1
|
Fu F, Pietropaolo M, Cui L, Pandit S, Li W, Tarnavski O, Shetty SS, Liu J, Lussier JM, Murakami Y, Grewal PK, Deyneko G, Turner GM, Taggart AKP, Waters MG, Coughlin S, Adachi Y. Lack of authentic atrial fibrillation in commonly used murine atrial fibrillation models. PLoS One 2022; 17:e0256512. [PMID: 34995278 PMCID: PMC8741011 DOI: 10.1371/journal.pone.0256512] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
The mouse is a useful preclinical species for evaluating disease etiology due to the availability of a wide variety of genetically modified strains and the ability to perform disease-modifying manipulations. In order to establish an atrial filtration (AF) model in our laboratory, we profiled several commonly used murine AF models. We initially evaluated a pharmacological model of acute carbachol (CCh) treatment plus atrial burst pacing in C57BL/6 mice. In an effort to observe micro-reentrant circuits indicative of authentic AF, we employed optical mapping imaging in isolated mouse hearts. While CCh reduced atrial refractoriness and increased atrial tachyarrhythmia vulnerability, the left atrial (LA) excitation patterns were rather regular without reentrant circuits or wavelets. Therefore, the atrial tachyarrhythmia resembled high frequency atrial flutter, not typical AF per se. We next examined both a chronic angiotensin II (Ang II) infusion model and the surgical model of transverse aortic constriction (TAC), which have both been reported to induce atrial and ventricular structural changes that serve as a substrates for micro-reentrant AF. Although we observed some extent of atrial remodeling such as fibrosis or enlarged LA diameter, burst pacing-induced atrial tachyarrhythmia vulnerability did not differ from control mice in either model. This again suggested that an AF-like pathophysiology is difficult to demonstrate in the mouse. To continue searching for a valid murine AF model, we studied mice with a cardiac-specific deficiency (KO) in liver kinase B1 (Cardiac-LKB1), which has been reported to exhibit spontaneous AF. Indeed, the electrocardiograms (ECG) of conscious Cardiac-LKB1 KO mice exhibited no P waves and had irregular RR intervals, which are characteristics of AF. Histological evaluation of Cardiac-LKB1 KO mice revealed dilated and fibrotic atria, again consistent with AF. However, atrial electrograms and optical mapping revealed that electrical activity was limited to the sino-atrial node area with no electrical conduction into the atrial myocardium beyond. Thus, Cardiac-LKB1 KO mice have severe atrial myopathy or atrial standstill, but not AF. In summary, the atrial tachyarrhythmias we observed in the four murine models were distinct from typical human AF, which often exhibits micro- or macro-reentrant atrial circuits. Our results suggest that the four murine AF models we examined may not reflect human AF well, and raise a cautionary note for use of those murine models to study AF.
Collapse
Affiliation(s)
- Fumin Fu
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Michael Pietropaolo
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Lei Cui
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Shilpa Pandit
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Weiyan Li
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Oleg Tarnavski
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Suraj S. Shetty
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Jing Liu
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Jennifer M. Lussier
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Yutaka Murakami
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Prabhjit K. Grewal
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Galina Deyneko
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Gordon M. Turner
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Andrew K. P. Taggart
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - M. Gerard Waters
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Shaun Coughlin
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
| | - Yuichiro Adachi
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts, United State of America
- * E-mail:
| |
Collapse
|
2
|
Alvarez A, Preston C, Trujillo T, Wilhite C, Burton A, Vohnout S, Witte RS. In vivo acoustoelectric imaging for high-resolution visualization of cardiac electric spatiotemporal dynamics. APPLIED OPTICS 2020; 59:11292-11300. [PMID: 33362052 PMCID: PMC8569939 DOI: 10.1364/ao.410172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
Acoustoelectric cardiac imaging (ACI) is a hybrid modality that exploits the interaction of an ultrasonic pressure wave and the resistivity of tissue to map current densities in the heart. This study demonstrates for the first time in vivo ACI in a swine model. ACI measured beat-to-beat variability (n=20) of the peak of the cardiac activation wave at one location of the left ventricle as 5.32±0.74µV, 3.26±0.54mm below the epicardial surface, and 2.67±0.56ms before the peak of the local electrogram. Cross-sectional ACI images exhibited propagation velocities of 0.192±0.061m/s along the epicardial-endocardial axis with an SNR of 24.9 dB. This study demonstrates beat-to-beat and multidimensional ACI, which might reveal important information to help guide electroanatomic mapping procedures during ablation therapy.
Collapse
Affiliation(s)
- Alexander Alvarez
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
- Electrosonix, LLC, 435 E 9th St., Tucson, Arizona 85705, USA
| | - Chet Preston
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Teodoro Trujillo
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Cameron Wilhite
- Department of Medical Imaging, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Sonia Vohnout
- Electrosonix, LLC, 435 E 9th St., Tucson, Arizona 85705, USA
| | - Russell S. Witte
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
- Electrosonix, LLC, 435 E 9th St., Tucson, Arizona 85705, USA
- Department of Medical Imaging, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
- James C. Wyant College of Optical Sciences, University of Arizona, 1630 E University Blvd., Tucson, Arizona 85719, USA
| |
Collapse
|
3
|
Engels K, Rakov H, Hönes GS, Brix K, Köhrle J, Zwanziger D, Moeller LC, Führer D. Aging Alters Phenotypic Traits of Thyroid Dysfunction in Male Mice With Divergent Effects on Complex Systems but Preserved Thyroid Hormone Action in Target Organs. J Gerontol A Biol Sci Med Sci 2020; 74:1162-1169. [PMID: 30770932 DOI: 10.1093/gerona/glz040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Clinical manifestation of hyperthyroidism and hypothyroidism vary with age, with an attenuated, oligosymptomatic presentation of thyroid dysfunction (TD) in older patients. We asked, whether in rodents TD phenotypes are influenced by age and whether this involves changes in systemic and/or organ thyroid hormone (TH) signaling. Chronic hyper- or hypothyroidism was induced in male mice at different life stages (5, 12, and 20 months). TH excess resulted in pronounced age-specific body weight changes (increase in youngest and decrease in old mice), neither explained by changes in food intake (similar increase at all ages), nor by thermogenic gene expression in brown adipose tissue (BAT) or TH serum concentrations. Relative increase in body temperature and activity were more pronounced in old compared to young hyperthyroid mice. An attenuated hypothyroid state was found in old mice for locomotor activity and in heart and BAT on functional (less bradycardia) and gene expression level (heart and BAT). In contrast, decrease in body weight was pronounced in old hypothyroid mice. Thus, age has divergent impact on features of TD in mice, whereby effects on highly complex systems, such as energy homeostasis are not proportional to serum TH state, in contrast to organ-specific responses in heart and BAT.
Collapse
Affiliation(s)
- Kathrin Engels
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Helena Rakov
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany.,Clinical Chemistry - Division of Research, University Hospital Essen, University Duisburg-Essen, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany.,Clinical Chemistry - Division of Research, University Hospital Essen, University Duisburg-Essen, Germany
| |
Collapse
|
4
|
Alvarez‐Collazo J, López‐Requena A, Galán L, Talavera A, Alvarez JL, Talavera K. The citrus flavanone hesperetin preferentially inhibits slow-inactivating currents of a long QT syndrome type 3 syndrome Na + channel mutation. Br J Pharmacol 2019; 176:1090-1105. [PMID: 30650182 PMCID: PMC6451064 DOI: 10.1111/bph.14577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The citrus flavanone hesperetin has been proposed for the treatment of several human pathologies, but its cardiovascular actions remain largely unexplored. Here, we evaluated the effect of hesperetin on cardiac electrical and contractile activities, on aortic contraction, on the wild-type voltage-gated NaV 1.5 channel, and on a channel mutant (R1623Q) associated with lethal ventricular arrhythmias in the long QT syndrome type 3 (LQT3). EXPERIMENTAL APPROACH We used cardiac surface ECG and contraction force recordings to evaluate the effects of hesperetin in rat isolated hearts and aortic rings. Whole-cell patch clamp was used to record NaV 1.5 currents (INa ) in rat ventricular cardiomyocytes and in HEK293T cells expressing hNaV 1.5 wild-type or mutant channels. KEY RESULTS Hesperetin increased the QRS interval and heart rate and decreased the corrected QT interval and the cardiac and aortic contraction forces at concentrations equal or higher than 30 μmol·L-1 . Hesperetin blocked rat and human NaV 1.5 channels with an effective inhibitory concentration of ≈100 μmol·L-1 . This inhibition was enhanced at depolarized holding potentials and higher stimulation frequency and was reduced by the disruption of the binding site for local anaesthetics. Hesperetin increased the rate of inactivation and preferentially inhibited INa during the slow inactivation phase, these effects being more pronounced in the R1623Q mutant. CONCLUSIONS AND IMPLICATIONS Hesperetin preferentially inhibits the slow inactivation phase of INa , more markedly in the mutant R1623Q. Hesperetin could be used as a template to develop drugs against lethal cardiac arrhythmias in LQT3.
Collapse
Affiliation(s)
- Julio Alvarez‐Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Alejandro López‐Requena
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Loipa Galán
- Laboratory of ElectrophysiologyInstitute of Cardiology and Cardiovascular SurgeryHavanaCuba
| | - Ariel Talavera
- Laboratory of Microscopy, Center for Microscopy and Molecular ImagingUniversité Libre de BruxellesGosseliesBelgium
| | - Julio L. Alvarez
- Laboratory of ElectrophysiologyInstitute of Cardiology and Cardiovascular SurgeryHavanaCuba
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
5
|
Fan B, Wang H, Wu T, Li Y, Lin Z, Li M, Li Q, Zhang W, Zheng Q. Electrophysiological Measurement of Rat Atrial Epicardium Using a Novel Stereotaxic Apparatus. Int Heart J 2019; 60:400-410. [DOI: 10.1536/ihj.18-215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Boyuan Fan
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| | - Hongtao Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| | - Tao Wu
- China Coal Xi'an Design Engineering Co., Ltd; Xi'an
| | - Yingqi Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| | - Zehao Lin
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| | - Mengying Li
- Department of Endocrinology, Xijing Hospital of the Fourth Military Medicine University
| | - Qing Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital of the Fourth Military Medicine University
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University
| |
Collapse
|
6
|
Valero-Muñoz M, Backman W, Sam F. Murine Models of Heart Failure with Preserved Ejection Fraction: a "Fishing Expedition". JACC Basic Transl Sci 2017; 2:770-789. [PMID: 29333506 PMCID: PMC5764178 DOI: 10.1016/j.jacbts.2017.07.013] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of HF in the presence of a normal left ventricular (LV) ejection fraction (EF). Despite accounting for up to 50% of all clinical presentations of HF, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension and renal dysfunction are highly associated with HFpEF. Yet, the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models, used to study the HFpEF phenotype.
Collapse
Affiliation(s)
- Maria Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Warren Backman
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Lane JD, Montaigne D, Tinker A. Tissue-Level Cardiac Electrophysiology Studied in Murine Myocardium Using a Microelectrode Array: Autonomic and Thermal Modulation. J Membr Biol 2017; 250:471-481. [PMID: 28766006 PMCID: PMC5613071 DOI: 10.1007/s00232-017-9973-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Cardiac electrophysiology is regulated by the autonomic nervous system, and this has both pathophysiological, and possibly therapeutic importance. Furthermore, chamber differences in electrophysiology exist between atria and ventricles, yet there have been few direct comparisons. There is substantial literature on ion channel modulation at the single-cell level but less work on how this affects tissue-level parameters. We used a microelectrode array system to explore these issues using murine atrial and ventricular tissue slices. Activation time, conduction velocity and repolarisation were measured, and their modulation by temperature and pharmacological autonomic agonists were assessed. The system recorded reliable measurements under control conditions in the absence of drug/thermal challenge, and significant baseline differences were found in chamber electrophysiology. The sodium channel blocker mexiletine, produced large magnitude changes in all three measured parameters. Carbachol and isoprenaline induced differing effects in atria and ventricles, whereas temperature produced similar effects on activation and repolarisation.
Collapse
Affiliation(s)
- Jem D Lane
- William Harvey Heart Centre, Barts & The London School of Medicine and Dentistry, London, UK
| | - David Montaigne
- William Harvey Heart Centre, Barts & The London School of Medicine and Dentistry, London, UK.,Department of Cardiac Functional Investigations, CHU Lille, 59000, Lille, France.,Univ. Lille, 59000, Lille, France.,Inserm, UMR 1011, 59000, Lille, France.,Institut Pasteur de Lille, Lille, France.,European Genomic Institute for Diabetes (E.G.I.D.), FR 3508, 59000, Lille, France
| | - Andrew Tinker
- William Harvey Heart Centre, Barts & The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
8
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Problems with extracellular recording of electrical activity in gastrointestinal muscle. Nat Rev Gastroenterol Hepatol 2016; 13:731-741. [PMID: 27756919 PMCID: PMC8325940 DOI: 10.1038/nrgastro.2016.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Motility patterns of the gastrointestinal tract are important for efficient processing of nutrients and waste. Peristalsis and segmentation are based on rhythmic electrical slow waves that generate the phasic contractions fundamental to gastrointestinal motility. Slow waves are generated and propagated actively by interstitial cells of Cajal (ICC), and these events conduct to smooth muscle cells to elicit excitation-contraction coupling. Extracellular electrical recording has been utilized to characterize slow-wave generation and propagation and abnormalities that might be responsible for gastrointestinal motility disorders. Electrode array recording and digital processing are being used to generate data for models of electrical propagation in normal and pathophysiological conditions. Here, we discuss techniques of extracellular recording as applied to gastrointestinal organs and how mechanical artefacts might contaminate these recordings and confound their interpretation. Without rigorous controls for movement, current interpretations of extracellular recordings might ascribe inaccurate behaviours and electrical anomalies to ICC networks and gastrointestinal muscles, bringing into question the findings and validity of models of gastrointestinal electrophysiology developed from these recordings.
Collapse
|
10
|
Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:343-65. [PMID: 26238060 DOI: 10.1007/978-3-319-17641-3_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ventricular fibrillation is the major underlying cause of sudden cardiac death. Understanding the complex activation patterns that give rise to ventricular fibrillation requires high resolution mapping of localized activation. The use of multi-electrode mapping unraveled re-entrant activation patterns that underlie ventricular fibrillation. However, optical mapping contributed critically to understanding the mechanism of defibrillation, where multi-electrode recordings could not measure activation patterns during and immediately after a shock. In addition, optical mapping visualizes the virtual electrodes that are generated during stimulation and defibrillation pulses, which contributed to the formulation of the virtual electrode hypothesis. The generation of virtual electrode induced phase singularities during defibrillation is arrhythmogenic and may lead to the induction of fibrillation subsequent to defibrillation. Defibrillating with low energy may circumvent this problem. Therefore, the current challenge is to use the knowledge provided by optical mapping to develop a low energy approach of defibrillation, which may lead to more successful defibrillation.
Collapse
|
11
|
Qu Z, Weiss JN. Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence. Annu Rev Physiol 2014; 77:29-55. [PMID: 25340965 DOI: 10.1146/annurev-physiol-021014-071622] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ventricular arrhythmias have complex causes and mechanisms. Despite extensive investigation involving many clinical, experimental, and computational studies, effective biological therapeutics are still very limited. In this article, we review our current understanding of the mechanisms of ventricular arrhythmias by summarizing the state of knowledge spanning from the molecular scale to electrical wave behavior at the tissue and organ scales and how the complex nonlinear interactions integrate into the dynamics of arrhythmias in the heart. We discuss the challenges that we face in synthesizing these dynamics to develop safe and effective novel therapeutic approaches.
Collapse
Affiliation(s)
- Zhilin Qu
- Departments of 1Medicine (Cardiology) and
| | | |
Collapse
|
12
|
Zhang Y, Guzadhur L, Jeevaratnam K, Salvage SC, Matthews GDK, Lammers WJ, Lei M, Huang CL, Fraser JA. Arrhythmic substrate, slowed propagation and increased dispersion in conduction direction in the right ventricular outflow tract of murine Scn5a+/- hearts. Acta Physiol (Oxf) 2014; 211:559-73. [PMID: 24913289 PMCID: PMC4296345 DOI: 10.1111/apha.12324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 05/23/2014] [Accepted: 06/03/2014] [Indexed: 12/18/2022]
Abstract
Aim To test a hypothesis attributing arrhythmia in Brugada Syndrome to right ventricular (RV) outflow tract (RVOT) conduction abnormalities arising from Nav1.5 insufficiency and fibrotic change. Methods Arrhythmic properties of Langendorff-perfused Scn5a+/− and wild-type mouse hearts were correlated with ventricular effective refractory periods (VERPs), multi-electrode array (MEA) measurements of action potential (AP) conduction velocities and dispersions in conduction direction (CD), Nav1.5 expression levels, and fibrotic change, as measured at the RVOT and RV. Two-way anova was used to test for both independent and interacting effects of anatomical region and genotype on these parameters. Results Scn5a+/− hearts showed greater arrhythmic frequencies during programmed electrical stimulation at the RVOT but not the RV. The Scn5a+/− genotype caused an independent increase of VERP regardless of whether the recording site was the RVOT or RV. Effective AP conduction velocities (CV†s), derived from fitting regression planes to arrays of observed local activation times were reduced in Scn5a+/− hearts and at the RVOT independently. AP conduction velocity magnitudes derived by averaging MEA results from local vector analyses, CV*, were reduced by the Scn5a+/− genotype alone. In contrast, dispersions in conduction direction, were greater in the RVOT than the RV, when the atrioventricular node was used as the pacing site. The observed reductions in Nav1.5 expression were attributable to Scn5a+/−, whereas increased levels of fibrosis were associated with the RVOT. Conclusions The Scn5a+/− RVOT recapitulates clinical findings of increased arrhythmogenicity through reduced CV† reflecting reduced CV* attributable to reduced Nav1.5 expression and increased CD attributable to fibrosis.
Collapse
Affiliation(s)
- Y. Zhang
- Physiological Laboratory University of Cambridge Cambridge UK
- Heart Centre Northwest Women's and Children's Hospital Xi'an China
| | - L. Guzadhur
- Physiological Laboratory University of Cambridge Cambridge UK
| | - K. Jeevaratnam
- Physiological Laboratory University of Cambridge Cambridge UK
- Perdana University‐Royal College of Surgeons Ireland Selangor Malaysia
| | - S. C. Salvage
- Physiological Laboratory University of Cambridge Cambridge UK
| | | | - W. J. Lammers
- Department of Physiology College of Medicine and Health Sciences Al Ain UAE
| | - M. Lei
- Department of Pharmacology University of Oxford Oxford UK
| | - C. L.‐H. Huang
- Physiological Laboratory University of Cambridge Cambridge UK
- Department of Biochemistry University of Cambridge Cambridge UK
| | - J. A. Fraser
- Physiological Laboratory University of Cambridge Cambridge UK
| |
Collapse
|
13
|
Abstract
In recent years, it has become possible to record, from a large number of extracellular electrodes, the electrical activities of smooth muscle organs. These recordings, after proper processing and analysis, may reveal origin and propagation of normal and abnormal electrical activities in these organs. Several publications have appeared in the past 5 years describing origin and propagation of slow waves in the stomach of experimental animals and in humans. Furthermore, publications are now starting to appear that describe pathophysiological patterns of propagation and these studies provide us with novel concepts regarding potential mechanisms of arrhythmias in the gut, crucial information if we are ever going to successfully treat patients suffering from such arrhythmias. In this issue of Neurogastroenterology & Motility, Angeli et al. have mapped the slow wave propagation in the porcine small intestine and discovered two types of reentry; functional reentry and circumferential reentry. Next to the descriptions of arrhythmias in the stomach, the fact that reentrant arrhythmias may also occur in the small intestine further extends this new emerging field of gastrointestinal (GI) arrhythmias. In this viewpoint, the relevance of these arrhythmias is further discussed and a few ideas for future research in this field, not necessarily constrained to the GI system, proposed.
Collapse
Affiliation(s)
- W. J. E. P. Lammers
- Department of Physiology; Faculty of Medicine and Health Sciences; United Arab Emirates University; Al Ain; United Arab Emirates
| |
Collapse
|
14
|
Riley G, Syeda F, Kirchhof P, Fabritz L. An introduction to murine models of atrial fibrillation. Front Physiol 2012; 3:296. [PMID: 22934047 PMCID: PMC3429067 DOI: 10.3389/fphys.2012.00296] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/08/2012] [Indexed: 01/28/2023] Open
Abstract
Understanding the mechanism of re-entrant arrhythmias in the past 30 years has allowed the development of almost curative therapies for many rhythm disturbances. The complex, polymorphic arrhythmias of atrial fibrillation (AF) and sudden death are, unfortunately, not yet well understood, and hence still in need of adequate therapy. AF contributes markedly to morbidity and mortality in aging Western populations. In the past decade, many genetically altered murine models have been described and characterized. Here, we review genetically altered murine models of AF; powerful tools that will enable a better understanding of the mechanisms of AF and the assessment of novel therapeutic interventions.
Collapse
Affiliation(s)
- Genna Riley
- Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, University of Birmingham Birmingham, UK
| | | | | | | |
Collapse
|
15
|
Gelzer ARM, Koller ML, Otani NF, Fox JJ, Enyeart MW, Hooker GJ, Riccio ML, Bartoli CR, Gilmour RF. Dynamic mechanism for initiation of ventricular fibrillation in vivo. Circulation 2008; 118:1123-9. [PMID: 18725487 DOI: 10.1161/circulationaha.107.738013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dynamically induced heterogeneities of repolarization may lead to wave-front destabilizations and initiation of ventricular fibrillation (VF). In a computer modeling study, we demonstrated that specific sequences of premature stimuli maximized dynamically induced spatial dispersion of refractoriness and predisposed the heart to the development of conduction block. The purpose of this study was to determine whether the computer model results pertained to the initiation of VF in dogs in vivo. METHODS AND RESULTS Monophasic action potentials were recorded from right and left ventricular endocardium in anesthetized beagle dogs (n=11) in vivo. Restitution of action potential duration and conduction time and the effective refractory period after delivery of the basic stimulus (S(1)) and each of 3 premature stimuli (S(2), S(3), S(4)) were determined at baseline and during verapamil infusion. The effective refractory period data were used to determine the interstimulus intervals for a sequence of 4 premature stimuli (S(2)S(3)S(4)S(5)=CL(VF)) for which the computer model predicted maximal spatial dispersion of refractoriness. Delivery of CL(VF) was associated with discordant action potential duration alternans and induction of VF in all dogs. Verapamil decreased spatial dispersion of refractoriness by reducing action potential duration and conduction time restitution in a dose-dependent fashion, effects that were associated with reduced inducibility of VF with CL(VF). CONCLUSIONS Maximizing dynamically induced spatial dispersion of repolarization appears to be an effective method for inducing VF. Reducing spatial dispersion of refractoriness by modulating restitution parameters can have an antifibrillatory effect in vivo.
Collapse
Affiliation(s)
- Anna R M Gelzer
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mau J, Menzie S, Ward M, Bundgaard H, Hunyor S. Time-dependent response of both ventricles after septal ablation: Implications for biventricular support after left ventricular assist device placement. J Thorac Cardiovasc Surg 2007; 134:579-86. [PMID: 17723802 DOI: 10.1016/j.jtcvs.2007.03.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/23/2007] [Accepted: 03/26/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVES An ovine model of septal ablation was studied to elucidate the mechanisms involved in right ventricular failure when commencing left ventricular mechanical assistance. The disruption of ventricular interdependence after acute and chronic septal injury was examined. METHODS Twelve sheep underwent percutaneous transluminal septal myocardial ablation using 0.6 mL ethanol. Twelve other sheep underwent a sham procedure. Left ventricular and right ventricular pressure and volume (conductance) response 15 minutes and 4 weeks postinjury were measured. Ultrasonic crystals measured chamber dimensions and wall movement. Areas at risk and infarct zones were quantified. RESULTS Compared with sham, ablation chronically reduced systolic interventricular septal thickening (18.4% +/- 5.8% vs 7.3% +/- 3.1%; P < .001) and acutely increased right ventricular ejection fraction (37.6% +/- 8.5% vs 69.9% +/- 7.2%; P < .001), preload recruitable stroke work (42.0 +/- 4.4 erg x 10(3) vs 48.7 +/- 2.0 erg x 10(3), P < .001), end-systolic elastance (1.03 +/- 0.19 mm Hg mL(-1) vs 1.31 +/- 0.18 mm Hg mL(-1); P < .001), and Tau (24.9 +/- 3.8 ms vs 29.6 +/- 8.2 ms; P < .001). In contrast, for left ventricular ejection fraction (55.5% +/- 5.9% vs 38.9% +/- 7.7%; P < .001), preload recruitable stroke work (85.9 +/- 10.6 mm Hg vs 66.5 +/- 9.6 mm Hg; P < .001) and elastance (2.13 +/- 0.51 mm Hg mL(-1) vs 1.81 +/- 0.44 mm Hg mL(-1); P < .001) were reduced, but Tau increased (22.0 +/- 3.5 ms vs 28.9 +/- 5.8 ms; P < .001) and remained elevated at 4 weeks compared with sham. The area at risk was the same between groups, and injury was limited to the septum (17.2% +/- 2.7% vs 2.9% +/- 5.8%; P < .001). CONCLUSIONS Acute and chronic hemodynamic responses are distinctly different after septal injury; the acute response demonstrates a paradoxical motion. Resolution of this motion at 4 weeks is suggestive of reduced septal compliance and buttressing. Ventricular interactions after placement of a left ventricular assist device will vary depending on the injury duration.
Collapse
Affiliation(s)
- James Mau
- Cardiac Technology Centre, Kolling Institute, Australia.
| | | | | | | | | |
Collapse
|