead to thrombus formation downstream. STATEMENT OF SIGNIFICANCE A synthetic small-diameter vascular graft can often become stenotic due to intimal fibrous hyperplasia, either generally along the inside of the graft or at the anastomotic regions, leading to an increased shear force on flowing platelets. Our lab is studying how the upstream platelet preactivation (aka "priming") in flowing blood affects their downstream adhesion and activation. This manuscript describes a study in which priming of platelets is achieved by upstream stenotic narrowing in a microfluidic flow chamber. Such experimental design was intended to mimic a vascular implant with stenotic upstream anastomosis and downstream exposed platelet protein agonists. Understanding how the pre-activated platelets respond to imperfect vascular implant surfaces downstream is an important factor in designing better vascular implants.
Collapse
Affiliation(s)
- Shekh M Rahman
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Colin D Eichinger
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Vladimir Hlady
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
43
|
Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomater 2018; 71:225-234. [PMID: 29501818 DOI: 10.1016/j.actbio.2018.02.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/11/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022]
Abstract
Progress in tissue engineering is dependent on the availability of suitable biomaterials. In an effort to overcome the brittleness of poly(3-hydroxybutyrate), P(3HB), a natural biodegradable polyester, and widen its biomedical applications, plasticising of P(3HB) with oligomeric substances of related structure has been studied. A biosynthesised medium-chain-length polyhydroxyalkanoate (mcl-PHA) copolymer, the plasticiser precursor, was obtained using vegetable waste frying oil as a sole carbon source. The mcl-PHA was transformed into an oligomeric derivative by acid hydrolysis. The plasticising effect of the oligomeric mcl-PHA on P(3HB) was studied via characterisation of thermal and mechanical properties of the blends in the course of ageing at ambient conditions. Addition of oligomeric mcl-PHA to P(3HB) resulted in softer and more flexible materials based entirely on PHAs. It was shown that the oligomeric mcl-PHA transformed highly crystalline P(3HB) into materials with a dominant amorphous phase when the content of oligomeric mcl-PHA exceeded 10 wt%. In vitro biocompatibility studies of the new binary PHA materials showed high viability and proliferation of C2C12 myoblast cells. Thus, the proposed approach for P(3HB) plasticisation has the potential for the generation of more pliable biomaterials based on P(3HB) which can find application in unique soft tissue engineering applications where a balance between stiffness, tensile strength and ductility is required. STATEMENT OF SIGNIFICANCE Polyhydroxyalkanoates, a broad family of natural biodegradable and biocompatible polymers, have emerged as highly promising biomaterials both for bulk and biomedical applications. Here we describe an approach to tune the mechanical properties of stiff and brittle poly(3-hydroxybutyrate) and thereby to expand its potential biomedical applications. Plasticisation, a common practice in the plastic industry to modify polymer mechanical properties, has been used very cautiously for biomedical applications due to plasticiser toxicity and migration. We have developed a plasticiser for poly(3-hydroxybutyrate) based on a structurally related but softer and pliable medium chain length polyhydroxyalkanoate. Additives of oligomeric derivatives of this polymer improved ductility of poly(3-hydroxybutyrate), greatly widening the future applicability of this well-established biomaterial. In parallel, the binary polyhydroxyalkanoate materials also exhibited improved cell attachment and proliferation, a highly desirable outcome.
Collapse
|
44
|
Ostatná V, Černocká H, Hasoň S, Paleček E. Modification of a Mercury Electrode with Different Thioalkanes: Structure-Sensitive Bovine Serum Albumin Analysis. ChemElectroChem 2018. [DOI: 10.1002/celc.201800275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Veronika Ostatná
- Institute of Biophysics of the Czech Academy of Sciences; Královopolská 135 61265 Brno Czech Republic
| | - Hana Černocká
- Institute of Biophysics of the Czech Academy of Sciences; Královopolská 135 61265 Brno Czech Republic
| | - Stanislav Hasoň
- Institute of Biophysics of the Czech Academy of Sciences; Královopolská 135 61265 Brno Czech Republic
| | - Emil Paleček
- Institute of Biophysics of the Czech Academy of Sciences; Královopolská 135 61265 Brno Czech Republic
| |
Collapse
|
45
|
Anderson J, Bonfield T, Ziats N. Protein Adsorption and Cellular Adhesion and Activation on Biomedical Polymers. Int J Artif Organs 2018. [DOI: 10.1177/039139889001300609] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design and development of new biomedical polymers for clinical application in devices, prostheses, and artificial organs requires a basic and fundamental understanding of biological interactions with biomedical polymers. Efforts in our laboratory have been directed towards appreciating the humoral and cellular interactions which govern protein adsorption and cellular adhesion and activation on biomedical polymers. Information and data are presented on protein adsorption from whole human blood, complement activation and receptors, and monocyte/macrophage adhesion and activation with growth factor release. Supported by experimental evidence, concepts regarding protein/polymer, cell/ polymer, cell/protein/polymer, and cell/cell interactions as they are related to in vivo events are presented.
Collapse
Affiliation(s)
- J.M. Anderson
- Institute of Pathology, Case Western Reserve University, Cleveland - U.S.A
| | - T.L. Bonfield
- Institute of Pathology, Case Western Reserve University, Cleveland - U.S.A
| | - N.P. Ziats
- Institute of Pathology, Case Western Reserve University, Cleveland - U.S.A
| |
Collapse
|
46
|
Engbers G, Feijen J. Current Techniques to Improve the Blood Compatibility of Biomaterial Surfaces. Int J Artif Organs 2018. [DOI: 10.1177/039139889101400403] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- G.H. Engbers
- University of Twente, Department of Chemical Technology, section of Biomedical Materials Technology, Enschede
- Holland Biomaterials Group bv, Enschede – The Netherlands
| | - J. Feijen
- University of Twente, Department of Chemical Technology, section of Biomedical Materials Technology, Enschede
| |
Collapse
|
47
|
Guo S, Kwek MY, Toh ZQ, Pranantyo D, Kang ET, Loh XJ, Zhu X, Jańczewski D, Neoh KG. Tailoring Polyelectrolyte Architecture To Promote Cell Growth and Inhibit Bacterial Adhesion. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7882-7891. [PMID: 29437375 DOI: 10.1021/acsami.8b00666] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An important challenge facing the application of implanted biomaterials for tissue engineering is the need to facilitate desirable tissue interactions with the implant while simultaneously inhibiting bacterial colonization, which can lead to implant-associated infection. In this study, we explore the relevance of the physical parameters of polyelectrolyte multilayers, such as surface charge, wettability, and stiffness, in tissue cell/surface and bacteria/surface interactions, and investigate the tuning of the multilayer architecture to differentially control such interactions. Polyions with different side-chain chemical structures were paired with polyethylenimine to assemble multilayers with parallel control over surface charge and wettability under controlled conditions. The multilayers can be successfully cross-linked to yield stiffer (the apparent Young's modulus was increased more than three times its original value) and more stable films while maintaining parallel control over surface charge and wettability. The initial adhesion and proliferation of 3T3 fibroblast cells were found to be strongly affected by surface charge and wettability on the non-cross-linked multilayers. On the other hand, these cells adhered and proliferated in a manner similar to those on the cross-linked multilayers (apparent Young's modulus ∼2 MPa), regardless of surface charge and wettability. In contrast, Staphylococcus aureus ( S. aureus) and Escherichia coli ( E. coli) adhesion was primarily controlled by surface charge and wettability on both cross-linked and non-cross-linked multilayers. In both cases, negative charge and hydrophilicity inhibited their adhesion. Thus, a surface coating with a relatively high degree of stiffness from covalent cross-linking coupled with negative surface charge and high wettability can serve as an efficient strategy to enhance host cell growth while resisting bacterial colonization.
Collapse
Affiliation(s)
- Shanshan Guo
- NUS Graduate School for Integrative Science and Engineering , National University of Singapore , Kent Ridge, 117576 , Singapore
| | - Min Yi Kwek
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 119260 , Singapore
| | - Zi Qian Toh
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 119260 , Singapore
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 119260 , Singapore
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 119260 , Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering , A*STAR (Agency for Science, Technology and Research , 2 Fusionopolis Way , 138634 , Singapore
- Department of Materials Science and Engineering , National University of Singapore , 9 Engineering Drive 1 , 117576 , Singapore
- Singapore Eye Research Institute , 11 Third Hospital Avenue , 168751 , Singapore
| | - Xiaoying Zhu
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
| | - Dominik Jańczewski
- Laboratory of Technological Processes, Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Koon Gee Neoh
- NUS Graduate School for Integrative Science and Engineering , National University of Singapore , Kent Ridge, 117576 , Singapore
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 119260 , Singapore
| |
Collapse
|
48
|
Surmaitis RL, Arias CJ, Schlenoff JB. Stressful Surfaces: Cell Metabolism on a Poorly Adhesive Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3119-3125. [PMID: 29457460 DOI: 10.1021/acs.langmuir.7b04172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adhesion and proliferation of cells are exquisitely sensitive to the nature of the surface to which they attach. Aside from cell counting, cell "health" on surfaces is typically established by measuring the metabolic rate with dyes that participate in the metabolic pathway or using "live/dead" assays with combinations of membrane permeable/impermeable dyes. The binary information gleaned from these tests-whether cells are attached or not, and whether they are living or dead-provides an incomplete picture of cell health. In the present work, proliferation rates and net metabolism of 3T3 fibroblasts seeded on "biocompatible" ultrathin polyelectrolyte multilayer films and on control tissue culture plastic were compared. Cells adhered to, and proliferated on, both surfaces, which were shown to be nontoxic according to live/dead assays. However, adhesion was poorer on the multilayer surface, illustrated by diffuse organization of the actin cytoskeleton and less-developed focal adhesions. Proliferation was also slower on the multilayer. When normalized for the total number of cells, it was shown that cells on multilayers experienced a five-day burst of metabolic stress, after which the metabolic rate approached that of the control surface. This initial state of high stress has not been reported or appreciated in studies of cell growth on multilayers, although the observation period for this system is usually a few days.
Collapse
Affiliation(s)
- Richard L Surmaitis
- Department of Chemistry & Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Carlos J Arias
- Department of Chemistry & Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Joseph B Schlenoff
- Department of Chemistry & Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
49
|
Lotz EM, Berger MB, Schwartz Z, Boyan BD. Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties. Acta Biomater 2018; 68:296-307. [PMID: 29292169 PMCID: PMC5803380 DOI: 10.1016/j.actbio.2017.12.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/29/2017] [Accepted: 12/22/2017] [Indexed: 01/16/2023]
Abstract
A critical stage during osseointegration of a titanium (Ti) implant is primary bone remodeling, which involves cross talk among osteoclast precursors, osteoclasts, mesenchymal stem cells (MSCs), and osteoblasts. This phase couples the processes of bone formation and resorption. During remodeling, osteoclasts produce factors capable of regulating MSC migration and osteogenesis. Furthermore, they degrade primary bone, creating a foundation with a specific chemistry, stiffness, and morphology for osteoblasts to synthesize and calcify their matrix. MSCs and osteoblasts receiving cues from the implant surface produce factors capable of regulating osteoclasts in order to promote net new bone formation. The purpose of this study was to determine the effects Ti implant surfaces have on bone remodeling. Human MSCs and normal human osteoblasts (NHOsts) were cultured separately on 15 mm grade 2 smooth PT, hydrophobic-microrough SLA, hydrophilic-microrough Ti (mSLA) (Institut Straumann AG, Basel, Switzerland), or tissue culture polystyrene (TCPS). After 7d, conditioned media from surface cultures were used to treat human osteoclasts for 2d. Activity was measured by fluorescence of released collagen followed by mRNA quantification. This study demonstrates that MSC and NHOst cultures are able to suppress osteoclast activity in a surface dependent manner and osteoclast mRNA levels are selectively regulated by surface treatments. The substrate-dependent regulatory effect was mitigated when MSCs were silenced for integrin subunits and when conditioned media were denatured. These results indicate that MSCs and NHOsts regulate at least two aspects of remodeling: reduced fusion of new osteoclasts and reduced activity of existing osteoclasts. STATEMENT OF SIGNIFICANCE In this study, we developed a novel in vitro model to study how microstructured and hydrophilic titanium implants impact bone remodeling for dental and orthopaedic applications. Our approach intersects biomaterials and systems physiology, revealing for the first time that implant surface properties are capable of regulating the communication among the cells involved in remodeling of primary bone during osseointegration. We believe that the basic research presented in our manuscript will provide important knowledge in our understanding of factors that impact implant success. Furthermore, it provides a solid foundation for the development of materials that enable rapid osseointegration and earlier loading times for implants in bone that has been compromised by trauma or disease.
Collapse
Affiliation(s)
- Ethan M Lotz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Michael B Berger
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
50
|
De Sanctis L, Stefoni S, Cianciolo G, Colì L, Buscaroli A, Feliciangeli G, Borgnino L, Bonetti M, Gregorini M, De Giovanni P, Buttazzi R. Effect of Different Dialysis Membranes on Platelet Function. A Tool for Biocompatibility Evaluation. Int J Artif Organs 2018. [DOI: 10.1177/039139889601900705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intradialytic coagulative and platelet activation, one of the main consequences of blood-membrane contact, was studied in a group of 5 RDT patients with a comparative evaluation of 3 different dialytic membranes: Cuprophan (CU), Polysulfone (PS) and Cellulose Triacetate (CT). Each patient underwent 5 consecutive dialysis sessions with the above mentioned membranes. Intradialytic platelet activation was studied through a morpho-functional evaluation between the mean platelet volume (MPV) and Serotonin (S), ß-Thromboglobulin (ß-TG) and Platelet Factor 4 (PF4) serum levels. These determinations were made before HD (time 0) and after 30', 120’ and 240'. We also checked the intradialytic status of thrombogenesis and fibrinolysis determining aPTT, thrombin time, fibrinogen, antithrombin III (AT III), α-2 antiplasmin and plasminogen, at the same time intervals. All membranes tested (CU, PS, CT) caused appreciable intradialytic platelet activation, above all after 15’ and at the end of dialysis sessions, more marked for CU than PS or CT. In particular MPV showed a decrease throughout the session (-5% at 30’ and -9% at 240') while S, ßTG and PF4 peripheral blood levels showed a significant increase at the same intervals with CU membrane. Lastly coagulative and fibrinolytic parameters showed no significant differences among any of the membranes tested.
Collapse
Affiliation(s)
| | | | | | - L. Colì
- Institute of Nephrology Bologna - Italy
| | | | | | | | - M. Bonetti
- Central Laboratory, St. Orsola University Hospital, Bologna - Italy
| | | | | | | |
Collapse
|