1
|
Fahira A, Amin RS, Arshad U, Khan MI, Shah Syed AA, Alshammari A, Yang Q, Wang Z, Ali L, Shi Y. Chimeric vaccine design against the epidemic Langya Henipavirus using immunoinformatics and validation via immune simulation approaches. Heliyon 2023; 9:e17376. [PMID: 37484358 PMCID: PMC10361368 DOI: 10.1016/j.heliyon.2023.e17376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
In July 2022, a new virus called Langya virus (LayV) was discovered in China in patients who had a fever. This virus is a type of Henipavirus (HNV) and is considered a potential threat as it could spread from animals to humans. It causes respiratory disease with symptoms including fever, coughing, and fatigue and is closely linked to two other henipaviruses that are known to infect humans, namely Hendra and Nipah viruses. These viruses may cause fatal respiratory illnesses. Investigators believe that the LayV is spread by shrews, and may have infected humans directly or via an intermediary species. Thus, the use of vaccines or immunizations against LayV is an alternate strategy for disease prevention. In this study, we employed various immunoinformatics methods to predict B cell, HTL and T cell epitopes from the LayV proteome in order to find the most promising candidate for a LayV vaccine. The most potent epitopes that are immunogenic and non-allergenic were joined with each other through suitable linkers. Human β-defensin 2 was employed as an adjuvant to increase the immunogenicity of the vaccine construct. The final sequence of a multi-epitope vaccine construct was modelled for docking with TLRs. Concisely, our results suggest that the docked complexes of vaccine-TLRs seemed to be stable. Additionally, in silico cloning was done using E. coli as the host in order to validate the expression of our designed vaccine construct. The GC content of 54.39% and CAI value of 0.94 revealed that the vaccine component expresses efficiently in the host. This study presents the novel vaccine construct for LayV which will be essential for further experimental validations to confirm the immunogenicity and safety of the proposed vaccine structure, and eventually to treat HNV-related diseases.
Collapse
Affiliation(s)
- Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, China
| | | | - Uzma Arshad
- Gujranwala Medical College, Gujranwala, Punjab, Pakistan
| | - Muhammad Idrees Khan
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ali Alamdar Shah Syed
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, China
| | - Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Suleman M, Khan SH, Rashid F, Khan A, Hussain Z, Zaman N, Rehman SU, Zhai J, Xue M, Zheng C. Designing a multi-epitopes subunit vaccine against human herpes virus 6A based on molecular dynamics and immune stimulation. Int J Biol Macromol 2023:125068. [PMID: 37245745 DOI: 10.1016/j.ijbiomac.2023.125068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Human Herpesvirus 6A (HHV-6A) is a prevalent virus associated with various clinical manifestations, including neurological disorders, autoimmune diseases, and promotes tumor cell growth. HHV-6A is an enveloped, double-stranded DNA virus with a genome of approximately 160-170 kb containing a hundred open-reading frames. An immunoinformatics approach was applied to predict high immunogenic and non-allergenic CTL, HTL, and B cell epitopes and design a multi-epitope subunit vaccine based on HHV-6A glycoprotein B (gB), glycoprotein H (gH), and glycoprotein Q (gQ). The stability and correct folding of the modeled vaccines were confirmed through molecular dynamics simulation. Molecular docking found that the designed vaccines have a strong binding network with human TLR3, with Kd values of 1.5E-11 mol/L, 2.6E-12 mol/L, 6.5E-13 mol/L, and 7.1E-11 mol/L for gB-TLR3, gH-TLR3, gQ-TLR3, and the combined vaccine-TLR3, respectively. The codon adaptation index values of the vaccines were above 0.8, and their GC content was around 67 % (normal range 30-70 %), indicating their potential for high expression. Immune simulation analysis demonstrated robust immune responses against the vaccine, with approximately 650,000/ml combined IgG and IgM antibody titer. This study lays a strong foundation for developing a safe and effective vaccine against HHV-6A, with significant implications for treating associated conditions.
Collapse
Affiliation(s)
- Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Syed Hunain Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Nasib Zaman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Shoaib Ur Rehman
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan 450001, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Suleman M, Asad U, Arshad S, Rahman AU, Akbar F, Khan H, Hussain Z, Ali SS, Mohammad A, Khan A, Ali L, Wei DQ. Screening of immune epitope in the proteome of the Dabie bandavirus, SFTS, to design a protein-specific and proteome-wide vaccine for immune response instigation using an immunoinformatics approaches. Comput Biol Med 2022; 148:105893. [DOI: 10.1016/j.compbiomed.2022.105893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 01/25/2023]
|
4
|
Abstract
Intestinal microbiota interacts with other systems, especially the immune system, which is responsible for protecting the body by recognizing “stranger” (pathogen associated molecular patterns-PAMPs) and “danger” (damage-associated molecular patterns-DAMPs) molecular motifs. In this manner, it plays an important role in the pathogenesis of various diseases and health. Despite the use of probiotics that modulate the intestinal microbiota in providing health benefits and in the treatment of diseases, there are some possible concerns about the possibility of developing adverse effects, especially in people with suppressed immune systems. Since probiotics provide health benefits with bioactive compounds, studies are carried out on the use of products containing non-living probiotic microorganisms (paraprobiotics) and/or their metabolites (postbiotics) instead of probiotic products. It is even reported that these microbial compounds have more immunomodulatory activities than living microorganisms via some possible mechanism and eliminates some disadvantages of probiotics. Considering the increasing use of functional foods in health and disease, further studies are needed with respect to the benefits and advantages of parabiotic and/or postbiotic use in the food and pharmaceutical industry as well as immune system modulation. Although probiotics have been extensive studied for a long time, it seems that postbiotics are promising tools for future research and applications according to the recent literature. This review aimed to evaluate the interaction of probiotics and postbiotics with the immune systems and also their advantages and disadvantages in the area of food-pharmaceutical industry and immune system modulation.
Collapse
|
5
|
Son YB, Bharti D, Kim SB, Bok EY, Lee SY, Ho HJ, Lee SL, Rho GJ. Hematological patterns and histopathological assessment of Miniature Pigs in the experiments on human mesenchymal stem cell transplantation. Int J Med Sci 2021; 18:1259-1268. [PMID: 33526987 PMCID: PMC7847617 DOI: 10.7150/ijms.53036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Multipotent and immune privileged properties of mesenchymal stem cells (MSCs) were investigated for the treatment of various clinical diseases. For the years, many researches into the animal studies evaluated human stem cell therapeutic capacity related to the regenerative medicine. However, there were limited reports on immune privileged properties of human MSCs in animal studies. The present study investigated hematological and biochemical parameter and lymphocyte subset in mini-pigs following human MSCs transplantation as a means of validation of reliability that influence the animal test results. Methods: The miniature pigs were transplanted with human MSCs seeded with scaffold. After transplantation, all animals were evaluated by CBC, biochemistry and lymphocyte subset test. After 9 weeks, all pigs were sacrificed and organs were histologically analyzed. Results: CBC test showed that levels of RBC were decreased and reticulocyte, WBC and neutrophil were increased in transient state initially after transplantation, but returned to normal value. The proportion of B lymphocyte and cytotoxic T cell were also initially enhanced within the normal range temporarily. The female and male miniature pigs showed normal ranges for blood chemistry assessments. During the 9 weeks post-operative period, the animals showed a continuous increase in body weight and length. Furthermore, no abnormal findings were observed from the histological analysis of sacrificed pigs. Conclusions: Overall, miniature pigs transplanted with human MSCs seeded with scaffold were found to have physiologically similar results to normal animals. This result might be a reliable indicator of the animal experiments using miniature pigs with human MSCs.
Collapse
Affiliation(s)
- Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Yeong Bok
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Han-Jang Ho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
6
|
Matsuda Y, Hiramitsu T, Li XK, Watanabe T. Characteristics of Immunoglobulin M Type Antibodies of Different Origins from the Immunologic and Clinical Viewpoints and Their Application in Controlling Antibody-Mediated Allograft Rejection. Pathogens 2020; 10:pathogens10010004. [PMID: 33374617 PMCID: PMC7822424 DOI: 10.3390/pathogens10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
Antibody-mediated allograft rejection (AMR) hinders patient prognosis after organ transplantation. Current studies concerning AMR have mainly focused on the diagnostic value of immunoglobulin G (IgG)-type donor-specific antihuman leukocyte antigen antibodies (DSAs), primarily because of their antigen specificity, whereas the clinical significance of immunoglobulin M (IgM)-type DSAs has not been thoroughly investigated in the context of organ transplantation because of their nonspecificity against antigens. Although consensus regarding the clinical significance and role of IgM antibodies is not clear, as discussed in this review, recent findings strongly suggest that they also have a huge potential in novel diagnostic as well as therapeutic application for the prevention of AMR. Most serum IgM antibodies are known to comprise natural antibodies with low affinity toward antigens, and this is derived from B-1 cells (innate B cells). However, some of the serum IgM-type antibodies reportedly also produced by B-2 cells (conventional B cells). The latter are known to have a high affinity for donor-specific antigens. In this review, we initially discuss how IgM-type antibodies of different origins participate in the pathology of various diseases, directly or through cell surface receptors, complement activation, or cytokine production. Then, we discuss the clinical applicability of B-1 and B-2 cell-derived IgM-type antibodies for controlling AMR with reference to the involvement of IgM antibodies in various pathological conditions.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Correspondence:
| | - Takahisa Hiramitsu
- Department of Transplant and Endocrine Surgery, Nagoya Daini Red Cross-Hospital, Aichi 466-8650, Japan;
| | - Xiao-kang Li
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
7
|
Impact of Immunoglobulin M-Type Donor-Specific Human Leukocyte Antigen-Antibody Levels in Supernatants from Cultured Peripheral Blood Mononuclear Cells as Predictors of Antibody-Mediated Rejection. Pathogens 2020; 9:pathogens9090733. [PMID: 32899542 PMCID: PMC7559903 DOI: 10.3390/pathogens9090733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Antibody-mediated rejection (AMR) is a crucial barrier in the long-term prognosis of transplant recipients. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from kidney allograft recipients (N = 41) and cultured in vitro for 1 week. Furthermore, the supernatants of the cultured PBMCs were analyzed by Luminex single-antigen beads. Results: Analyses using Luminex single-antigen beads revealed the presence of immunoglobulin (Ig) G donor-specific anti-HLA antibodies (DSAs) was detected in the supernatants of cultured PBMCs collected more frequently than IgM in de novo DSA-sensitized patients with AMR, and IgM were detectable in patients with stable graft function mainly and several IgM DSAs were detectable in the supernatants of the cultured PBMCs before detecting the IgG levels in sera. We also found that the DSA-specific IgM-secreting memory B cells (mBCs) were more sensitive to the chronic use of immunosuppressive agents than to the IgG-secreting mBCs. Conclusions: In the transplant recipients, the assessment of supernatants of cultured PBMCs provide more details of immune reactions than the commonly used method that directly measures IgG DSA levels in patient sera and some IgM DSA detection may be a better predictor of IgG DSAs production, which may cause AMR and enable early intervention, in initial stages of AMR development.
Collapse
|
8
|
Yoshizawa K, Aoki A, Shima K, Tanabe Y, Koya T, Hasegawa T, Kikuchi T, Sakagami T. Serum Anti-interferon-γ Autoantibody Titer as a Potential Biomarker of Disseminated Non-tuberculous Mycobacterial Infection. J Clin Immunol 2020; 40:399-405. [PMID: 32034574 DOI: 10.1007/s10875-020-00762-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/31/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE In the past decade, the relationship between naturally occurring interferon-γ-neutralizing autoantibodies (IFNγ-Ab) and disseminated non-tuberculous mycobacteria (NTM) infection has been established. Furthermore, immune suppressive therapy aimed at the suppression of antibody production has shown efficacy as a supportive treatment. However, the nature of antibody behavior and antibody titer during the course of this disease, as well as the pathophysiological significance of IFNγ-Ab, has not yet been fully elucidated. METHODS Thirteen Japanese subjects suffering from disseminated NTM (dNTM) infection with IFNγ-Ab were evaluated. The fluctuation of IFNγ-Ab titer and the neutralizing capacity against IFN-γ during the course of the disease were retrospectively analyzed. IFNγ-Ab titers in the sera were quantified using an enzyme-linked immunosorbent assay; neutralizing capacity was evaluated via flow cytometry. RESULTS Serum antibody titers were not constant during the treatment period and varied over the course of the disease. The antibody titer decreased when the disease was improved by anti-mycobacterial treatment (p < 0.01) and increased as the disease progressed (p < 0.05). Even after the antibody titer decreased, the neutralizing capacity against IFN-γ was maintained by individual sera. CONCLUSIONS Despite the improvement in the pathological condition via treatment, the patients' sera maintained neutralizing capacity against IFN-γ. Antibody titer fluctuated over the course of the disease and exhibited potential as a biomarker for judgment of the disease state.
Collapse
Affiliation(s)
- Kazutaka Yoshizawa
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | - Ami Aoki
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | - Kenjiro Shima
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | - Yoshinari Tanabe
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | - Takashi Hasegawa
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, Japan.
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
9
|
Traxel S, Schadt L, Eyer T, Mordasini V, Gysin C, Munthe LA, Niggli F, Nadal D, Bürgler S. Bone marrow T helper cells with a Th1 phenotype induce activation and proliferation of leukemic cells in precursor B acute lymphoblastic leukemia patients. Oncogene 2018; 38:2420-2431. [PMID: 30532071 DOI: 10.1038/s41388-018-0594-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023]
Abstract
Precursor B cell acute lymphoblastic leukemia (BCP-ALL) constitutes the leading cause of cancer-related death in children. While chromosomal alterations contribute to BCP-ALL pathogenesis, they are insufficient for leukemia development. Epidemiological data and evidence from a mouse model suggest that immune responses to infections may trigger the emergence of leukemia, but the mechanisms remain unclear. Here, we show that T helper (Th) cells from bone marrow of pediatric BCP-ALL patients can be attracted and activated by autologous BCP-ALL cells. Bone-marrow Th cells supportively interacted with BCP-ALL cells, inducing upregulation of important surface molecules and BCP-ALL cell proliferation. These Th cells displayed a Th1-like phenotype and produced high levels of IFN-γ. IFN-γ was responsible for the upregulation of CD38 in BCP-ALL cells, a molecule which we found to be associated with early relapse, and accountable for the production of IP-10, a chemokine involved in BCP-ALL migration and drug resistance. Thus, our data provide mechanistic support for an involvement of Th cell immune responses in the propagation of BCP-ALL and suggest that BCP-ALL cell-supportive Th cells may serve as therapeutic target.
Collapse
Affiliation(s)
- Sabrina Traxel
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Linda Schadt
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Tatjana Eyer
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Vanessa Mordasini
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claudine Gysin
- Division of Otolaryngology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ludvig A Munthe
- KG Jebsen Centre for B Cell Malignancies-Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Felix Niggli
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - David Nadal
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Simone Bürgler
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Matsuda Y, Imamura R, Takahara S. Evaluation of Antigen-Specific IgM and IgG Production during an In Vitro Peripheral Blood Mononuclear Cell Culture Assay. Front Immunol 2017; 8:794. [PMID: 28740496 PMCID: PMC5502262 DOI: 10.3389/fimmu.2017.00794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022] Open
Abstract
The recent attention given to diseases associated with memory B-cell (mBC)-produced antibodies (Abs) suggests the need for a similar in vitro assay to evaluate the functions of mBCs. Here, we cultured peripheral blood mononuclear cells (PBMCs) with the intent to collect mBC-derived Abs in vitro and maintain their cell–cell contact-dependent interactions with helper T-cells. PBMCs were cultured with interleukin (IL)-21, CpG-oligodeoxynucleotides (ODN), phorbol myristate acetate (PMA), and phytohemagglutinin/leucoagglutinin (PHA-L) in 24-well flat-bottom plates (5 × 105 cells/well). A culture supernatant analysis of PBMCs from healthy donors (n = 10) indicated that antigen-specific IgM Ab levels in a PBMC culture supernatant might be better able to demonstrate the antigen sensitization status in a smaller peripheral blood sample, compared to IgG because Epstein–Barr virus-specific IgM mBCs circulate peripherally at a significantly higher frequency once antiviral humoral immunity has stabilized. Thus, our in vitro assay demonstrated the potential significance of antigen-specific IgM Ab production in the culture supernatants. Furthermore, an analysis of cultured PBMCs from allograft kidney recipients (n = 16) sensitized with de novo donor-specific human leukocyte antigen (HLA)-specific Abs (DSAs) showed that IgM-type HLA-specific Abs were detected mainly from the culture supernatants from PBMCs of patients with stable graft function, whereas IgG isotype HLA Abs were detectable only from patients with biopsy-proven antibody-mediated rejection. In other words, these IgG isotype Abs also represented an activated humoral immune response in vivo. Additionally, IgM- and IgG-expressing mBCs from healthy donors (n = 5) were cultured with IL-21, CpG-ODN, and a supernatant produced by stimulating CD19+ B-cell-depleted PBMCs with PHA-L and PMA in 24-well flat-bottom plates (1 × 105 cells/well), and the resulting in vitro analysis provided some information regarding the biological processes of IgG and IgM mBCs in peripheral blood. Taken together, our findings suggest that antigen-specific Ab subtype analyses of supernatants from cultured PBMCs might more effectively and accurately reflect a patient’s Ab-associated pathological condition vs. than serum IgG and IgM levels.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Department of Advanced Technology for Transplantation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryoichi Imamura
- Department of Urology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shiro Takahara
- Department of Advanced Technology for Transplantation, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2016; 41:435-443. [PMID: 29021688 PMCID: PMC5628327 DOI: 10.1016/j.jgr.2016.08.004] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/09/2016] [Indexed: 01/06/2023] Open
Abstract
Panax ginseng is one of the most universally used herbal medicines in Asian and Western countries. Most of the biological activities of ginseng are derived from its main constituents, ginsenosides. Interestingly, a number of studies have reported that ginsenosides and their metabolites/derivatives—including ginsenoside (G)-Rb1, compound K, G-Rb2, G-Rd, G-Re, G-Rg1, G-Rg3, G-Rg5, G-Rh1, G-Rh2, and G-Rp1—exert anti-inflammatory activities in inflammatory responses by suppressing the production of proinflammatory cytokines and regulating the activities of inflammatory signaling pathways, such as nuclear factor-κB and activator protein-1. This review discusses recent studies regarding molecular mechanisms by which ginsenosides play critical roles in inflammatory responses and diseases, and provides evidence showing their potential to prevent and treat inflammatory diseases.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
12
|
Shi L, Bian Z, Chen CXJ, Guo YN, Lv Z, Zeng C, Liu Z, Zen K, Liu Y. CD47 deficiency ameliorates autoimmune nephritis in Fas(lpr) mice by suppressing IgG autoantibody production. J Pathol 2015; 237:285-95. [PMID: 26095930 DOI: 10.1002/path.4574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/11/2015] [Accepted: 06/08/2015] [Indexed: 11/07/2022]
Abstract
CD47, a self-recognition marker, plays an important role in both innate and adaptive immune responses. To explore the potential role of CD47 in activation of autoreactive T and B cells and the production of autoantibodies in autoimmune disease, especially systemic lupus erythematosus (SLE), we have generated CD47 knockout Fas(lpr) (CD47(-/-) -Fas(lpr) ) mice and examined histopathological changes in the kidneys, cumulative survival rates, proteinuria, extent of splenomegaly and autoantibodies, serum chemistry and immunological parameters. In comparison with Fas(lpr) mice, CD47(-/-) -Fas(lpr) mice exhibit a prolonged lifespan and delayed autoimmune nephritis, including glomerular cell proliferation, basement membrane thickening, acute tubular atrophy and vacuolization. CD47(-/-) -Fas(lpr) mice have lower levels of proteinuria, associated with reduced deposition of complement C3 and C1q, and IgG but not IgM in the glomeruli, compared to age-matched Fas(lpr) mice. Serum levels of antinuclear antibodies and anti-double-stranded DNA antibodies are significantly lower in CD47(-/-) -Fas(lpr) than in Fas(lpr) mice. CD47(-/-) -Fas(lpr) mice also display less pronounced splenomegaly than Fas(lpr) mice. The mechanistic studies further suggest that CD47 deficiency impairs the antigenic challenge-induced production of IgG but not IgM, and that this effect is associated with reduction of T follicular cells and impairment of germinal centre development in lymphoid tissues. In conclusion, our results demonstrate that CD47 deficiency ameliorates lupus nephritis in Fas(lpr) mice via suppression of IgG autoantibody production.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Peoples Republic of China
- Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Zhen Bian
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Peoples Republic of China
- Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Celia X J Chen
- Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Ya-Nan Guo
- Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Zhiyuan Lv
- Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Caihong Zeng
- National Clinical Research Centre for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, People's Republic of China
| | - Zhihong Liu
- National Clinical Research Centre for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, People's Republic of China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Peoples Republic of China
- Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Yuan Liu
- Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
13
|
Evaluation of the efficiency of human immune system reconstitution in NSG mice and NSG mice containing a human HLA.A2 transgene using hematopoietic stem cells purified from different sources. J Immunol Methods 2015; 422:13-21. [PMID: 25776756 DOI: 10.1016/j.jim.2015.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 11/20/2022]
Abstract
Severely immunodeficient mice such as the NOD/SCID/IL2rγ(null) (NSG) strain can be engrafted with human hematopoietic stem cells (HSCs), resulting in chimeric mice containing many components of the human immune system (Human Immune System mice or HIS mice). HIS mice can both support the replication of and recapitulate much of the immunological response to a variety of pathogens, including ones with strict human tropism, such as HIV-1. In an effort to develop a better mouse model for human infectious pathogen infection and possible immune resolution, we compared the human immune system reconstitution of NSG mice following injection with human CD34(+) HSCs purified from either fetal liver (FL) or umbilical cord blood (UCB). We analyzed reconstitution in standard NSG mice as well as a derivative of these mice containing an HLA.A2 encoding transgene (NSG.A2). HSCs from both sources effectively reconstituted hematopoietic lineages when injected into NSG mice. In marked contrast, total CD45(+) human hematopoietic cells in NSG.A2 mice were well reconstituted by HSCs from UCB but very poorly by HSCs purified from FL. Moreover, the reconstitution of T cell lineages in NSG.A2 mice by HSCs from UCB was inferior to that obtained using NSG mice. We also found that FL CD34(+) HSCs contain a much higher percentage of cells with a phenotype consistent with primitive progenitors than UCB HSCs. We discuss possible explanations for the influence of the HLA.A2 transgene on hematopoietic reconstitution using the two sources of HSCs.
Collapse
|
14
|
Amdekar YK. Fascinating interaction between host and pathogen. Indian J Pediatr 2014; 81:36-41. [PMID: 24293135 DOI: 10.1007/s12098-013-1296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
Abstract
Clinical manifestations of disease depend upon host's immune response that is induced by pathogen and modified by the host's innate and adaptive immunity. Immunocompetent children of similar age and nutrition evoke different responses to the same pathogen varying from benign to potentially fatal condition. This results in diverse clinical presentations of a disease, that is different from the standard expected pattern and thus, poses a diagnostic challenge. Even, subsequent progression of a disease is also variable. It is the balance between immune stimulation, immune suppression and immune tolerance that decides the outcome. In case of balanced response, child recovers completely without any damage. However at times, cure is at the expense of permanent sequalae while in case of unfavourable immune response, survival may not be certain inspite of successful therapy. Symptoms and physical signs of primary disease often overlap with those caused by host's immune response. In such a situation, it is difficult to decide whether therapy of primary disease has failed due to drug resistance or whether persistence or deterioration is the result of immune response. Occasionally pathogen can transform into "superantigen" that may lead to "cytokine storm". Resulting immune-mediated complications may endanger life and at best, treated symptomatically. Immune suppressive drugs such as steroids, chemotherapeutic agents, IVIG or specific antibodies may not be able to suppress undesirable immune response. It is not just the immune suppression that is required but ideally immune modulation. Immune modulation refers to enhancing protective responses while avoiding destructive ones. At present, science falls short of anticipating harmful immune responses and lacks specific immune intervention.Laboratory test results are also dependent on host response and hence need cautious interpretation based on clinical profile in consideration with multiple variables. In final analysis, fight between host and pathogen is a complex one and often unpredictable. It is hoped that most children evoke favourable response but pediatrician has to be watchful even in the most benign disease.
Collapse
Affiliation(s)
- Y K Amdekar
- B. J. Wadia Hospital for Children, Mumbai, India,
| |
Collapse
|
15
|
Amirghofran Z, Javidnia K, Bahmani M, Azadmehr A, Esmaeilbeig M. THE EFFECT OF THE METHANOL EXTRACT OFGALIUM MITEON THE CELLULAR IMMUNITY AND ANTIBODY SYNTHESIS. J Immunoassay Immunochem 2011; 32:157-69. [DOI: 10.1080/15321819.2011.552583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Ross AC, Chen Q, Ma Y. Vitamin A and retinoic acid in the regulation of B-cell development and antibody production. VITAMINS AND HORMONES 2011; 86:103-26. [PMID: 21419269 PMCID: PMC3789244 DOI: 10.1016/b978-0-12-386960-9.00005-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signaling by vitamin A through its active metabolite retinoic acid (RA) is critical for the normal development and functions of the hematopoietic and immune systems. B cells, as both factories for antibody production and part of the immune regulatory system, are critical to a successful vaccination response. RA is a factor in the development and competence of mature B cells, in B cell proliferation, and in the regulation of transcription factors associated with B cell differentiation, class switch recombination, and the generation of antibody-secreting plasma cells. Emerging evidence suggests that RA can function alone and in combination with other immune system stimuli to augment the formation of germinal centers, leading to increased primary and secondary antibody responses. Taken together, RA could be a useful component in vaccine strategies and/or for immunotherapy.
Collapse
Affiliation(s)
- A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | |
Collapse
|
17
|
Bermejo DA, Amezcua Vesely MC, Khan M, Acosta Rodríguez EV, Montes CL, Merino MC, Toellner KM, Mohr E, Taylor D, Cunningham AF, Gruppi A. Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies. Immunology 2010; 132:123-33. [PMID: 20875075 DOI: 10.1111/j.1365-2567.2010.03347.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acute infection with Trypanosoma cruzi, the aetiological agent of Chagas' disease, results in parasitaemia and polyclonal lymphocyte activation. It has been reported that polyclonal B-cell activation is associated with hypergammaglobulinaemia and delayed parasite-specific antibody response. In the present study we analysed the development of a B-cell response within the different microenvironments of the spleen during acute T. cruzi infection. We observed massive germinal centre (GC) and extrafollicular (EF) responses at the peak of infection. However, the EF foci were evident since day 3 post-infection (p.i.), and, early in the infection, they mainly provided IgM. The EF foci response reached its peak at 11 days p.i. and extended from the red pulp into the periarteriolar lymphatic sheath. The GCs were detected from day 8 p.i. At the peak of parasitaemia, CD138(+) B220(+) plasma cells in EF foci, red pulp and T-cell zone expressed IgM and all the IgG isotypes. Instead of the substantial B-cell response, most of the antibodies produced by splenic cells did not target the parasite, and parasite-specific IgG isotypes could be detected in sera only after 18 days p.i. We also observed that the bone marrow of infected mice presented a strong reduction in CD138(+) B220(+) cells compared with that of normal mice. Hence, in acute infection with T. cruzi, the spleen appears to be the most important lymphoid organ that lodges plasma cells and the main producer of antibodies. The development of a B-cell response during T. cruzi infection shows features that are particular to T. cruzi and other protozoan infection but different to other infections or immunization with model antigens.
Collapse
Affiliation(s)
- Daniela A Bermejo
- Immunology, School of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Baumgartner CK, Malherbe LP. Regulation of CD4 T-cell receptor diversity by vaccine adjuvants. Immunology 2010; 130:16-22. [PMID: 20331477 DOI: 10.1111/j.1365-2567.2010.03265.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
New vaccines based on soluble recombinant antigens (Ags) require adjuvants to elicit long-lasting protective humoral and cellular immunity. Despite the importance of CD4 T helper cells for the generation of long-lived memory B and CD8 T cells, the impact of adjuvants on CD4 T-cell responses is still poorly understood. Adjuvants are known to promote dendritic cell (DC) maturation and migration to secondary lymphoid organs where they present foreign peptides bound to class II major histocompatibility complex molecules (pMHCII) to naïve CD4 T cells. Random and imprecise rearrangements of genetic elements during thymic development ensure that a vast amount of T-cell receptors (TCRs) are present in the naïve CD4 T-cell repertoire. Ag-specific CD4 T cells are selected from this vast pre-immune repertoire based on the affinity of their TCR for pMHCII. Here, we review the evidence demonstrating a link between the adjuvant and the specificity and clonotypic diversity of the CD4 T-cell response, and consider the potential mechanisms at play.
Collapse
|
19
|
Rau FC, Dieter J, Luo Z, Priest SO, Baumgarth N. B7-1/2 (CD80/CD86) direct signaling to B cells enhances IgG secretion. THE JOURNAL OF IMMUNOLOGY 2010; 183:7661-71. [PMID: 19933871 DOI: 10.4049/jimmunol.0803783] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell responses are regulated by Ag recognition, costimulatory signals provided by interaction with helper T cells, and by innate signals. We recently provided evidence for a link between the effects of innate and costimulatory signals on B cells during influenza virus infection, by demonstrating that most B cells in the regional lymph nodes of the respiratory tract enhance surface expression of the costimulator B7-2 (CD86) within 24-48 h following infection via a type I IFNR-dependent mechanisms, a finding we are confirming here. While the role of B7-1/2 for helper T cell activation is well documented, its role in direct B cell regulation is poorly understood. Here, our in vivo studies with mixed bone marrow irradiation chimeric mice, lacking B7-1/2 only on B cells, demonstrated that B7-1/2 expression is crucial for induction of maximal local, but to a lesser extent systemic, IgG Ab responses following influenza virus infection. In contrast to mice that completely lack B7-1/2 expression, loss of B7-1/2 on B cells alone did not significantly affect germinal center formation or the extent of CD4(+) T cell activation and IFN-gamma secretion. Instead, our in vitro studies identify a dramatic effect of B7-2 engagement on IgG, but not IgM secretion by already class-switched B cells. Concomitantly, B7-2 engagement induced expression of X-box binding protein 1 (XBP-1) and spliced XBP1, evidence for increased protein synthesis by these cells. Taken together, these results identify direct signaling through B7-1/2 as a potent regulator of IgG secretion by previously activated B cells.
Collapse
Affiliation(s)
- Friederike C Rau
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
20
|
Toll-like receptor 3 ligand and retinoic acid enhance germinal center formation and increase the tetanus toxoid vaccine response. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1476-84. [PMID: 19692622 DOI: 10.1128/cvi.00282-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunizations with T-cell-dependent antigens induce the formation of germinal centers (GC), unique lymphoid microenvironments in which antigen-activated B cells undergo class switching, affinity maturation, and differentiation into memory B cells. Poly(I:C) (PIC), a double-stranded RNA, and retinoic acid (RA), a metabolite of vitamin A which induces cell differentiation, have been shown to augment both primary and memory anti-tetanus toxoid (anti-TT) IgG responses. However, their influence on the GC reaction is unknown. In the present study, 6-week-old C57BL/6 mice were immunized with TT and cotreated with PIC, RA, or both. The splenic GC reaction was evaluated using immunofluorescence staining 10 days after TT priming. Each treatment enhanced the TT-induced GC formation (number of GC/follicle and GC area) about two- to threefold, which correlated with the titers of plasma anti-TT immunoglobulin G (IgG). Isotype switching to IgG1 was dramatically stimulated, with the greatest increase in IgG1-positive GC B cells induced by RA-PIC (P < 0.001). Moreover, PIC alone and RA-PIC robustly promoted the formation of the follicular dendritic cell (FDC) network in the GC light zone. PIC and RA-PIC also increased IgG1-positive B cells in the periarterial lymphatic sheath regions, where most IgG1-positive cells were plasma cells (CD138/syndecan-1 positive), suggesting that plasma cell generation was also enhanced in non-GC regions. The stimulation of several processes, including antigen-induced GC formation, isotype switching, FDC network formation within GC, and plasma cell differentiation by RA and/or PIC, suggests that this nutritional-immunological combination could be an effective means of promoting a robust vaccine response.
Collapse
|
21
|
Al-Qahtani A, Xu Z, Zan H, Walsh CM, Casali P. A role for DRAK2 in the germinal center reaction and the antibody response. Autoimmunity 2008; 41:341-52. [PMID: 18568639 DOI: 10.1080/08916930802170633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DAP-related apoptotic kinase-2 (DRAK2), a death-associated protein kinase family member, is highly expressed in B and T lymphocytes in the human and the mouse. To determine whether DRAK2 plays a role in B-cell activation and differentiation, we analyzed germinal centers (GCs) and the specific antibody response to NP in drak2-/- mice immunized with the thymus-dependent (TD) conjugated hapten NP16-CGG. In drak2-/- mice, spleen GCs were normal in size and morphology, but their number was reduced by as much as 5-fold, as compared to their wild-type littermates. This was not due to a defect in B-cell proliferation, as the BrdU uptake was comparable in DRAK2-deficient and wild-type B cells. Rather, the proportion of apoptotic GC B and T cells in drak2-/- mice was significantly higher than that in wild-type control mice, as shown by 7-AAD and terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL) staining. In drak2-/- mice, the generation high affinity IgG antibodies was impaired in spite of the seemingly normal somatic hypermutation and class switch DNA recombination machineries in drak2-/- B cells. In NP16-CGG-immunized drak2-/- mice, T-cell-intrinsic Bcl-xL transgene expression increased the number of GCs and rescued the high affinity IgG response to NP. These findings suggest a novel role for DRAK2 in regulating the GC reaction and the response to TD antigens, perhaps through increased survival of T cells and enhanced B-cell positive selection. They also suggest that DRAK2-deficiency is not involved in regulating intrinsic B-cell apoptosis.
Collapse
Affiliation(s)
- Ahmed Al-Qahtani
- Center for Immunology, University of California, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
22
|
Prindull GA, Fibach E. Are postnatal hemangioblasts generated by dedifferentiation from committed hematopoietic stem cells? Exp Hematol 2007; 35:691-701. [PMID: 17577919 DOI: 10.1016/j.exphem.2007.01.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell dedifferentiation occurs in different cell systems. In spite of a relative paucity of data it seems reasonable to assume that cell dedifferentiation exists in reversible equilibrium with differentiation, to which cells resort in response to intercellular signals. The current literature is indeed compatible with the concept that dedifferentiation is guided by structural rearrangements of nuclear chromatin, directed by epigenetic cell memory information available as silenced genes stored on heterochromatin, and that gene transcription exists in reversible "fluctuating continua" during parental cell cycles. Here, we review the molecular mechanisms of cell dedifferentiation and suggest for hematopoietic development that postnatal hemangioblasts are generated by dedifferentiation of committed hematopoietic stem cells.
Collapse
Affiliation(s)
- Gregor A Prindull
- Department of Pediatrics,University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | |
Collapse
|
23
|
Bandyopadhyay A, Arneson L, Beeson C, Sant AJ. The relative energetic contributions of dominant P1 pocket versus hydrogen bonding interactions to peptide:class II stability: implications for the mechanism of DM function. Mol Immunol 2007; 45:1248-57. [PMID: 17980431 DOI: 10.1016/j.molimm.2007.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 09/18/2007] [Indexed: 01/28/2023]
Abstract
Peptides are bound to MHC class II molecules by an array of hydrogen bonds between conserved MHC class II protein side-chains and the peptide backbone and through interactions between MHC protein pockets and peptide side-chain anchors. The crystal structure of murine I-A(k) protein with peptide shows a network of electrostatic interactions with the P1 aspartic acid anchor and an arginine in the P1 pocket that are thought to constitute the major stabilizing interaction between peptide and MHC. In this paper, have explored the relative energetic contribution of this dominant P1 pocket interaction with that made by a genetically conserved hydrogen bond which is formed by the beta 81 histidine residue and the main chain of the bound peptide. We have performed peptide dissociation experiments using antigenic peptides or variants that have altered side-chain interactions with the I-A(k) P1 pocket using either native I-A(k) or I-A(k) proteins mutated to disrupt the N-terminal hydrogen bond. The results demonstrate that the N-terminal hydrogen bonds in I-A(k) complexes make highly significant energetic contributions to the kinetic stabilities comparable to or greater than the energetic contribution of highly favorable P1 pocket interactions. Hence, we conclude that the kinetic stability of MHC class II:peptide complexes critically depends on two quite distinct molecular interactions between peptide and MHC located at the peptide's amino terminus. We discuss these results in light of the proposed mechanism for DM function.
Collapse
|
24
|
Jackson SM, Harp N, Patel D, Zhang J, Willson S, Kim YJ, Clanton C, Capra JD. CD45RO enriches for activated, highly mutated human germinal center B cells. Blood 2007; 110:3917-25. [PMID: 17644737 PMCID: PMC2190611 DOI: 10.1182/blood-2007-05-087767] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To date, there is no consensus regarding the influence of different CD45 isoforms during peripheral B-cell development. Examining correlations between surface CD45RO expression and various physiologic processes ongoing during the germinal center (GC) reaction, we hypothesized that GC B cells, like T cells, that up-regulate surface RO should progressively acquire phenotypes commonly associated with activated, differentiating lymphocytes. GC B cells (IgD(-)CD38(+)) were subdivided into 3 surface CD45RO fractions: RO(-), RO(+/-), and RO(+). We show here that the average number of mutations per IgV(H) transcript increased in direct correlation with surface RO levels. Conjunctional use of RO and CD69 further delineated low/moderately and highly mutated fractions. Activation-induced cytidine deaminase (AID) mRNA was slightly reduced among RO(+) GC B cells, suggesting that higher mutation averages are unlikely due to elevated somatic mutation activity. Instead, RO(+) GC B cells were negative for Annexin V, comprised mostly (93%) of CD77(-) centrocytes, and were enriched for CD69(+) cells. Collectively, RO(+) GC B cells occupy what seems to be a specialized niche comprised mostly of centrocytes that may be in transition between activation states. These findings are among the first to sort GC B cells into populations enriched for live mutated cells solely using a single extracellular marker.
Collapse
Affiliation(s)
- Stephen M Jackson
- Molecular Immunogenetics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Richards KA, Chaves FA, Krafcik FR, Topham DJ, Lazarski CA, Sant AJ. Direct ex vivo analyses of HLA-DR1 transgenic mice reveal an exceptionally broad pattern of immunodominance in the primary HLA-DR1-restricted CD4 T-cell response to influenza virus hemagglutinin. J Virol 2007; 81:7608-19. [PMID: 17507491 PMCID: PMC1933370 DOI: 10.1128/jvi.02834-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The recent threat of an avian influenza pandemic has generated significant interest in enhancing our understanding of the events that dictate protective immunity to influenza and in generating vaccines that can induce heterosubtypic immunity. Although antigen-specific CD4 T cells are known to play a key role in protective immunity to influenza through the provision of help to B cells and CD8 T cells, little is known about the specificity and diversity of CD4 T cells elicited after infection, particularly those elicited in humans. In this study, we used HLA-DR transgenic mice to directly and comprehensively identify the specificities of hemagglutinin (HA)-specific CD4 T cells restricted to a human class II molecule that were elicited following intranasal infection with a strain of influenza virus that has been endemic in U.S. human populations for the last decade. Our results reveal a surprising degree of diversity among influenza virus-specific CD4 T cells. As many as 30 different peptides, spanning the entire HA protein, were recognized by CD4 T cells, including epitopes genetically conserved among H1, H2, and H5 influenza A viruses. We also compared three widely used major histocompatibility class II algorithms to predict HLA-DR binding peptides and found these as yet inadequate for identifying influenza virus-derived epitopes. The results of these studies offer key insights into the spectrum of peptides recognized by HLA-DR-restricted CD4 T cells that may be the focus of immune responses to infection or to experimental or clinical vaccines in humans.
Collapse
Affiliation(s)
- Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
26
|
Chistiakov DA, Chistiakov AP. Is FCRL3 a new general autoimmunity gene? Hum Immunol 2007; 68:375-83. [PMID: 17462505 DOI: 10.1016/j.humimm.2007.01.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/22/2006] [Accepted: 01/08/2007] [Indexed: 11/24/2022]
Abstract
Autoimmunity is a multistep pathogenic process, which arises in genetically predisposing individuals as a result of the harmful influence of environmental factors causing the breakdown of immune tolerance and induction of self-reactive immune response. Recent findings resolved common pathogenic mechanisms shared between different autoimmune diseases and suggested for the existence of genetic loci that could be involved in general autoimmunity and hence contribute to susceptibility of several autoimmune diseases. To date, several loci responsible for general autoimmunity have been identified. The Fc receptor-like 3 (FCRL3) gene is one of those loci for which a significant association with a number of autoimmune diseases such as rheumatoid arthritis (RA), autoimmune thyroid disease, and systemic lupus erythematosus (SLE) has been recently shown in Japanese. However, studies in Caucasians failed to confirm a strong association of this gene with RA and SLE and therefore made questionable the putative role of FCRL3 in general autoimmunity. In this review, we discuss whether the FCRL3 gene is a newly discovered gene contributing to shared susceptibility between autoimmune diseases.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|