1
|
Attenuated Viral Replication of Avian Infectious Bronchitis Virus with a Novel 82-Nucleotide Deletion in the 5a Gene Indicates a Critical Role for 5a in Virus-Host Interactions. Microbiol Spectr 2022; 10:e0140522. [PMID: 35766501 PMCID: PMC9430126 DOI: 10.1128/spectrum.01405-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously found that a deletion in γ-coronavirus Infectious bronchitis virus (IBV) accessory gene 5a is critical for decreased viral pathogenicity in chickens. Here, we systematically analyzed IBV virus infection: invasion, genome replication, subgenomic mRNA (sgmRNA) synthesis, protein synthesis, and virion release. The ability of the mutant IBV strain rYN-Δ5a to invade susceptible cells was not significantly different from that of parental rYN. However, compared with rYN, the level of sgmRNA synthesis and genome replication after cell entry by rYN-Δ5a was significantly lower in the early stage, resulting in a significantly lower level of nucleoprotein (N) synthesis and a consequent significantly lower number of offspring viruses released into the supernatant. The detected 5a protein was diffusely distributed in the cytoplasm and perinuclear area. We identified 16 differentially expressed host proteins, 8 of which were found to be host nuclear and cytoplasmic transport-related proteins. Coimmunoprecipitation revealed an interaction between hemagglutinin (HA)-tagged TNPO1, TNPO3, XPO1, XPOT, RanBP1, and EIF2B4 proteins and Flag-tagged 5a protein, and laser confocal microscopy confirmed 5a protein colocalization with these proteins, indicating that 5a protein can cause changes in the host protein localization. These host proteins promote the nuclear localization of N proteins, so we believe that 5a protein can hijack host nucleoplasmic transport-related proteins to help N enter the nucleus. This may involve regulating the cell cycle to promote the optimal intracellular conditions for virus assembly or by participating in the regulation of nucleolar function as a strategy to optimize virus replication. IMPORTANCE Coronaviruses (CoVs) have a huge impact on humans and animals. It is important for the prevention and control of the viruses to assess the molecular mechanisms related to virulence attenuation. Here, we systematically analyzed a single cycle of virus infection by γ-CoV IBV lacking accessory protein 5a. We observed that a 5a deletion in the IBV genome affected virus replication and sgmRNA synthesis early in the virus life cycle, leading to decreases in protein synthesis, offspring virus assembly, and virion release in chicken embryonic kidney cells. IBV 5a protein was found to interact with multiple host nuclear and cytoplasmic transport- and translation-related proteins, which can also interact with IBV N and relocate it into the cell nucleus. These findings provide a comprehensive view regarding the importance of IBV accessory protein 5a and an important theoretical basis for studying the interaction between coronavirus and host cell proteins.
Collapse
|
2
|
Collins LT, Elkholy T, Mubin S, Hill D, Williams R, Ezike K, Singhal A. Elucidation of SARS-Cov-2 Budding Mechanisms through Molecular Dynamics Simulations of M and E Protein Complexes. J Phys Chem Lett 2021; 12:12249-12255. [PMID: 34928612 PMCID: PMC8713250 DOI: 10.1021/acs.jpclett.1c02955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2 and other coronaviruses pose major threats to global health, yet computational efforts to understand them have largely overlooked the process of budding, a key part of the coronavirus life cycle. When expressed together, coronavirus M and E proteins are sufficient to facilitate budding into the ER-Golgi intermediate compartment (ERGIC). To help elucidate budding, we ran atomistic molecular dynamics (MD) simulations using the Feig laboratory's refined structural models of the SARS-CoV-2 M protein dimer and E protein pentamer. Our MD simulations consisted of M protein dimers and E protein pentamers in patches of membrane. By examining where these proteins induced membrane curvature in silico, we obtained insights around how the budding process may occur. Multiple M protein dimers acted together to induce global membrane curvature through protein-lipid interactions while E protein pentamers kept the membrane planar. These results could eventually help guide development of antiviral therapeutics that inhibit coronavirus budding.
Collapse
Affiliation(s)
- Logan Thrasher Collins
- Conduit
Computing, 2 Ocean Avenue, Revere, Massachusetts 02151, United States
- Department
of Biomedical Engineering, Washington University
in Saint Louis, 1 Brookings
Drive, Saint Louis, Missouri 63130, United States
| | - Tamer Elkholy
- Conduit
Computing, 2 Ocean Avenue, Revere, Massachusetts 02151, United States
- Zapata
Computing, 100 Federal
Street, 20th Floor, Boston, Massachusetts 02110, United States
| | - Shafat Mubin
- Conduit
Computing, 2 Ocean Avenue, Revere, Massachusetts 02151, United States
- Department
of Physics, Valdosta State University, 1500 North Patterson Street, Valdosta, Georgia 31698, United States
| | - David Hill
- Conduit
Computing, 2 Ocean Avenue, Revere, Massachusetts 02151, United States
- Xeviosoft, 12007 Sunrise Valley Drive, STE
350, Reston, Virginia 20191, United States
| | - Ricky Williams
- Conduit
Computing, 2 Ocean Avenue, Revere, Massachusetts 02151, United States
- Department
of Electrical Engineering, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Kayode Ezike
- Conduit
Computing, 2 Ocean Avenue, Revere, Massachusetts 02151, United States
- Attune, 40 Exchange Place, #410, New York, New York 10005, United States
| | - Ankush Singhal
- Conduit
Computing, 2 Ocean Avenue, Revere, Massachusetts 02151, United States
- Department
of Chemistry, Leiden University, Gorlaeus Building, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
3
|
de Leeuw AJM, Oude Luttikhuis MAM, Wellen AC, Müller C, Calkhoven CF. Obesity and its impact on COVID-19. J Mol Med (Berl) 2021; 99:899-915. [PMID: 33824998 PMCID: PMC8023779 DOI: 10.1007/s00109-021-02072-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic has proven a challenge to healthcare systems since its first appearance in late 2019. The global spread and devastating effects of coronavirus disease 2019 (COVID-19) on patients have resulted in countless studies on risk factors and disease progression. Overweight and obesity emerged as one of the major risk factors for developing severe COVID-19. Here we review the biology of coronavirus infections in relation to obesity. In particular, we review literature about the impact of adiposity-related systemic inflammation on the COVID-19 disease severity, involving cytokine, chemokine, leptin, and growth hormone signaling, and we discuss the involvement of hyperactivation of the renin-angiotensin-aldosterone system (RAAS). Due to the sheer number of publications on COVID-19, we cannot be completed, and therefore, we apologize for all the publications that we do not cite.
Collapse
Affiliation(s)
- Angélica J M de Leeuw
- University Medical Center Groningen (UMCG), University of Groningen, 9700, AD, Groningen, The Netherlands
| | | | - Annemarijn C Wellen
- University Medical Center Groningen (UMCG), University of Groningen, 9700, AD, Groningen, The Netherlands
| | - Christine Müller
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700, AD, Groningen, The Netherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700, AD, Groningen, The Netherlands.
| |
Collapse
|
4
|
Rajput VS, Sharma R, Kumari A, Vyas N, Prajapati V, Grover A. Engineering a multi epitope vaccine against SARS-CoV-2 by exploiting its non structural and structural proteins. J Biomol Struct Dyn 2021; 40:9096-9113. [PMID: 34038700 PMCID: PMC8171004 DOI: 10.1080/07391102.2021.1924265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2, the causative agent behind the ongoing pandemic exhibits an enhanced potential for infection when compared to its related family members- the SARS-CoV and MERS-CoV; which have caused similar disease outbreaks in the past. The severity of the global health burden, increasing mortality rate and the emergent economic crisis urgently demands the development of next generation vaccines. Amongst such emergent next generation vaccines are the multi-epitope subunit vaccines, which hold promise in combating deadly pathogens. In this study we have exploited immunoinformatics applications to delineate a vaccine candidate possessing multiple B and T cells epitopes by utilizing the SARS-CoV-2 non structural and structural proteins. The antigenicity potential, safety, structural stability and the production feasibility of the designed construct was evaluated computationally. Furthermore, due to the known role of human TLR-3 immune receptor in viral sensing, which facilitates host cells activation for an immune response, the vaccine construct was examined for its binding efficiency using molecular docking and molecular dynamics simulation studies, which resulted in strong and stable interactions. Finally, the immune simulation studies suggested an effective immune response on vaccine administration. Overall, the immunoinformatics analysis advocates that the proposed vaccine candidate is safe and immunogenic and therefore can be pushed as a lead for in vitro and in vivo investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| | - Anchala Kumari
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
- Department of Biotechnology, Teri School of Advanced Studies, New Delhi, India
| | - Nidhi Vyas
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| | - Vijay Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| |
Collapse
|
5
|
Diab AM, Carleton BC, Goralski KB. COVID-19 pathophysiology and pharmacology: what do we know and how did Canadians respond? A review of Health Canada authorized clinical vaccine and drug trials. Can J Physiol Pharmacol 2021; 99:577-588. [PMID: 33852809 DOI: 10.1139/cjpp-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has resulted in the death of over 18 000 Canadians and has impacted the lives of all Canadians. Many Canadian research groups have expanded their research programs to include COVID-19. Over the past year, our knowledge of this novel disease has grown and has led to the initiation of a number of clinical vaccine and drug trials for the prevention and treatment of COVID-19. Here, we review SARS-CoV-2 (the coronavirus that causes COVID-19) and the natural history of COVID-19, including a timeline of disease progression after SARS-CoV-2 exposure. We also review the pathophysiological effects of COVID-19 on the organ systems that have been implicated in the disease, including the lungs, upper respiratory tract, immune system, central nervous system, cardiovascular system, gastrointestinal organs, the liver, and the kidneys. Then we review general therapeutics strategies that are being applied and investigated for the prevention or treatment of COVID-19, including vaccines, antivirals, immune system enhancers, pulmonary supportive agents, immunosuppressants and (or) anti-inflammatories, and cardiovascular system regulators. Finally, we provide an overview of all current Health Canada authorized clinical drug and vaccine trials for the prevention or treatment of COVID-19.
Collapse
Affiliation(s)
- Antonios M Diab
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Kerry B Goralski
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Division of Hematology/Oncology, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
6
|
Suprewicz Ł, Swoger M, Gupta S, Piktel E, Byfield FJ, Iwamoto DV, Germann D, Reszeć J, Marcińczyk N, Carroll RJ, Lenart M, Pyre K, Janmey P, Schwarz JM, Bucki R, Patteson A. Extracellular vimentin as a target against SARS-CoV-2 host cell invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.08.425793. [PMID: 33442680 PMCID: PMC7805437 DOI: 10.1101/2021.01.08.425793] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. In the case of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) has been identified as a necessary receptor, but not all ACE2-expressing cells are equally infected, suggesting that other extracellular factors are involved in host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake. Here, we present evidence that extracellular vimentin might act as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry. We demonstrate direct binding between vimentin and SARS-CoV-2 pseudovirus coated with the SARS-CoV-2 spike protein and show that antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. Our results suggest new therapeutic strategies for preventing and slowing SARS-CoV-2 infection, focusing on targeting cell host surface vimentin.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Maxx Swoger
- Physics Department and BioInspired Institute, Syracuse University
| | - Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Fitzroy J Byfield
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - Daniel V Iwamoto
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - Danielle Germann
- Physics Department and BioInspired Institute, Syracuse University
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Białystok, PL-15269 Białystok, Poland
| | - Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland
| | - Robert J Carroll
- Physics Department and BioInspired Institute, Syracuse University
| | - Marzena Lenart
- Małopolska Centre of Biotechnology; Jagiellonian University; Kraków, Poland
| | - Krzysztof Pyre
- Małopolska Centre of Biotechnology; Jagiellonian University; Kraków, Poland
| | - Paul Janmey
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University
- Indian Creek Farm, Ithaca, NY
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - Alison Patteson
- Physics Department and BioInspired Institute, Syracuse University
| |
Collapse
|
7
|
Hossain MU, Bhattacharjee A, Emon MTH, Chowdhury ZM, Mosaib MG, Mourin M, Das KC, Keya CA, Salimullah M. Recognition of plausible therapeutic agents to combat COVID-19: An omics data based combined approach. Gene 2021; 771:145368. [PMID: 33346100 PMCID: PMC7833977 DOI: 10.1016/j.gene.2020.145368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/03/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has become an immense threat to global public health. In this study, we performed complete genome sequencing of a SARS-CoV-2 isolate. More than 67,000 genome sequences were further inspected from Global Initiative on Sharing All Influenza Data (GISAID). Using several in silico techniques, we proposed prospective therapeutics against this virus. Through meticulous analysis, several conserved and therapeutically suitable regions of SARS-CoV-2 such as RNA-dependent RNA polymerase (RdRp), Spike (S) and Membrane glycoprotein (M) coding genes were selected. Both S and M were chosen for the development of a chimeric vaccine that can generate memory B and T cells. siRNAs were also designed for S and M gene silencing. Moreover, six new drug candidates were suggested that might inhibit the activity of RdRp. Since SARS-CoV-2 and SARS-CoV-1 have 82.30% sequence identity, a Gene Expression Omnibus (GEO) dataset of Severe Acute Respiratory Syndrome (SARS) patients were analyzed. In this analysis, 13 immunoregulatory genes were found that can be used to develop type 1 interferon (IFN) based therapy. The proposed vaccine, siRNAs, drugs and IFN based analysis of this study will accelerate the development of new treatments.
Collapse
Affiliation(s)
- Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh; Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Tabassum Hossain Emon
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Golam Mosaib
- Department of Biochemistry and Molecular Biology, Faculty of Health & Medical Sciences, Gono Bishwabidyaloy, Ashulia, Savar, Dhaka 1344, Bangladesh
| | - Muntahi Mourin
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1229, Bangladesh; Department of Microbiology, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh.
| |
Collapse
|
8
|
Nakagawa K, Makino S. Mechanisms of Coronavirus Nsp1-Mediated Control of Host and Viral Gene Expression. Cells 2021; 10:cells10020300. [PMID: 33540583 PMCID: PMC7912902 DOI: 10.3390/cells10020300] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Many viruses disrupt host gene expression by degrading host mRNAs and/or manipulating translation activities to create a cellular environment favorable for viral replication. Often, virus-induced suppression of host gene expression, including those involved in antiviral responses, contributes to viral pathogenicity. Accordingly, clarifying the mechanisms of virus-induced disruption of host gene expression is important for understanding virus–host cell interactions and virus pathogenesis. Three highly pathogenic human coronaviruses (CoVs), including severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2, have emerged in the past two decades. All of them encode nonstructural protein 1 (nsp1) in their genomes. Nsp1 of SARS-CoV and MERS-CoV exhibit common biological functions for inducing endonucleolytic cleavage of host mRNAs and inhibition of host translation, while viral mRNAs evade the nsp1-induced mRNA cleavage. SARS-CoV nsp1 is a major pathogenic determinant for this virus, supporting the notion that a viral protein that suppresses host gene expression can be a virulence factor, and further suggesting the possibility that SARS-CoV-2 nsp1, which has high amino acid identity with SARS-CoV nsp1, may serve as a major virulence factor. This review summarizes the gene expression suppression functions of nsp1 of CoVs, with a primary focus on SARS-CoV nsp1 and MERS-CoV nsp1.
Collapse
Affiliation(s)
- Keisuke Nakagawa
- Laboratory of Veterinary Microbiology, Joint Department of Veterinary Medicine, Gifu University, Gifu 501-1193, Japan;
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Correspondence: ; Tel.: +1-409-772-2323
| |
Collapse
|
9
|
Khodary SM, Anwar AM. Insights into The Codon Usage Bias of 13 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Isolates from Different Geo-locations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.01.019463. [PMID: 34013275 PMCID: PMC8132235 DOI: 10.1101/2020.04.01.019463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of Coronavirus disease 2019 (COVID-19) which is an infectious disease that spread throughout the world and was declared as a pandemic by the World Health Organization (WHO). In this study, we performed a genome-wide analysis on the codon usage bias (CUB) of 13 SARS-CoV-2 isolates from different geo-locations (countries) in an attempt to characterize it, unravel the main force shaping its pattern, and understand its adaptation to Homo sapiens . Overall results revealed that, SARS-CoV-2 codon usage is slightly biased similarly to other RNA viruses. Nucleotide and dinucleotide compositions displayed a bias toward A/U content in all codon positions and CpU-ended codons preference, respectively. Eight common putative preferred codons were identified, and all of them were A/U-ended (U-ended: 7, A-ended: 1). In addition, natural selection was found to be the main force structuring the codon usage pattern of SARS-CoV-2. However, mutation pressure and other factors such as compositional constraints and hydrophobicity had an undeniable contribution. Two adaptation indices were utilized and indicated that SARS-CoV-2 is moderately adapted to Homo sapiens compared to other human viruses. The outcome of this study may help in understanding the underlying factors involved in the evolution of SARS-CoV-2 and may aid in vaccine design strategies.
Collapse
|
10
|
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020; 92:401-402. [PMID: 31950516 PMCID: PMC7166628 DOI: 10.1002/jmv.25678] [Citation(s) in RCA: 1731] [Impact Index Per Article: 432.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/20/2022]
Affiliation(s)
- Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Charles W Stratton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic Platform, Shanghai, China
| |
Collapse
|
11
|
Laconi A, Weerts EAWS, Bloodgood JCG, Deniz Marrero JP, Berends AJ, Cocciolo G, de Wit JJ, Verheije MH. Attenuated live infectious bronchitis virus QX vaccine disseminates slowly to target organs distant from the site of inoculation. Vaccine 2020; 38:1486-1493. [PMID: 31822427 PMCID: PMC7115521 DOI: 10.1016/j.vaccine.2019.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 11/25/2022]
Abstract
Infectious bronchitis (IB) is a highly contagious respiratory disease of poultry, caused by the avian coronavirus infectious bronchitis virus (IBV). Currently, one of the most relevant genotypes circulating worldwide is IBV-QX (GI-19), for which vaccines have been developed by passaging virulent QX strains in embryonated chicken eggs. Here we explored the attenuated phenotype of a commercially available QX live vaccine, IB Primo QX, in specific pathogens free broilers. At hatch, birds were inoculated with QX vaccine or its virulent progenitor IBV-D388, and postmortem swabs and tissues were collected each day up to eight days post infection to assess viral replication and morphological changes. In the trachea, viral RNA replication and protein expression were comparable in both groups. Both viruses induced morphologically comparable lesions in the trachea, albeit with a short delay in the vaccinated birds. In contrast, in the kidney, QX vaccine viral RNA was nearly absent, which coincided with the lack of any morphological changes in this organ. This was in contrast to high viral RNA titers and abundant lesions in the kidney after IBV D388 infection. Furthermore, QX vaccine showed reduced ability to reach and replicate in conjunctivae and intestines including cloaca, resulting in significantly lower titers and delayed protein expression, respectively. Nephropathogenic IBVs might reach the kidney also via an ascending route from the cloaca, based on our observation that viral RNA was detected in the cloaca one day before detection in the kidney. In the kidney distal tubular segments, collecting ducts and ureter were positive for viral antigen. Taken together, the attenuated phenotype of QX vaccine seems to rely on slower dissemination and lower replication in target tissues other than the site of inoculation.
Collapse
Affiliation(s)
- A Laconi
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - E A W S Weerts
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - J C G Bloodgood
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - J P Deniz Marrero
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - A J Berends
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - G Cocciolo
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - J J de Wit
- GD Animal Health, Deventer, the Netherlands
| | - M H Verheije
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Pathogenesis and Diagnostic Approaches of Avian Infectious Bronchitis. Adv Virol 2016; 2016:4621659. [PMID: 26955391 PMCID: PMC4756178 DOI: 10.1155/2016/4621659] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
Infectious bronchitis (IB) is one of the major economically important poultry diseases distributed worldwide. It is caused by infectious bronchitis virus (IBV) and affects both galliform and nongalliform birds. Its economic impact includes decreased egg production and poor egg quality in layers, stunted growth, poor carcass weight, and mortality in broiler chickens. Although primarily affecting the respiratory tract, IBV demonstrates a wide range of tissues tropism, including the renal and reproductive systems. Thus, disease outcome may be influenced by the organ or tissue involved as well as pathotypes or strain of the infecting virus. Knowledge on the epidemiology of the prevalent IBV strains in a particular region is therefore important to guide control and preventions. Meanwhile previous diagnostic methods such as serology and virus isolations are less sensitive and time consuming, respectively; current methods, such as reverse transcription polymerase chain reaction (RT-PCR), Restriction Fragment Length Polymorphism (RFLP), and sequencing, offer highly sensitive, rapid, and accurate diagnostic results, thus enabling the genotyping of new viral strains within the shortest possible time. This review discusses aspects on pathogenesis and diagnostic methods for IBV infection.
Collapse
|
13
|
Huy NX, Kim SH, Yang MS, Kim TG. Immunogenicity of a neutralizing epitope from porcine epidemic diarrhea virus: M cell targeting ligand fusion protein expressed in transgenic rice calli. PLANT CELL REPORTS 2012; 31:1933-42. [PMID: 22736145 PMCID: PMC7080027 DOI: 10.1007/s00299-012-1306-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 05/11/2023]
Abstract
To increase immune responses of plant-based vaccines in intestine mucosal immune systems, a synthetic neutralizing epitope (sCOE) gene of porcine epidemic diarrhea virus (PEDV) was fused with M cell-targeting ligand (Co1) and introduced into a plant expression vector under the control of rice amylase 3D promoter. The sCOE-Co1 fusion gene was introduced into rice calli via the particle bombardment-mediated transformation method. The stable integration and transcriptional expression of the sCOE-Co1 fusion gene was confirmed by genomic DNA PCR amplification and Northern blot analysis, respectively. The expression of the COE-Co1 fusion protein was confirmed by immunoblot analysis. The highest expression level of the COE-Co1 fusion protein reached 0.083 % of the total soluble protein according to quantitative densitometry of Western blot analysis. Mice immunized with transgenic rice calli protein extracts induced significant serum IgG and fecal IgA antibody levels against purified bacterial COE. The systemic and mucosal immune responses were confirmed by measuring COE-specific IgG and IgA antibody-secreting cells in the lymphocytes extracted from the spleen and COE-specific IgA antibody-secreting cells in the Peyer's patches from immunized mice. These results indicated that oral immunization of plant-produced COE-Co1 fusion protein could elicit efficient systemic and mucosal immune responses against the COE antigen. Key message Neutralizing epitope from porcine epidemic diarrhea virus-M cell targeting ligand fusion protein was produced in transgenic rice calli and elicited systemic and mucosal immune responses by oral administration in mice.
Collapse
MESH Headings
- Administration, Oral
- Amylases/genetics
- Amylases/metabolism
- Animals
- Antibody-Producing Cells/immunology
- Enzyme-Linked Immunospot Assay
- Epitopes/immunology
- Female
- Genes, Synthetic
- Genetic Vectors
- Immunity, Mucosal
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Ligands
- Mast Cells/immunology
- Mice
- Mice, Inbred BALB C
- Oryza/enzymology
- Oryza/genetics
- Oryza/immunology
- Peyer's Patches/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Porcine epidemic diarrhea virus/immunology
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/immunology
- Transcription, Genetic
- Transformation, Genetic
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
Collapse
Affiliation(s)
- Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
- Department of Techno-pedagogy, Hue University’s College of Education, 34 Le Loi St, Hue, Vietnam
| | - Sae-Hae Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
- Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Tae-Geum Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
- Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| |
Collapse
|
14
|
Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res 2007; 38:281-97. [PMID: 17296157 DOI: 10.1051/vetres:2006055] [Citation(s) in RCA: 657] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 09/22/2006] [Indexed: 01/05/2023] Open
Abstract
Infectious bronchitis virus (IBV), the coronavirus of the chicken (Gallus gallus), is one of the foremost causes of economic loss within the poultry industry, affecting the performance of both meat-type and egg-laying birds. The virus replicates not only in the epithelium of upper and lower respiratory tract tissues, but also in many tissues along the alimentary tract and elsewhere e.g. kidney, oviduct and testes. It can be detected in both respiratory and faecal material. There is increasing evidence that IBV can infect species of bird other than the chicken. Interestingly breeds of chicken vary with respect to the severity of infection with IBV, which may be related to the immune response. Probably the major reason for the high profile of IBV is the existence of a very large number of serotypes. Both live and inactivated IB vaccines are used extensively, the latter requiring priming by the former. Their effectiveness is diminished by poor cross-protection. The nature of the protective immune response to IBV is poorly understood. What is known is that the surface spike protein, indeed the amino-terminal S1 half, is sufficient to induce good protective immunity. There is increasing evidence that only a few amino acid differences amongst S proteins are sufficient to have a detrimental impact on cross-protection. Experimental vector IB vaccines and genetically manipulated IBVs--with heterologous spike protein genes--have produced promising results, including in the context of in ovo vaccination.
Collapse
Affiliation(s)
- Dave Cavanagh
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, United Kingdom.
| |
Collapse
|
15
|
Abstract
The number of avian species in which coronaviruses have been detected has doubled in the past couple of years. While the coronaviruses in these species have all been in coronavirus Group 3, as for the better known coronaviruses of the domestic fowl (infectious bronchitis virus [IBV], in Gallus gallus), turkey (Meleagris gallopavo) and pheasant (Phasianus colchicus), there is experimental evidence to suggest that birds are not limited to infection with Group 3 coronaviruses. In China coronaviruses have been isolated from peafowl (Pavo), guinea fowl (Numida meleagris; also isolated in Brazil), partridge (Alectoris) and also from a non-gallinaceous bird, the teal (Anas), all of which were being reared in the vicinity of domestic fowl. These viruses were closely related in genome organization and in gene sequences to IBV. Indeed, gene sequencing and experimental infection of chickens indicated that the peafowl isolate was the H120 IB vaccine strain, while the teal isolate was possibly a field strain of a nephropathogenic IBV. Thus the host range of IBV does extend beyond the chicken. Most recently, Group 3 coronaviruses have been detected in greylag goose (Anser anser), mallard duck (Anas platyrhynchos) and pigeon (Columbia livia). It is clear from the partial genome sequencing of these viruses that they are not IBV, as they have two additional small genes near the 3' end of the genome. Twenty years ago a coronavirus was isolated after inoculation of mice with tissue from the coastal shearwater (Puffinus puffinus). While it is not certain whether the virus was actually from the shearwater or from the mice, recent experiments have shown that bovine coronavirus (a Group 2 coronavirus) can infect and also cause enteric disease in turkeys. Experiments with some Group 1 coronaviruses (all from mammals, to date) have shown that they are not limited to replicating or causing disease in a single host. SARS-coronavirus has a wide host range. Clearly there is the potential for the emergence of new coronavirus diseases in domestic birds, from both avian and mammalian sources. Modest sequence conservation within gene 1 has enabled the design of oligonucleotide primers for use in diagnostic reverse transcriptase-polymerase chain reactions, which will be useful for the detection of new coronaviruses.
Collapse
Affiliation(s)
- Dave Cavanagh
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, UK.
| |
Collapse
|