1
|
Yehia D, Leung C, Sin DD. Clinical utilization of airway inflammatory biomarkers in the prediction and monitoring of clinical outcomes in patients with chronic obstructive pulmonary disease. Expert Rev Mol Diagn 2024; 24:409-421. [PMID: 38635513 DOI: 10.1080/14737159.2024.2344777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) accounts for 545 million people living with chronic respiratory disorders and is the third leading cause of morbidity and mortality around the world. COPD is a progressive disease, characterized by episodes of acute worsening of symptoms such as cough, dyspnea, and sputum production. AREAS COVERED Airway inflammation is a prominent feature of COPD. Chronic airway inflammation results in airway structural remodeling and emphysema. Persistent airway inflammation is a treatable trait of COPD and plays a significant role in disease development and progression. In this review, the authors summarize the current and emerging biomarkers that reveal the heterogeneity of airway inflammation subtypes, clinical outcomes, and therapeutic response in COPD. EXPERT OPINION Airway inflammation can be broadly categorized as eosinophilic (type 2 inflammation) and non-eosinophilic (non-type 2 inflammation) in COPD. Currently, blood eosinophil counts are incorporated in clinical practice guidelines to identify COPD patients who are at a higher risk of exacerbations and lung function decline, and who are likely to respond to inhaled corticosteroids. As new therapeutics are being developed for the chronic management of COPD, it is essential to identify biomarkers that will predict treatment response.
Collapse
Affiliation(s)
- Dina Yehia
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Deng L, Yan J, Xu H, Huang C, Lv Y, Wu Q, Xu Y, Chen X. Prediction of exacerbation frequency of AECOPD based on next-generation sequencing and its relationship with imbalance of lung and gut microbiota: a protocol of a prospective cohort study. BMJ Open 2021; 11:e047202. [PMID: 34475159 PMCID: PMC8413946 DOI: 10.1136/bmjopen-2020-047202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Patients with frequent acute exacerbation phenotype chronic obstructive pulmonary disease (AECOPD) have a higher hospitalisation rate than infrequent exacerbation, the disease progresses quickly and treatment is more difficult. At present, it is impossible to predict patients with COPD with frequent acute exacerbation phenotypes. The composition of the lower respiratory tract flora and the intestinal flora is closely related to AECOPD, but the specific association mechanism between them is not very clear. This study used metagenomic next-generation sequencing (mNGS) technology to explore the microbial characteristics of the intestinal tract and airways of patients with COPD, and analyse the correlation between the sequencing results and inflammatory factors, immune factors and nutritional factors. METHODS AND ANALYSIS This will be a prospective cohort study. We intend to recruit 152 patients with stable COPD. In the baseline, we will detect the participants' induced sputum and faecal flora through mNGS, and changes in blood immune levels, and the patient's condition is evaluated. Every 2 months, we will check the number of acute exacerbation through the phone range. After 12 months, we will check again the changes in the blood immune level, evaluate the patient's condition and count the number of episodes. ETHICS AND DISSEMINATION This study has been approved by the ethics committee of Guangdong Provincial Hospital of Traditional Chinese Medicine (approval number ZF2019-219-03). The results of the study will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (ChiCTR2000032870).
Collapse
Affiliation(s)
- Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiali Yan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Huachong Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunzhen Huang
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yiwen Lv
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qianxin Wu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yinji Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Pavón-Romero GF, Serrano-Pérez NH, García-Sánchez L, Ramírez-Jiménez F, Terán LM. Neuroimmune Pathophysiology in Asthma. Front Cell Dev Biol 2021; 9:663535. [PMID: 34055794 PMCID: PMC8155297 DOI: 10.3389/fcell.2021.663535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammation of lower airway disease, characterized by bronchial hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides (NP) in this disease has been less explored in comparison with inflammatory mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP], neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide [CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise, the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY). These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However, CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1 axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease inflammatory mediators, suggesting that regulating the effects of NT/NP represents a potential novel approach for the treatment of asthma.
Collapse
Affiliation(s)
| | | | | | | | - Luis M. Terán
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
4
|
Zucchi JW, Franco EAT, Schreck T, Castro e Silva MH, Migliorini SRDS, Garcia T, Mota GAF, de Morais BEB, Machado LHS, Batista ANR, de Paiva SAR, de Godoy I, Tanni SE. Different Clusters in Patients with Chronic Obstructive Pulmonary Disease (COPD): A Two-Center Study in Brazil. Int J Chron Obstruct Pulmon Dis 2020; 15:2847-2856. [PMID: 33192058 PMCID: PMC7654519 DOI: 10.2147/copd.s268332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/06/2020] [Indexed: 11/23/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has a functional definition. However, differences in clinical characteristics and systemic manifestations make COPD a heterogeneous disease and some manifestations have been associated with different risks of acute exacerbations, hospitalizations, and death. Objective Therefore, the objective of the study was to evaluate possible clinical clusters in COPD at two study centers in Brazil and identify the associated exacerbation and mortality rate during 1 year of follow-up. Methods We included patients with COPD and all underwent an evaluation composed of the Charlson Index, body mass index (BMI), current pharmacological treatment, smoking history (packs-year), history of exacerbations/hospitalizations in the last year, spirometry, six-minute walking test (6MWT), quality of life questionnaires, dyspnea, and hospital anxiety and depression scale. Blood samples were also collected for measurements of C-reactive protein (CRP), blood gases, laboratory analysis, and blood count. For the construction of the clusters, 13 continuous variables of clinical importance were considered: hematocrit, CRP, triglycerides, low density lipoprotein, absolute number of peripheral eosinophils, age, pulse oximetry, BMI, forced expiratory volume in the first second, dyspnea, 6MWD, total score of the Saint George Respiratory Questionnaire and packs-year of smoking. We used the Ward and K-means methods and determined the best silhouette value to identify similarities of individuals within the cluster (cohesion) in relation to the other clusters (separation). The number of clusters was determined by the heterogeneity values of the cluster, which in this case was determined as four clusters. Results We evaluated 301 COPD patients and identified four different groups of COPD patients. The first cluster (203 patients) was characterized by fewer symptoms and lower functional severity of the disease, the second cluster by higher values of peripheral eosinophils, the third cluster by more systemic inflammation and the fourth cluster by greater obstructive severity and worse gas exchange. Cluster 2 had an average of 959±3 peripheral eosinophils, cluster 3 had a higher prevalence of nutritional depletion (46.1%), and cluster 4 had a higher BODE index. Regarding the associated comorbidities, we found that only obstructive sleep apnea syndrome and pulmonary thromboembolism were more prevalent in cluster 4. Almost 50% of all patients presented an exacerbation during 1 year of follow-up. However, it was higher in cluster 4, with 65% of all patients having at least one exacerbation. The mortality rate was statistically higher in cluster 4, with 26.9%, vs 9.6% in cluster 1. Conclusion We could identify four clinical different clusters in these COPD populations, that were related to different clinical manifestations, comorbidities, exacerbation, and mortality rate. We also identified a specific cluster with higher values of peripheral eosinophils.
Collapse
Affiliation(s)
- José William Zucchi
- Pulmonology Division of Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Thomas Schreck
- Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Faculty of Business Studies, Regensburg, German
| | | | | | - Thaís Garcia
- Pulmonology Division of Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | | | | | | | - Irma de Godoy
- Pulmonology Division of Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Suzana Erico Tanni
- Pulmonology Division of Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
5
|
Berghi NO, Dumitru M, Vrinceanu D, Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R, Tucureanu C, Cornateanu RS, Giurcaneanu C. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med 2020; 20:2352-2360. [PMID: 32765714 PMCID: PMC7401840 DOI: 10.3892/etm.2020.8961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases have been classified in the last decades using various theories. The main classes of the newest classification in allergic respiratory diseases focus on the characterization of the endotype (which takes into account biomarkers related to determinant pathophysiological mechanisms) and of the phenotype (based on the description of the disease). Th2, Th1 and Th17 lymphocytes and the type of inflammatory response mediated by them represent the basis for Th2 and non-Th2 endotype classification. In addition, new lymphocytes were also used to characterize allergic diseases: Th9 lymphocytes, Th22 lymphocytes, T follicular helper cells (TFH) lymphocytes and invariant natural killer T (iNKT) lymphocytes. In the last decade, a growing body of evidence focused on chemokines, chemoattractant cytokines, which seems to have an important contribution to the pathogenesis of this pathology. This review presents the interactions between chemokines and Th lymphocytes in the context of Th2/non-Th2 endotype classification of respiratory allergies.
Collapse
Affiliation(s)
- Nicolae Ovidiu Berghi
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| | - Mihai Dumitru
- Anatomy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Vrinceanu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | | | - Anca Simioniuc-Petrescu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | - Ramona Caragheorgheopol
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Catalin Tucureanu
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Roxana Sfrent Cornateanu
- Department of Physiopathology and Immunology, 'Carol Davila' University of Medicine and Pharmacy, 041914 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| |
Collapse
|
6
|
Moermans C, Deliege E, Pirottin D, Poulet C, Guiot J, Henket M, da Silva J, Louis R. Suitable reference genes determination for real-time PCR using induced sputum samples. Eur Respir J 2019; 54:13993003.00644-2018. [PMID: 31601710 DOI: 10.1183/13993003.00644-2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/13/2019] [Indexed: 11/05/2022]
Abstract
Induced sputum is a non-invasive method of collecting cells from airways. Gene expression analysis from sputum cells has been used to understand the underlying mechanisms of airway diseases such as asthma or chronic obstructive pulmonary disease (COPD). Suitable reference genes for normalisation of target mRNA levels between sputum samples have not been defined so far.The current study assessed the expression stability of nine common reference genes in sputum samples from 14 healthy volunteers, 12 asthmatics and 12 COPD patients.Using three different algorithms (geNorm, NormFinder and BestKeeper), we identified HPRT1 and GNB2L1 as the most optimal reference genes to use for normalisation of quantitative reverse transcriptase (RT) PCR data from sputum cells. The higher expression stability of HPRT1 and GNB2L1 were confirmed in a validation set of patients including nine healthy controls, five COPD patients and five asthmatic patients. In this group, the RNA extraction and RT-PCR methods differed, which attested that these genes remained the most reliable whatever the method used to extract the RNA, generate complementary DNA or amplify it.Finally, an example of relative quantification of gene expression linked to eosinophils or neutrophils provided more accurate results after normalisation with the reference genes identified as the most stable compared to the least stable and confirmed our findings.
Collapse
Affiliation(s)
- Catherine Moermans
- Dept of Pneumology-Allergology, CHU of Liege, Liege, Belgium.,I3 group, GIGA Research Center, University of Liege, Liege, Belgium
| | | | - Dimitri Pirottin
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christophe Poulet
- Unit of Human Genetics, GIGA Research Center, University of Liege, Liege, Belgium
| | - Julien Guiot
- Dept of Pneumology-Allergology, CHU of Liege, Liege, Belgium.,I3 group, GIGA Research Center, University of Liege, Liege, Belgium
| | - Monique Henket
- Dept of Pneumology-Allergology, CHU of Liege, Liege, Belgium.,I3 group, GIGA Research Center, University of Liege, Liege, Belgium
| | - Jane da Silva
- Post-graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Renaud Louis
- Dept of Pneumology-Allergology, CHU of Liege, Liege, Belgium.,I3 group, GIGA Research Center, University of Liege, Liege, Belgium
| |
Collapse
|
7
|
Ren X, Wu J, Levin D, Santos S, de Faria RL, Zhang M, Lin F. Sputum from chronic obstructive pulmonary disease patients inhibits T cell migration in a microfluidic device. Ann N Y Acad Sci 2019; 1445:52-61. [PMID: 30891781 DOI: 10.1111/nyas.14029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common lung disease characterized by narrowed airways, resulting in serious breathing difficulty. Previous studies have demonstrated that inflammatory infiltration of leukocytes in the airway is associated with the pathogenesis of COPD. In the present study, we employed a microfluidic approach to assess the effect of COPD sputum on activated human peripheral blood T cell migration and chemotaxis under well-controlled gradient conditions. Our results showed considerable basal migration of T cells derived from peripheral blood of COPD patients and healthy controls in the medium control groups. By contrast, the migration of T cells from COPD patients and healthy controls was significantly inhibited in the presence of a gradient of sputum supernatant from COPD patients. Furthermore, chemotaxis of T cells from COPD patients or healthy subjects toward an SDF-1α gradient was clearly inhibited by sputum samples from the COPD patients. The inhibition effect revealed by the microfluidic cell migration experiments provides new information about the complex involvement of T cell trafficking in COPD.
Collapse
Affiliation(s)
- Xiaoou Ren
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Susy Santos
- The Victoria Institute of Clinical Research & Evaluation, Victoria General Hospital, Winnipeg, Manitoba, Canada
| | - Ricardo Lobato de Faria
- Department of Emergency and Wellness Institute, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada
| | - Michael Zhang
- Department of Emergency and Wellness Institute, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Paplińska-Goryca M, Nejman-Gryz P, Proboszcz M, Kwiecień I, Hermanowicz-Salamon J, Grabczak EM, Krenke R. Expression of TSLP and IL-33 receptors on sputum macrophages of asthma patients and healthy subjects. J Asthma 2018; 57:1-10. [PMID: 30588853 DOI: 10.1080/02770903.2018.1543435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: Local cytokine milieu (especially Th2 inflammatory type) secreted into the asthmatic airways affect the alternative activated macrophages polarization (M2). TSLP and IL-33 are important alarmins of allergic response associated with Th2 inflammation. The aim of the study was to investigate the expression of the receptors for epithelial derived cytokines: TSLP (TSLPR) and IL-33 (ST2) on induced sputum CD206 positive macrophages from asthma and healthy subjects and analyze the relationships between these receptors and clinical features of the disease. Methods: Immunofluorescence staining for CD206 and TSLPR or ST2 on sputum macrophages was performed in 20 adult patients with stable asthma - 75% with atopy (3 intermittent, 12 mild-to-moderate, 5 severe, of which 11 were on biological anty-IgE treatment) and 23 healthy adult controls - 48% with atopy. Results: Our study demonstrated an increased expression of TSLP and IL-33 receptors on bronchial CD206 positive macrophages in asthma group. TSLPR but not ST2 had also greater expression on CD206 negative macrophages in asthma patients. Increased expression of both investigated receptors was related to longer disease duration and impaired lung function. We observed increased count of CD206lowTSLPhigh macrophages as well as positive correlation of these cells with total serum IgE in patients with atopy. Conclusions: The macrophage response during allergic reaction is likely to be connected with TSLP but rather not with IL-33 action. Our study indicates an important role of crosstalk between macrophages, TSLP and IL-33 in asthma pathophysiology.
Collapse
Affiliation(s)
- Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Kwiecień
- Department of Internal Medicine and Hematology, Laboratory of Flow Cytometry and Hematology, Military Medical Institute, Warsaw, Poland
| | - Joanna Hermanowicz-Salamon
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Elżbieta M Grabczak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
de Llano LP, Cosío BG, Iglesias A, de Las Cuevas N, Soler-Cataluña JJ, Izquierdo JL, López-Campos JL, Calero C, Plaza V, Miravitlles M, Torrego A, Martinez-Moragon E, Soriano JB, Viña AL, Bobolea I. Mixed Th2 and non-Th2 inflammatory pattern in the asthma-COPD overlap: a network approach. Int J Chron Obstruct Pulmon Dis 2018; 13:591-601. [PMID: 29483774 PMCID: PMC5813946 DOI: 10.2147/copd.s153694] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction The asthma–chronic obstructive pulmonary disease (COPD) overlap (ACO) is a clinical condition that combines features of those two diseases, and that is difficult to define due to the lack of understanding of the underlying mechanisms. Determining systemic mediators may help clarify the nature of inflammation in patients with ACO. Objectives We aimed at investigating the role and interaction of common markers of systemic inflammation (IL-6, IL-8, and tumor necrosis factor-α), Th2-related markers (periostin, IL-5, and IL-13), and IL-17 in asthma, COPD, and ACO. Methods This is a cross-sectional study of patients aged ≥40 years with a post-bronchodilator forced expiratory volume in the first second/forced vital capacity <0.70 recruited from outpatient clinics in tertiary hospitals with a clinical diagnosis of asthma, COPD, or ACO. ACO was defined by a history of smoking >10 pack-years in a patient with a previous diagnosis of asthma or by the presence of eosinophilia in a patient with a previous diagnosis of COPD. Clinical, functional, and inflammatory parameters were compared between categories using discriminant and network analysis. Results In total, 109 ACO, 89 COPD, and 94 asthma patients were included. Serum levels (median [interquartile range]) of IL-5 were higher in asthma patients than in COPD patients (2.09 [0.61–3.57] vs 1.11 [0.12–2.42] pg/mL, respectively; p=0.03), and IL-8 levels (median [interquartile range]) were higher in COPD patients than in asthma patients (9.45 [6.61–13.12] vs 7.03 [4.69–10.44] pg/mL, respectively; p<0.001). Their values in ACO were intermediate between those in asthma and in COPD. Principal component and network analysis showed a mixed inflammatory pattern in ACO in between asthma and COPD. IL-13 was the most connected node in the network, with different weights among the three conditions. Conclusion Asthma and COPD are two different inflammatory conditions that may overlap in some patients, leading to a mixed inflammatory pattern. IL-13 could be central to the regulation of inflammation in these conditions.
Collapse
Affiliation(s)
| | - Borja G Cosío
- Department of Respiratory Medicine, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Amanda Iglesias
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Juan Jose Soler-Cataluña
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Respiratory Medicine, Hospital Arnau de Vilanova, Valencia, Spain
| | - Jose Luis Izquierdo
- Department of Respiratory Medicine, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Jose Luis López-Campos
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Respiratory Medicine, Hospital Virgen del Rocío, Sevilla, Spain
| | - Carmen Calero
- Department of Respiratory Medicine, Hospital Virgen del Rocío, Sevilla, Spain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Respiratory Medicine, Hospital de la Santa Creu y Sant Pau, Barcelona, Spain.,Institut d'Investigació Biomédica Sant Pau, IIB Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Miravitlles
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Respiratory Medicine, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alfons Torrego
- Department of Respiratory Medicine, Hospital de la Santa Creu y Sant Pau, Barcelona, Spain.,Institut d'Investigació Biomédica Sant Pau, IIB Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Joan B Soriano
- Instituto de Investigación Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antolin Lopez Viña
- Department of Respiratory Medicine, Hospital Puerta de Hierro, Madrid, Spain
| | - Irina Bobolea
- Servei de Pneumologia i Alergia, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
10
|
Gorska K, Nejman-Gryz P, Paplinska-Goryca M, Korczynski P, Prochorec-Sobieszek M, Krenke R. Comparative Study of IL-33 and IL-6 Levels in Different Respiratory Samples in Mild-to-Moderate Asthma and COPD. COPD 2018; 15:36-45. [PMID: 29319364 DOI: 10.1080/15412555.2017.1416074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IL-6 and IL-33 are involved in the inflammatory process in obstructive lung diseases. In contrast to IL-6, few data on the expression of IL-33 in different biological samples from asthma and COPD patients are available. The aim was to evaluate the expressions of IL-33 and IL-6 in bronchial mucosa and to compare these expressions with the concentrations of both cytokines in various respiratory samples from patients with mild-to-moderate asthma and COPD. Serum, induced sputum and exhaled breath condensate IL-6 and IL-33 levels, as well as their expression in bronchial mucosa were evaluated in 22 asthma and 33 COPD patients. There were significant differences between bronchial mucosa IL-6, but not IL-33 expression in asthma and COPD. Serum and IS IL-6 concentrations were higher in COPD than in asthma (3.4 vs. 2.02 pg/mL, p = 0.002 and 16.5 vs. 12.7 pg/mL, p = 0.007, respectively); IL-33 levels reached similar values in asthma and COPD in all investigated samples. In both diseases, the lowest levels of IL-6 and IL-33 were found in EBC. EBC levels of both cytokines did not correlate with their expression in other materials. The IL-33 and IL-6 are detectable in serum, IS and EBC not only in asthma but also in COPD patients. In the COPD group, serum and IS IL-6 concentrations were statistically higher than in the asthma group. The tissue expression of IL-33 and IL-33 concentrations in the investigated biological samples were on a comparable level in both diseases. Our findings may suggest that IL-33 activation is a common pathway in asthma and COPD.
Collapse
Affiliation(s)
- Katarzyna Gorska
- a Department of Internal Medicine, Pulmonary Diseases and Allergy , Medical University of Warsaw , Warsaw , Poland
| | - Patrycja Nejman-Gryz
- a Department of Internal Medicine, Pulmonary Diseases and Allergy , Medical University of Warsaw , Warsaw , Poland
| | - Magdalena Paplinska-Goryca
- a Department of Internal Medicine, Pulmonary Diseases and Allergy , Medical University of Warsaw , Warsaw , Poland
| | - Piotr Korczynski
- a Department of Internal Medicine, Pulmonary Diseases and Allergy , Medical University of Warsaw , Warsaw , Poland
| | | | - Rafal Krenke
- a Department of Internal Medicine, Pulmonary Diseases and Allergy , Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
11
|
Ray A, Kolls JK. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol 2017; 38:942-954. [PMID: 28784414 PMCID: PMC5711587 DOI: 10.1016/j.it.2017.07.003] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/28/2017] [Accepted: 07/11/2017] [Indexed: 01/22/2023]
Abstract
Asthma is a chronic inflammatory disorder of the airways. While the local infiltration of eosinophils and mast cells, and their role in the disease have long been recognized, neutrophil infiltration has also been assessed in many clinical studies. In these studies, airway neutrophilia was associated with asthma severity. Importantly, neutrophilia also correlates with asthma that is refractory to corticosteroids, the mainstay of asthma treatment. However, it is now increasingly recognized that neutrophils are a heterogeneous population, and a more precise phenotyping of these cells may help delineate different subtypes of asthma. Here, we review current knowledge of the role of neutrophils in asthma and highlight future avenues of research in this field.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Asthma Institute@UPMC/UPSOM, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jay K Kolls
- Richard King Mellon Institute for Pediatric Research, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center/University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|