1
|
Sultana T, Mahato M, Tohora N, Ahamed S, Maiti A, Das SK. A Phenanthroimidazole-Based Luminophore for Selective and Specific Identification of Sarin Simulant, Diethylchlorophosphate. J Fluoresc 2024:10.1007/s10895-024-03631-x. [PMID: 38421600 DOI: 10.1007/s10895-024-03631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
The simplicity of synthesis, significant toxicity of organophosphorus-containing nerve agents, and ease of use of their in-terrorism attacks highlight the necessity to create efficient probes and precise methods for detecting these chemicals. This study developed luminogenic probe 4-(1 H-phenanthrene imidazole-2-yl) benzaldehyde, PB for selectively recognizing lethal chemical sarin mimicking diethylchlorophosphate (DCP) with µM detection limit. Following the addition of DCP to the PB solution, the fluorescence changed from bluish-cyan to green simultaneously; after the insertion of triethylamine (TEA) into the PB-DCP phosphorylated solution, the fluorescence of the original one came back, and it occurred five times. A paper strip-based test kit and dip-stick experiments have been executed to demonstrate the practical applicability of our sensor PB and instant, on-site recognition of the target analyte DCP. An experiment has been investigated using a smartphone and red-green-blue (RGB) color analysis, which offers a novel way for the fast, on-site visual detection and quantification of DCP in actual samples. It also reduces equipment costs, speeds up detection times, and substantially simplifies the operation procedure.
Collapse
Affiliation(s)
- Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
2
|
Nizou G, Garda Z, Molnár E, Esteban-Gómez D, Le Fur M, Fougère O, Rousseaux O, Platas-Iglesias C, Tripier R, Tircsó G, Beyler M. Exploring the Limits of Ligand Rigidification in Transition Metal Complexes with Mono- N-Functionalized Pyclen Derivatives. Inorg Chem 2024; 63:3931-3947. [PMID: 38348851 DOI: 10.1021/acs.inorgchem.3c04451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We report the synthesis of a new family of side-bridged pyclen ligands. The incorporation of an ethylene bridge between two adjacent nitrogen atoms was reached from the pyclen-oxalate precursor described previously. Three new side-bridged pyclen macrocycles, Hsb-3-pc1a, sb-3-pc1py, and Hsb-3-pc1pa, were obtained with the aim to assess their coordination properties toward Cu2+ and Zn2+ ions. We also prepared their nonreinforced analogues H3-pc1a, 3-pc1py, and H3-pc1pa as comparative benchmarks. The two series of ligands were characterized and their coordination properties were investigated in detail. The Zn2+ and Cu2+ complexes with the nonside-bridged series H3-pc1a, 3-pc1py, and H3-pc1pa were successfully isolated and their structures were assessed by X-ray diffraction studies. In the case of the side-bridged family, the synthesis of the complexes was far more difficult and, in some cases, unsuccessful. The results of our studies demonstrate that this difficulty is related to the extreme stiffening and basicity of such side-bridged pyclens.
Collapse
Affiliation(s)
- Gwladys Nizou
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Zoltán Garda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Enikő Molnár
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - David Esteban-Gómez
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Mariane Le Fur
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Olivier Fougère
- Groupe Guerbet, Centre de Recherche d'Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Olivier Rousseaux
- Groupe Guerbet, Centre de Recherche d'Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Carlos Platas-Iglesias
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| |
Collapse
|
3
|
Sultana T, Mahato M, Tohora N, Ahamed S, Maiti A, Ghanta S, Das SK. A benzoxazole-triphenylamine conjugated fluorogenic probe for specific detection of sarin gas mimic diethylchlorophosphate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:759-771. [PMID: 38227020 DOI: 10.1039/d3ay01819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In this study, an excellent chromo-fluorogenic PMPA probe, (E)-4-(((4-(benzoxazole-2-yl)phenyl)imino)methyl)-N,N-diphenylamine, is introduced for the detection of sarin gas mimic diethyl chlorophosphate (DCP) in solution and gaseous phases. On adding DCP into PMPA solution in a pure DMSO and water-DMSO (4 : 1) medium, it exhibits a hypsochromic shift from yellow to colorless and from no fluorescence to highly intense blue-violet photoluminescence via the formation of a phosphorylated PMPA-DCP product due to the inhibition of intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) mechanism. The sensor could detect DCP in the presence of several other notorious guest analytes with a detection limit in the μM range. Moreover, to accomplish the on-spot detection of DCP and explore the practical applicability of the probe, a paper strip-based test kit, "dip-stick" method, and, more interestingly, a real sample analysis was demonstrated in spiked soil samples.
Collapse
Affiliation(s)
- Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Barjala, Jirania, Agartala, Tripura 799046, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| |
Collapse
|
4
|
Maji A, Biswas A, Bera B, Mondal TK. A chemodosimetric approach for the visual detection of nerve agent simulant diethyl chlorophosphate (DCP) in liquid and vapour phase. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6417-6424. [PMID: 37966884 DOI: 10.1039/d3ay01296d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In this work, a novel fluorescent ratiometric switch, 8-((6-(1H-benzo[d]imidazol-2-yl)pyridin-2-yl)methoxy)quinoline (BIPQ), has been introduced for sensing an organophosphorus (OP) chemical vapor threat, diethyl chlorophosphate (DCP), the low-toxic mimic of the real nerve agent sarin (GB). BIPQ is efficient at detecting DCP in both solution and gaseous phase and has potential practical application with high sensitivity and selectivity. The probe shows significant ratiometric emission in the presence of DCP along with a distinct color change from blue to cyan under UV light. The sensing mechanism of the chemodosimeter is based on the generation of a new adduct, BIPQ-DCP, through a nucleophilic substitution reaction with DCP followed by a ring-closure process to form the final product. The detection limit of BIPQ for DCP was determined to be in the order of 10-8 (M) in the liquid state. DFT and TDDFT computational techniques were carried out in order to interpret the electronic properties theoretically.
Collapse
Affiliation(s)
- Atanu Maji
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | - Amitav Biswas
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | - Biswajit Bera
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | | |
Collapse
|
5
|
Hamon N, Godec L, Jourdain E, Lucio-Martínez F, Platas-Iglesias C, Beyler M, Charbonnière LJ, Tripier R. Synthesis and Photophysical Properties of Lanthanide Pyridinylphosphonic Tacn and Pyclen Derivatives: From Mononuclear Complexes to Supramolecular Heteronuclear Assemblies. Inorg Chem 2023; 62:18940-18954. [PMID: 37935007 DOI: 10.1021/acs.inorgchem.3c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Synthetic methodologies were developed to achieve the preparation of ligands L1 and L2 consisting of tacn- and pyclen-based chelators decorated with pyridinylphosphonic pendant arms combined with ethylpicolinamide or acetate coordinating functions, respectively. Phosphonate functions have been selected for their high affinity toward Ln3+ ions compared to their carboxylated counterparts and for their steric hindrance that favors the formation of less-hydrated complexes. Thanks to regiospecific N-functionalization of the macrocyclic backbones, the two ligands were isolated with good yields and implicated in a comprehensive photophysical study for the complexation of Eu3+, Tb3+, and Yb3+. The coordination behavior of L1 and L2 with these cations has been first investigated by means of a combination of UV-vis absorption spectroscopy, steady-state and time-resolved luminescence spectroscopy, and 1H and 31P NMR titration experiments. Structural characterization in solution was assessed by NMR spectroscopy, corroborated by theoretical calculations. Spectroscopic characterization of the Ln3+ complexes of L1 and L2 was done in water and D2O and showed the effective sensitization of the lanthanide metal-centered emission spectra, each exhibiting typical lanthanide emission bands. The results obtained for the phosphonated ligands were compared with those reported previously for the corresponding carboxylated analogues.
Collapse
Affiliation(s)
- Nadège Hamon
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Léna Godec
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Elsa Jourdain
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Fátima Lucio-Martínez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña 15008, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña 15008, Spain
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Loïc J Charbonnière
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| |
Collapse
|
6
|
Leygue N, Picard C, Faure P, Bourrier E, Lamarque L, Zwier JM, Galaup C. Design of novel tripyridinophane-based Eu(III) complexes as efficient luminescent labels for bioassay applications. Org Biomol Chem 2021; 20:182-195. [PMID: 34878481 DOI: 10.1039/d1ob02092g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the development of highly luminescent europium(III) complexes in water solution is reported, including their syntheses, analyses of their photophysical properties and applications in bioassays. Three Eu(III) complexes are derived from new ligands based on a tripyridinophane platform. There are four distinct sections in the structure of these ligands: an 18-membered polyaminocarboxylic macrocycle to bind efficiently lanthanide ions in aqueous solutions, three chromophoric subunits (4-(phenylethynyl)pyridine moieties) to effectively sensitize the emission of the metal, two peripheral moieties to solubilise the complex in aqueous media (sulfonate, sulfobetaine or glucose groups) and a free NH2 group available for grafting or bioconjugation. In our synthetic procedure, a pivotal macrocyclic platform is obtained with a high yield in the crucial macrocyclization step due to a metal template ion effect (74% yield). In Tris aqueous buffer (pH 7.4), the Eu(III) complexes show a maximum excitation wavelength at 320 nm, a suitable overall quantum yield (14%), a relatively long lifetime (0.80 ms) and a one-photon brightness in the range of 10 000 M-1 cm-1. Importantly, these photophysical properties are retained at dilute concentrations, even in the presence of a very large excess of potentially competing species, such as EDTA or Mg2+ ions. Furthermore, we report the bioconjugation of a Eu(III) complex labelled by an N-hydroxysuccinimide ester reactive group with an antibody (anti-glutathione-S-transferase) and the successful application of the corresponding antibody conjugate in the detection of GST-biotin in a fluoroimmunoassay. These new complexes provide a solution for high sensitivity in Homogeneous Time-Resolved Fluorescence (HTRF®) bioassays.
Collapse
Affiliation(s)
- Nadine Leygue
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Claude Picard
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Pamela Faure
- Cisbio Bioassays, BP 84175, 30200 Codolet, France.
| | | | | | | | - Chantal Galaup
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
7
|
Mouchel Dit Leguerrier D, Barré R, Molloy J, Thomas F. Lanthanide complexes as redox and ROS/RNS probes: A new paradigm that makes use of redox-reactive and redox non-innocent ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Galaup C, Picard C, Couderc F, Gilard V, Collin F. Luminescent lanthanide complexes for reactive oxygen species biosensing and possible application in Alzheimer's diseases. FEBS J 2021; 289:2516-2539. [PMID: 33811448 DOI: 10.1111/febs.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Histopathological hallmarks of Alzheimer's disease (AD) are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the aggregated amyloid-beta peptide along with metal ions (copper, iron or zinc). In addition, oxidative stress is considered as an important factor in the etiology of AD and a multitude of metalloproteins and transporters is affected, leading to metal ion misregulation. Redox-active metal ions (e.g., copper) can catalyze the production of reactive oxygen species (ROS) in the presence of molecular oxygen and a reductant such as ascorbate. The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative stress conditions. Thus, detecting ROS in vivo or in biological models of AD is of interest for better understanding AD etiology. The use of biocompatible and highly specific and sensitive probes is needed for such a purpose, since ROS are transient species whose steady-state concentrations are very low. Luminescent lanthanide complexes are sensitive probes that can meet these criteria. The present review focuses on the recent advances in the use of luminescent lanthanide complexes for ROS biosensing. It shows why the use of luminescent lanthanide complexes is of particular interest for selectively detecting ROS ( O 2 · - , HO• , 1 O2 , H2 O2 , etc.) in biological samples in the µM-nM range. It particularly focuses on the most recent strategies and discusses what could be expected with the use of luminescent lanthanide complexes for better understanding some of the molecular mechanisms underlying the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Chantal Galaup
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - Claude Picard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - François Couderc
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Véronique Gilard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| |
Collapse
|
9
|
Arumugam S, Kumar Kushvaha S, Shankar B, Gorantla SMNVT, Roy S, Sana B, Khuntia P, Chandra Mondal K. Tuning Nuclearity of Dysprosium (III) Complexes by Controlling Substitution on Ligand Molecule. ChemistrySelect 2020. [DOI: 10.1002/slct.202001766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
pH dependence of water anomaly temperature investigated by Eu(III) cryptate luminescence. Anal Bioanal Chem 2019; 412:73-80. [PMID: 31776644 DOI: 10.1007/s00216-019-02215-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
Although water has been extensively studied, not all of its unique properties have been fully understood. There is still controversy about the temperature at which hydrogen bonds are broken or weakened, producing the anomalous temperature dependence of many water properties. Different temperatures between 23 and 48 °C have been reported, but no study has scrutinized the reasons for this discrepancy. We suggest the determining role of pH in the alteration of the water anomaly temperature. We employed a luminescent europium trisbipyridine cryptate, which is highly sensitive to changes in the arrangement of water molecules and whose luminescence intensity and lifetime are not significantly influenced by variations over a broad pH range. Our results revealed an increase of the crossover temperature from circa 35 °C at pH 3.5 to circa 45 °C at pH 7 to 9, which explains the discrepancies of previous studies. The pH dependence of water anomaly temperature is an important property for a better understanding of water and water-based systems and applications.
Collapse
|
11
|
Gharami S, Aich K, Das S, Patra L, Mondal TK. Facile detection of organophosphorus nerve agent mimic (DCP) through a new quinoline-based ratiometric switch. NEW J CHEM 2019. [DOI: 10.1039/c9nj02218j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here a new quinoline-based (BIMQ) probe was developed which displayed ratiometric detection of organophosphorus chemical vapor threat, DCP.
Collapse
Affiliation(s)
- Saswati Gharami
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Krishnendu Aich
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sangita Das
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Lakshman Patra
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | | |
Collapse
|
12
|
Cho U, Riordan DP, Ciepla P, Kocherlakota KS, Chen JK, Harbury PB. Ultrasensitive optical imaging with lanthanide lumiphores. Nat Chem Biol 2018; 14:15-21. [PMID: 29106397 PMCID: PMC5726931 DOI: 10.1038/nchembio.2513] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/02/2017] [Indexed: 11/12/2022]
Abstract
In principle, the millisecond emission lifetimes of lanthanide chelates should enable their ultrasensitive detection in biological systems by time-resolved optical microscopy. In practice, however, lanthanide imaging techniques have provided no better sensitivity than conventional fluorescence microscopy. Here, we identified three fundamental problems that have impeded lanthanide microscopy: low photon flux, inefficient excitation, and optics-derived background luminescence. We overcame these limitations with a new lanthanide imaging modality, transreflected illumination with luminescence resonance energy transfer (trLRET), which increases the time-integrated signal intensities of lanthanide lumiphores by 170-fold and the signal-to-background ratios by 75-fold. We demonstrate that trLRET provides at least an order-of-magnitude increase in detection sensitivity over that of conventional epifluorescence microscopy when used to visualize endogenous protein expression in zebrafish embryos. We also show that trLRET can be used to optically detect molecular interactions in vivo. trLRET promises to unlock the full potential of lanthanide lumiphores for ultrasensitive, autofluorescence-free biological imaging.
Collapse
Affiliation(s)
- Ukrae Cho
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel P. Riordan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Paulina Ciepla
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kiranmai S. Kocherlakota
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James K. Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Pehr B. Harbury
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
13
|
Ali SS, Gangopadhyay A, Maiti K, Mondal S, Pramanik AK, Guria UN, Uddin MR, Mandal S, Mandal D, Mahapatra AK. A chromogenic and ratiometric fluorogenic probe for rapid detection of a nerve agent simulant DCP based on a hybrid hydroxynaphthalene–hemicyanine dye. Org Biomol Chem 2017; 15:5959-5967. [DOI: 10.1039/c7ob01252g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new cyanine dye (CYD) has been synthesized for DCP sensing.
Collapse
Affiliation(s)
- Syed Samim Ali
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Ankita Gangopadhyay
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Kalipada Maiti
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Sanchita Mondal
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Ajoy Kumar Pramanik
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Uday Narayan Guria
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Md. Raihan Uddin
- Department of Microbiology
- University of Calcutta
- Kolkata- 700019
- India
| | - Sukhendu Mandal
- Department of Microbiology
- University of Calcutta
- Kolkata- 700019
- India
| | - Debasish Mandal
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Israel
| | - Ajit Kumar Mahapatra
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| |
Collapse
|
14
|
Yadav M, Mondal A, Mereacre V, Jana SK, Powell AK, Roesky PW. Tetranuclear and Pentanuclear Compounds of the Rare-Earth Metals: Synthesis and Magnetism. Inorg Chem 2015. [DOI: 10.1021/acs.inorgchem.5b00899] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Munendra Yadav
- Institut
für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Abhishake Mondal
- Institut
für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Valeriu Mereacre
- Institut
für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Salil Kumar Jana
- Institut
für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Annie K. Powell
- Institut
für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Postfach 3640, D-76021 Karlsruhe, Germany
| | - Peter W. Roesky
- Institut
für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| |
Collapse
|
15
|
Cosquer G, Pointillart F, Jung J, Le Guennic B, Golhen S, Cador O, Guyot Y, Brenier A, Maury O, Ouahab L. Alkylation Effects in Lanthanide Complexes Involving Tetrathiafulvalene Chromophores: Experimental and Theoretical Correlation between Magnetism and Near-Infrared Emission. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201301358] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Alzakhem N, Bischof C, Seitz M. Dependence of the Photophysical Properties on the Number of 2,2′-Bipyridine Units in a Series of Luminescent Europium and Terbium Cryptates. Inorg Chem 2012; 51:9343-9. [DOI: 10.1021/ic3010568] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicola Alzakhem
- Inorganic Chemistry I, Department
of Chemistry and
Biochemistry, Ruhr-University Bochum, 44780
Bochum, Germany
| | - Caroline Bischof
- Inorganic Chemistry I, Department
of Chemistry and
Biochemistry, Ruhr-University Bochum, 44780
Bochum, Germany
| | - Michael Seitz
- Inorganic Chemistry I, Department
of Chemistry and
Biochemistry, Ruhr-University Bochum, 44780
Bochum, Germany
| |
Collapse
|
17
|
Doffek C, Alzakhem N, Molon M, Seitz M. Rigid, Perdeuterated Lanthanoid Cryptates: Extraordinarily Bright Near-IR Luminophores. Inorg Chem 2012; 51:4539-45. [DOI: 10.1021/ic202376k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Christine Doffek
- Inorganic
Chemistry I and ‡Inorganic Chemistry II, Department of Chemistry and
Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Nicola Alzakhem
- Inorganic
Chemistry I and ‡Inorganic Chemistry II, Department of Chemistry and
Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Mariusz Molon
- Inorganic
Chemistry I and ‡Inorganic Chemistry II, Department of Chemistry and
Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Michael Seitz
- Inorganic
Chemistry I and ‡Inorganic Chemistry II, Department of Chemistry and
Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|