1
|
Liu B, Ruz‐Maldonado I, Toczyska K, Olaniru OE, Zariwala MG, Hopkins D, Zhao M, Persaud SJ. The selective serotonin reuptake inhibitor fluoxetine has direct effects on beta cells, promoting insulin secretion and increasing beta-cell mass. Diabetes Obes Metab 2022; 24:2038-2050. [PMID: 35676820 PMCID: PMC9545812 DOI: 10.1111/dom.14791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022]
Abstract
AIM This study investigated whether therapeutically relevant concentrations of fluoxetine, which have been shown to reduce plasma glucose and glycated haemoglobin independent of changes in food intake and body weight, regulate beta-cell function and improve glucose homeostasis. METHODS Cell viability, insulin secretion, beta-cell proliferation and apoptosis were assessed after exposure of MIN6 beta cells or isolated mouse and human islets to 0.1, 1 or 10 μmol/L fluoxetine. The effect of fluoxetine (10 mg/kg body weight) administration on glucose homeostasis and islet function was also examined in ob/ob mice. RESULTS Exposure of MIN6 cells and mouse islets to 0.1 and 1 μmol/L fluoxetine for 72 hours did not compromise cell viability but 10 μmol/L fluoxetine significantly increased Trypan blue uptake. The dose of 1 μmol/L fluoxetine significantly increased beta-cell proliferation and protected islet cells from cytokine-induced apoptosis. In addition, 1 μmol/L fluoxetine induced rapid and reversible potentiation of glucose-stimulated insulin secretion from islets isolated from mice, and from lean and obese human donors. Finally, intraperitoneal administration of fluoxetine to ob/ob mice over 14 days improved glucose tolerance and resulted in significant increases in beta-cell proliferation and enhanced insulin secretory capacity. CONCLUSIONS These data are consistent with a role for fluoxetine in regulating glucose homeostasis through direct effects on beta cells. Fluoxetine thus demonstrates promise as a preferential antidepressant for patients with concomitant occurrence of depression and diabetes.
Collapse
Affiliation(s)
- Bo Liu
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Inmaculada Ruz‐Maldonado
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
- Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program (VBT) Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM)Yale University School of MedicineNew HavenConnecticutUSA
| | - Klaudia Toczyska
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Oladapo E. Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | | - David Hopkins
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Min Zhao
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Shanta J. Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| |
Collapse
|
2
|
Jay K, Mitra A, Harding T, Matthes D, Van Ness B. Identification of a de novo FOXP1 mutation and incidental discovery of inherited genetic variants contributing to a case of autism spectrum disorder and epilepsy. Mol Genet Genomic Med 2019; 7:e00751. [PMID: 31111659 PMCID: PMC6625142 DOI: 10.1002/mgg3.751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background Autism spectrum disorder is commonly co‐diagnosed intellectual disability, language disorder, anxiety, and epilepsy, however, symptom management is difficult due to the complex genetic nature of ASD. Methods We present a next‐generation sequencing‐based case study with both de novo and inherited genetic variants and highlight the impact of structural variants on post‐translational regulation of protein expression. Since management of symptoms has classically been through pharmaceutical therapies, a pharmacogenomics screen was also utilized to determine possible drug/gene interactions. Results A de novo variant was identified within the FOXP1 3′ untranslated regulatory region using exome sequencing. Additionally, inherited variants that likely contribute to the current and potential future traits were identified within the COMT, SLC6A4, CYP2C19, and CYP2D6 genes. Conclusion This study aims to elucidate how a collection of variant genotypes could potentially impact neural development resulting in a unique phenotype including ASD and epilepsy. Each gene's contribution to neural development is assessed, and the interplay of these genotypes is discussed. The results highlight the utility of exome sequencing in conjunction with pharmacogenomics screening when evaluating possible causes of and therapeutic treatments for ASD‐related symptoms.
Collapse
Affiliation(s)
- Kristy Jay
- College of Biological Sciences, Department of Genetics, Cell Biology, and Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Amit Mitra
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Taylor Harding
- College of Biological Sciences, Department of Genetics, Cell Biology, and Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - David Matthes
- College of Biological Sciences, Department of Biology, Teaching, and Learning, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Brian Van Ness
- College of Biological Sciences, Department of Genetics, Cell Biology, and Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
3
|
Zhuang X, Xu H, Fang Z, Xu C, Xue C, Hong X. Platelet serotonin and serotonin transporter as peripheral surrogates in depression and anxiety patients. Eur J Pharmacol 2018; 834:213-220. [PMID: 30031795 DOI: 10.1016/j.ejphar.2018.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 02/05/2023]
Abstract
Previous studies suggested that serotonergic neurons and platelets share similarities in serotonin (5-HT) uptake by serotonin transporter (SERT), storage, metabolism and release mechanisms, indicating that platelets may be used as a reliable peripheral surrogate to measure central SERT activity in neuropsychiatric research. In this study, platelet 5-HT content and 5-HT uptake capacity of SERT in depression and anxiety patients were measured by ELISA and flow cytometry with IDT307 at baseline and after serotonin reuptake inhibitors (SSRIs) treatment for 4 weeks. Healthy persons matched with age and gender were used as reference. The clinical presentations of the patients were assessed with Hamilton Depression (HAMD) and Anxiety Rating Scales (HAMA) at the same time points. Compared to healthy subjects, anxiety and depression patients showed higher levels of platelet 5-HT and IDT307 fluorescence intensity, but the values were comparable between the patient groups. SSRIs administration for 4 weeks significantly decreased scores of HAMD (29 vs 14) and HAMA (22 vs 14) in depression and anxiety patients, respectively; while it decreased platelet 5-HT content, but did not change the IDT307 fluorescence intensity of platelets. After incubation with fluoxetine in vitro, the IDT307 fluorescence intensity of isolated platelets from both healthy subjects and patients decreased in a dose-dependent manner. These results provide further evidence supporting the employment of platelet 5-HT content and SERT as peripheral surrogates in depression and anxiety patients, and are of help in understanding the several weeks' delay from the initiation of antidepressant medication to their full therapeutic effects in the patients.
Collapse
Affiliation(s)
- Xiaoyin Zhuang
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Zeman Fang
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Chongtao Xu
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Chaobiao Xue
- Outpatient Department, Shantou Central Hospital, Shantou, Guangdong, PR China
| | - Xiaohong Hong
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, PR China.
| |
Collapse
|
4
|
Giovanola M, Vollero A, Cinquetti R, Bossi E, Forrest LR, Di Cairano ES, Castagna M. Threonine 67 is a key component in the coupling of the NSS amino acid transporter KAAT1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1179-1186. [PMID: 29409909 DOI: 10.1016/j.bbamem.2018.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/30/2023]
Affiliation(s)
- M Giovanola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| | - A Vollero
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - R Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - E Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - L R Forrest
- Computational Structural Biology Section, NIH NINDS, 35 Convent Drive, Bethesda, MD 20892-3761, USA
| | - E S Di Cairano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| | - M Castagna
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy.
| |
Collapse
|
5
|
Serotonergic targets for the treatment of L-DOPA-induced dyskinesia. J Neural Transm (Vienna) 2018; 125:1203-1216. [PMID: 29305656 DOI: 10.1007/s00702-017-1837-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/28/2017] [Indexed: 12/31/2022]
Abstract
Dopamine (DA) replacement therapy with L-3,4-dihydroxyphenylalanine (L-DOPA) continues to be the gold-standard treatment for Parkinson's disease (PD). Despite clear symptomatic benefit, long-term L-DOPA use often results in the development of L-DOPA-induced dyskinesia (LID), significantly reducing quality of life and increasing costs for PD patients and their caregivers. Accumulated research has demonstrated that several pre- and post-synaptic mechanisms contribute to LID development and expression. In particular, raphe-striatal hyperinnervation and unregulated DA release from 5-HT terminals is postulated to play a central role in LID manifestation. As such, manipulation of the 5-HT system has garnered considerable attention. Both pre-clinical and clinical research has supported the potential of modulating the 5-HT system for LID prevention and treatment. This review discusses the rationale for continued investigation of several potential anti-dyskinetic strategies including 5-HT stimulation of 5-HT1A and 5-HT1B receptors and blockade of 5-HT2A receptors and SERT. We present the latest findings from experimental and clinical investigations evaluating these 5-HT targets with the goal of identifying those with translational promise and the challenges associated with each.
Collapse
|
6
|
Viana GSDB, Xavier CC, do Vale EM, Lopes MJP, Alves VDJ, Costa RDO, Neves KRT. The monoaminergic pathways and inhibition of monoamine transporters interfere with the antidepressive-like behavior of ketamine. IBRO Rep 2017; 4:7-13. [PMID: 30135946 PMCID: PMC6084823 DOI: 10.1016/j.ibror.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023] Open
Abstract
Ketamine (KET), a NMDA receptor antagonist, has been studied for its rapid and efficacious antidepressant effect, even for the treatment-resistant depression. Although depression is a major cause of disability worldwide, the treatment can be feasible, affordable and cost-effective, decreasing the population health burden. We evaluated the antidepressive-like effects of KET and its actions on monoamine contents (DA and its metabolites, as well as 5-HT) and on tyrosine hydroxylase (TH). In addition DAT and SERT (DA and 5-HT transporters, respectively) were also assessed. Male Swiss mice were divided into Control and KET-treated groups. The animals were acutely treated with KET (2, 5 or 10 mg/kg, i.p.) and subjected to the forced swimming test, for evaluation of the antidepressive-like behavior. Imipramine and fluoxetine were used as references. The results showed that KET decreased dose-dependently the immobility time and shortly after the test, the animals were euthanized for striatal dissections and monoamine determinations. In addition, the brain (striata, hippocampi and prefrontal cortices) was immunohistochemically processed for TH, DAT and SERT. KET at its higher dose increased DA and its metabolites (DOPAC and HVA) and mainly 5-HT contents, in mice striata, effects associated with increases in TH and decreases in DAT immunoreactivities. Furthermore, reductions in SERT immunoreactivities were observed in the striatum and hippocampus. The results indicate that KET antidepressive-like effect probably involves, among other factors, monoaminergic pathways, as suggested by the increased striatal TH immunoreactivity and reduced brain DA (DAT) and 5-HT (SERT) transporters.
Collapse
Affiliation(s)
- Glauce Socorro de Barros Viana
- Faculty of Medicine Estácio of Juazeiro do Norte, Ceará, Brazil.,Faculty of Medicine of the Federal University of Ceará, Ceará, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf) 2015; 213:561-74. [PMID: 25439045 DOI: 10.1111/apha.12430] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a neurotransmitter and hormone that contributes to the regulation of various physiological functions by its actions in the central nervous system (CNS) and in the respective organ systems. Peripheral 5-HT is predominantly produced by enterochromaffin (EC) cells of the gastrointestinal (GI) tract. These gut-resident cells produce much more 5-HT than all neuronal and other sources combined, establishing EC cells as the main source of this biogenic amine in the human body. Peripheral 5-HT is also a potent immune modulator and affects various immune cells through its receptors and via the recently identified process of serotonylation. Alterations in 5-HT signalling have been described in inflammatory conditions of the gut, such as inflammatory bowel disease. The association between 5-HT and inflammation, however, is not limited to the gut, as changes in 5-HT levels have also been reported in patients with allergic airway inflammation and rheumatoid arthritis. Based on searches for terms such as '5-HT', 'EC cell', 'immune cells' and 'inflammation' in pubmed.gov as well as by utilizing pertinent reviews, the current review aims to provide an update on the role of 5-HT in biological functions with a particular focus on immune activation and inflammation.
Collapse
Affiliation(s)
- M. S. Shajib
- Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
| | - W. I. Khan
- Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
- Hamilton Regional Laboratory Medicine Program; Hamilton Health Sciences; Hamilton ON Canada
| |
Collapse
|
8
|
Voituron N, Shvarev Y, Menuet C, Bevengut M, Fasano C, Vigneault E, Mestikawy SE, Hilaire G. Fluoxetine treatment abolishes the in vitro respiratory response to acidosis in neonatal mice. PLoS One 2010; 5:e13644. [PMID: 21048979 PMCID: PMC2964329 DOI: 10.1371/journal.pone.0013644] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022] Open
Abstract
Background To secure pH homeostasis, the central respiratory network must permanently adapt its rhythmic motor drive to environment and behaviour. In neonates, it is commonly admitted that the retrotrapezoid/parafacial respiratory group of neurons of the ventral medulla plays the primary role in the respiratory response to acidosis, although the serotonergic system may also contribute to this response. Methodology/Principal Findings Using en bloc medullary preparations from neonatal mice, we have shown for the first time that the respiratory response to acidosis is abolished after pre-treatment with the serotonin-transporter blocker fluoxetine (25–50 µM, 20 min), a commonly used antidepressant. Using mRNA in situ hybridization and immunohistology, we have also shown the expression of the serotonin transporter mRNA and serotonin-containing neurons in the vicinity of the RTN/pFRG of neonatal mice. Conclusions These results reveal that the serotonergic system plays a pivotal role in pH homeostasis. Although obtained in vitro in neonatal mice, they suggest that drugs targeting the serotonergic system should be used with caution in infants, pregnant women and breastfeeding mothers.
Collapse
Affiliation(s)
- Nicolas Voituron
- Maturation, Plasticité, Physiologie et Pathologie de la Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique - Université de la Méditerranée - Université Paul Cézanne, Marseille, France
| | - Yuri Shvarev
- Maturation, Plasticité, Physiologie et Pathologie de la Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique - Université de la Méditerranée - Université Paul Cézanne, Marseille, France
- Department of Woman and Child Health, Karolinska Institute, Stockholm, Sweden
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Clément Menuet
- Maturation, Plasticité, Physiologie et Pathologie de la Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique - Université de la Méditerranée - Université Paul Cézanne, Marseille, France
| | - Michelle Bevengut
- Maturation, Plasticité, Physiologie et Pathologie de la Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique - Université de la Méditerranée - Université Paul Cézanne, Marseille, France
| | - Caroline Fasano
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Québec, Canada
| | - Erika Vigneault
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Québec, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Québec, Canada
- Unité 952, Institut National de la Santé et de la Recherche Médicale, Paris, France
- Unité Mixte de Recherche 7224, Centre National de la Recherche Scientifique, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Gérard Hilaire
- Maturation, Plasticité, Physiologie et Pathologie de la Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique - Université de la Méditerranée - Université Paul Cézanne, Marseille, France
- * E-mail:
| |
Collapse
|
9
|
Oz M, Libby T, Kivell B, Jaligam V, Ramamoorthy S, Shippenberg TS. Real-time, spatially resolved analysis of serotonin transporter activity and regulation using the fluorescent substrate, ASP+. J Neurochem 2010; 114:1019-29. [PMID: 20524964 DOI: 10.1111/j.1471-4159.2010.06828.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The serotonin transporter (SERT) mediates clearance of serotonin from the synapse, thereby, regulating extracellular serotonin concentrations. Radioligand uptake techniques are typically used to assess SERT function in tissue and heterologous expression systems. The need for sufficient protein in samples, however, requires use of homogenate preparations, potentially masking effects limited to specific cell populations. 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP(+)) is a fluorescent monoamine transporter substrate that has been used for real-time monitoring of dopamine and norepinephrine transporter function in single cells. The present live cell imaging studies examine the utility of ASP(+) for quantifying human SERT function in HEK293 and neuroblastoma cells. We show rapid membrane binding and intracellular ASP(+) accumulation in human SERT-expressing cells. Accumulation is saturable; dependent on temperature and the presence of sodium and chloride in the media, and attenuated by serotonin. Acute or prolonged exposure of cells to serotonin re-uptake inhibitors produces a concentration-dependent decrease in accumulation. Similar effects are produced by protein kinase C activation whereas p38 MAPK activation increases ASP(+) accumulation. These data demonstrate the validity of ASP(+) as a probe for monitoring SERT function in living cells. Alterations in SERT binding and uptake can be quantified in the same cell and use of a within-cell design permits analysis of time-related alterations in SERT function.
Collapse
Affiliation(s)
- Murat Oz
- Integrative Neuroscience Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
10
|
Cherubino F, Miszner A, Renna MD, Sangaletti R, Giovannardi S, Bossi E. GABA transporter lysine 448: a key residue for tricyclic antidepressants interaction. Cell Mol Life Sci 2009; 66:3797-808. [PMID: 19756379 PMCID: PMC11115653 DOI: 10.1007/s00018-009-0153-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/28/2009] [Indexed: 11/26/2022]
Abstract
The effects of three tricyclic antidepressants (TCAs) and two serotonin selective reuptake inhibitors (SSRIs) have been studied with an electrophysiological approach on Xenopus laevis oocytes expressing the rat GABA (gamma-Aminobutyric-acid) transporter rGAT1. All tested TCAs and SSRIs inhibit the GABA-associated current in a dose-dependent way with low but comparable efficacy. The pre-steady-state and uncoupled currents appear substantially unaffected. The efficacy of desipramine, but not of the other drugs, is strongly increased in the lysine-glutamate or -aspartate mutants K448E and K448D. Comparison of I(max) and K(0.5GABA) in the absence and presence of desipramine showed that both parameters are reduced by the drug in the wild-type and in the K448E mutant. This suggests an uncompetitive inhibition, in which the drug can bind only after the substrate, an explanation in agreement with the lack of effects on the pre-steady-state and leak currents, and with the known structural data.
Collapse
Affiliation(s)
- Francesca Cherubino
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
- Fondazione Maugeri IRCCS, Via Roncaccio 16, Tradate, VA Italy
| | - Andreea Miszner
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
| | - Maria Daniela Renna
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
| | - Rachele Sangaletti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
| | - Stefano Giovannardi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
- Neurosciences Center, University of Insubria, 21100 Varese, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
- Neurosciences Center, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
11
|
Murphy DL, Fox MA, Timpano KR, Moya PR, Ren-Patterson R, Andrews AM, Holmes A, Lesch KP, Wendland JR. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 2008; 55:932-60. [PMID: 18824000 PMCID: PMC2730952 DOI: 10.1016/j.neuropharm.2008.08.034] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 12/19/2022]
Abstract
Discovered and crystallized over sixty years ago, serotonin's important functions in the brain and body were identified over the ensuing years by neurochemical, physiological and pharmacological investigations. This 2008 M. Rapport Memorial Serotonin Review focuses on some of the most recent discoveries involving serotonin that are based on genetic methodologies. These include examples of the consequences that result from direct serotonergic gene manipulation (gene deletion or overexpression) in mice and other species; an evaluation of some phenotypes related to functional human serotonergic gene variants, particularly in SLC6A4, the serotonin transporter gene; and finally, a consideration of the pharmacogenomics of serotonergic drugs with respect to both their therapeutic actions and side effects. The serotonin transporter (SERT) has been the most comprehensively studied of the serotonin system molecular components, and will be the primary focus of this review. We provide in-depth examples of gene-based discoveries primarily related to SLC6A4 that have clarified serotonin's many important homeostatic functions in humans, non-human primates, mice and other species.
Collapse
Affiliation(s)
- Dennis L Murphy
- Laboratory of Clinical Science, NIMH Intramural Research Program, NIH, Building 10, Room 3D41, 10 Center Drive, MSC 1264, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mao Y, Mathewson L, Gesmonde J, Sato Y, Holy M, Sitte HH, Rudnick G. Involvement of serotonin transporter extracellular loop 1 in serotonin binding and transport. Mol Membr Biol 2008; 25:115-27. [PMID: 18307099 DOI: 10.1080/09687680701633257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Residues Tyr-110 through Gly-115 of serotonin transporter were replaced, one at a time, with cysteine. Of these mutants, only G113C retained full activity for transport, Q111C and N112C retained partial activity, but Y110C, G114C and G115C were inactive. Poor surface expression was at least partly responsible for the lack of transport by G114C and G115C. In membrane preparations, Y110C through G113C all bound a high affinity cocaine analog similarly to the wild type. Treatment with methanethiosulfonate reagents increased the transport activity of Q111C and N112C to essentially wild-type levels but had no measurable effect on the other mutants. The decreased activity of Q111C and N112C resulted from an increase in the K(M) for serotonin that was not accompanied by a decrease in serotonin binding affinity. Superfusion experiments indicated a defect in 5-HT exchange. Modification of the inserted cysteine residues reversed the increase in K(M) and the poor exchange, also with no effect on serotonin affinity. The results suggest that Gln-111 and Asn-112 are not required for substrate binding but participate in subsequent steps in the transport cycle.
Collapse
Affiliation(s)
- Yuxin Mao
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND SERT I425V, an uncommon missense single nucleotide polymorphism producing a gain-of-function of the serotonin transporter (SERT), was originally found to segregate with a primarily obsessive-compulsive disorder (OCD) but complexly comorbid phenotype in two unrelated families. OBJECTIVE As two individuals with SERT I425V and OCD also had Asperger syndrome (AS), an autism spectrum disorder, and as other rare SERT variants have recently shown significant associations with autism, we set out to extend our original OCD study by genotyping additional autism/AS and OCD samples. METHODS Case-control association study of SERT I425V in 210 AS/autism probands and 215 controls, plus 335 OCD probands and their family members. RESULTS SERT I425V was not found in any of the individuals with AS/autism, OCD alone or OCD comorbid with AS and other disorders, or in controls. This results in new estimates of SERT I425V having a 1.5% prevalence in 530 individuals with OCD from five unrelated families genotyped by us and by one other group and a 0.23% frequency in four control populations totaling 1300 individuals, yielding a continuing significant OCD-control difference (Fisher's exact test corrected for family coefficient of identity P=0.004, odds ratio=6.54). CONCLUSION As several other uncommon, less well quantitated genetic variations occur with an OCD phenotype, including chromosomal anomalies and some other rare gene variants (SGCE, GCH1 and SLITRK1), a tentative conclusion is that OCD resembles other complex disorders in being etiologically heterogeneous and in having both highly penetrant familial subtypes associated with rare alleles or chromosomal anomalies, as well as having a more common, polygenetic form that may involve polymorphisms in such genes as BDNF, COMT, GRIN2beta, TPH2, HTR2A and SLC1A1.
Collapse
|
14
|
Kniazeff J, Shi L, Loland CJ, Javitch JA, Weinstein H, Gether U. An intracellular interaction network regulates conformational transitions in the dopamine transporter. J Biol Chem 2008; 283:17691-701. [PMID: 18426798 DOI: 10.1074/jbc.m800475200] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter:sodium symporters (NSS)(1) mediate sodium-dependent reuptake of neurotransmitters from the synaptic cleft and are targets for many psychoactive drugs. The crystal structure of the prokaryotic NSS protein, LeuT, was recently solved at high resolution; however, the mechanistic details of regulation of the permeation pathway in this class of proteins remain unknown. Here we combine computational modeling and experimental probing in the dopamine transporter (DAT) to demonstrate the functional importance of a conserved intracellular interaction network. Our data suggest that a salt bridge between Arg-60 in the N terminus close to the cytoplasmic end of transmembrane segment (TM) 1 and Asp-436 at the cytoplasmic end of TM8 is stabilized by a cation-pi interaction between Arg-60 and Tyr-335 at the cytoplasmic end of TM6. Computational probing illustrates how the interactions may determine the flexibility of the permeation pathway, and mutagenesis within the network and results from assays of transport, as well as the state-dependent accessibility of a substituted cysteine in TM3, support the role of this network in regulating access between the substrate binding site and the intracellular milieu. The mechanism that emerges from these findings may be unique to the NSS family, where the local disruption of ionic interactions modulates the transition of the transporter between the outward- and inward-facing conformations.
Collapse
Affiliation(s)
- Julie Kniazeff
- Molecular Neuropharmacology Group and Center for Pharmacogenomics, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|