1
|
Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: a 3D model for the study of the tumor microenvironment. J Biol Eng 2023; 17:53. [PMID: 37592292 PMCID: PMC10436436 DOI: 10.1186/s13036-023-00372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The approval of anticancer therapeutic strategies is still slowed down by the lack of models able to faithfully reproduce in vivo cancer physiology. On one hand, the conventional in vitro models fail to recapitulate the organ and tissue structures, the fluid flows, and the mechanical stimuli characterizing the human body compartments. On the other hand, in vivo animal models cannot reproduce the typical human tumor microenvironment, essential to study cancer behavior and progression. This study reviews the cancer-on-chips as one of the most promising tools to model and investigate the tumor microenvironment and metastasis. We also described how cancer-on-chip devices have been developed and implemented to study the most common primary cancers and their metastatic sites. Pros and cons of this technology are then discussed highlighting the future challenges to close the gap between the pre-clinical and clinical studies and accelerate the approval of new anticancer therapies in humans.
Collapse
Affiliation(s)
- Elisa Cauli
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy.
- Accelera Srl, Nerviano, Milan, Italy.
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
2
|
Xu Z, Yang J, Xin X, Liu C, Li L, Mei X, Li M. Merits and challenges of iPSC-derived organoids for clinical applications. Front Cell Dev Biol 2023; 11:1188905. [PMID: 37305682 PMCID: PMC10250752 DOI: 10.3389/fcell.2023.1188905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have entered an unprecedented state of development since they were first generated. They have played a critical role in disease modeling, drug discovery, and cell replacement therapy, and have contributed to the evolution of disciplines such as cell biology, pathophysiology of diseases, and regenerative medicine. Organoids, the stem cell-derived 3D culture systems that mimic the structure and function of organs in vitro, have been widely used in developmental research, disease modeling, and drug screening. Recent advances in combining iPSCs with 3D organoids are facilitating further applications of iPSCs in disease research. Organoids derived from embryonic stem cells, iPSCs, and multi-tissue stem/progenitor cells can replicate the processes of developmental differentiation, homeostatic self-renewal, and regeneration due to tissue damage, offering the potential to unravel the regulatory mechanisms of development and regeneration, and elucidate the pathophysiological processes involved in disease mechanisms. Herein, we have summarized the latest research on the production scheme of organ-specific iPSC-derived organoids, the contribution of these organoids in the treatment of various organ-related diseases, in particular their contribution to COVID-19 treatment, and have discussed the unresolved challenges and shortcomings of these models.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Clinical Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxu Yang
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xianyi Xin
- Department of Pediatric Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chengrun Liu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xianglin Mei
- Department of pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Jewell BE, Xu A, Zhu D, Huang MF, Lu L, Liu M, Underwood EL, Park JH, Fan H, Gingold JA, Zhou R, Tu J, Huo Z, Liu Y, Jin W, Chen YH, Xu Y, Chen SH, Rainusso N, Berg NK, Bazer DA, Vellano C, Jones P, Eltzschig HK, Zhao Z, Kaipparettu BA, Zhao R, Wang LL, Lee DF. Patient-derived iPSCs link elevated mitochondrial respiratory complex I function to osteosarcoma in Rothmund-Thomson syndrome. PLoS Genet 2021; 17:e1009971. [PMID: 34965247 PMCID: PMC8716051 DOI: 10.1371/journal.pgen.1009971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies.
Collapse
Affiliation(s)
- Brittany E. Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Linchao Lu
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Mo Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Erica L. Underwood
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Julian A. Gingold
- Department of Obstetrics & Gynecology and Women’s Health, Einstein/Montefiore Medical Center, New York City, New York, United States of America
| | - Ruoji Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jian Tu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zijun Huo
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ying Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Weidong Jin
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Yi-Hung Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yitian Xu
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Shu-Hsia Chen
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Nino Rainusso
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Nathaniel K. Berg
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Danielle A. Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| | - Christopher Vellano
- TRACTION Platform, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Philip Jones
- TRACTION Platform, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Holger K. Eltzschig
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lisa L. Wang
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
4
|
Pluripotency Stemness and Cancer: More Questions than Answers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:77-100. [PMID: 34725790 DOI: 10.1007/5584_2021_663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells provided us with fascinating new knowledge in recent years. Mechanistic insight into intricate regulatory circuitry governing pluripotency stemness and disclosing parallels between pluripotency stemness and cancer instigated numerous studies focusing on roles of pluripotency transcription factors, including Oct4, Sox2, Klf4, Nanog, Sall4 and Tfcp2L1, in cancer. Although generally well substantiated as tumour-promoting factors, oncogenic roles of pluripotency transcription factors and their clinical impacts are revealing themselves as increasingly complex. In certain tumours, both Oct4 and Sox2 behave as genuine oncogenes, and reporter genes driven by composite regulatory elements jointly recognized by both the factors can identify stem-like cells in a proportion of tumours. On the other hand, cancer stem cells seem to be biologically very heterogeneous both among different tumour types and among and even within individual tumours. Pluripotency transcription factors are certainly implicated in cancer stemness, but do not seem to encompass its entire spectrum. Certain cancer stem cells maintain their stemness by biological mechanisms completely different from pluripotency stemness, sometimes even by engaging signalling pathways that promote differentiation of pluripotent stem cells. Moreover, while these signalling pathways may well be antithetical to stemness in pluripotent stem cells, they may cooperate with pluripotency factors in cancer stem cells - a paradigmatic example is provided by the MAPK-AP-1 pathway. Unexpectedly, forced expression of pluripotency transcription factors in cancer cells frequently results in loss of their tumour-initiating ability, their phenotypic reversion and partial epigenetic normalization. Besides the very different signalling contexts operating in pluripotent and cancer stem cells, respectively, the pronounced dose dependency of reprogramming pluripotency factors may also contribute to the frequent loss of tumorigenicity observed in induced pluripotent cancer cells. Finally, contradictory cell-autonomous and non-cell-autonomous effects of various signalling molecules operate during pluripotency (cancer) reprogramming. The effects of pluripotency transcription factors in cancer are thus best explained within the concept of cancer stem cell heterogeneity.
Collapse
|
5
|
Xu A, Huang MF, Zhu D, Gingold JA, Bazer DA, Chang B, Wang D, Lai CC, Lemischka IR, Zhao R, Lee DF. LncRNA H19 Suppresses Osteosarcomagenesis by Regulating snoRNAs and DNA Repair Protein Complexes. Front Genet 2021; 11:611823. [PMID: 33519915 PMCID: PMC7844330 DOI: 10.3389/fgene.2020.611823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma is one of the most frequent common primary malignant tumors in childhood and adolescence. Long non-coding RNAs (lncRNAs) have been reported to regulate the initiation and progression of tumors. However, the exact molecular mechanisms involving lncRNA in osteosarcomagenesis remain largely unknown. Li-Fraumeni syndrome (LFS) is a familial cancer syndrome caused by germline p53 mutation. We investigated the tumor suppressor function of lncRNA H19 in LFS-associated osteosarcoma. Analyzing H19-induced transcriptome alterations in LFS induced pluripotent stem cell (iPSC)-derived osteoblasts, we unexpectedly discovered a large group of snoRNAs whose expression was significantly affected by H19. We identified SNORA7A among the H19-suppressed snoRNAs. SNORA7A restoration impairs H19-mediated osteogenesis and tumor suppression, indicating an oncogenic role of SNORA7A. TCGA analysis indicated that SNORA7A expression is associated with activation of oncogenic signaling and poor survival in cancer patients. Using an optimized streptavidin-binding RNA aptamer designed from H19 lncRNA, we revealed that H19-tethered protein complexes include proteins critical for DNA damage response and repair, confirming H19's tumor suppressor role. In summary, our findings demonstrate a critical role of H19-modulated SNORA7A expression in LFS-associated osteosarcomas.
Collapse
Affiliation(s)
- An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Julian A Gingold
- Department of Obstetrics and Gynecology and Women's Health, Einstein/Montefiore Medical Center, Bronx, NY, United States
| | - Danielle A Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Betty Chang
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donghui Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
6
|
Uçkan-Çetinkaya D, Haider KH. Induced Pluripotent Stem Cells in Pediatric Research and Clinical Translation. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Pang LK, Pena M, Zhao R, Lee DF. Modeling of osteosarcoma with induced pluripotent stem cells. Stem Cell Res 2020; 49:102006. [PMID: 33022533 DOI: 10.1016/j.scr.2020.102006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/18/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma is the most common type of bone cancer. Osteosarcoma is commonly associated with TP53 inactivation (around 95% of cases) and RB1 inactivation (around 28% of cases). With the discovery of reprogramming factors to induce pluripotency even in terminally differentiated cells, induced pluripotent stem cells (iPSCs) have emerged as a promising disease model. iPSC-based disease modeling uniquely recapitulates disease phenotypes and can support discoveries into disease etiology and is used extensively today to study a variety of diseases, including cancers. This paper focuses on iPSC-based modeling of Li-Fraumeni syndrome (LFS), an autosomal dominant disorder commonly associated with TP53 mutation and high osteosarcoma incidence. As iPSCs are increasingly utilized as a platform for cancer modeling, the experimental approaches that we discuss here may serve as a guide for future studies.
Collapse
Affiliation(s)
- Lon Kai Pang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Rice University, Houston, TX 77005, USA
| | - Mezthly Pena
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Rice University, Houston, TX 77005, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Nascimento-Gonçalves E, Ferreira R, Oliveira PA, Colaço BJA. An Overview of Current Alternative Models for Use in the Context of Prostate Cancer Research. Altern Lab Anim 2020; 48:58-69. [PMID: 32614643 DOI: 10.1177/0261192920929701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer is one of the most commonly diagnosed cancers worldwide, particularly in elderly populations. To mitigate the expected increase in prostate cancer-related morbidity and mortality as a result of an expanding aged population, safer and more effective therapeutics are required. To this end, plenty of research is focusing on the mechanisms underlying cancer initiation and development, the metastatic process and on the discovery of new therapies. While animal models are used (mainly rats and mice) for the study of prostate cancer, alternative models and methods are increasingly being considered to replace, or at least reduce, the number of animals used in this particular field of research. In this review, we cover some of the alternative models that are currently available for use in the study of prostate cancer, including: mathematical models; 2-D and 3-D cell cultures; microfluidic devices; the chicken egg chorioallantoic membrane-based model; and zebrafish embryo-based models. The main advantages and limitations, as well as some examples of applications, are given for each type of model. According to our analysis, immortalised cell lines are still the most commonly used models in the field of prostate cancer research. However, the use of alternative models for prostate cancer research will likely become more prevalent in the coming years partly because of the increasing societal pressure to reduce the numbers of laboratory animals. In this context, the development and dissemination of effective non-animal alternative models assumes particular relevance and will be instrumental in leveraging their success. Taking these perspectives into account, we believe that technological advances will lead to more effective cell culture systems, namely 3-D cultures or organ-on-a-chip devices, which can be used to replace animal-based models in prostate cancer research.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, 386361University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Organic Chemistry, Natural Products and Foodstuffs (QOPNA/LAQV), Department of Chemistry, 56062University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Organic Chemistry, Natural Products and Foodstuffs (QOPNA/LAQV), Department of Chemistry, 56062University of Aveiro, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, 386361University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Bruno Jorge Antunes Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Zootechnics, 56066University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
9
|
Wei S, Liu K, He Q, Gao Y, Shen L. PES1 is regulated by CD44 in liver cancer stem cells via miR-105-5p. FEBS Lett 2019; 593:1777-1786. [PMID: 31127852 DOI: 10.1002/1873-3468.13459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Pescadillo (PES1) is a key molecule for ribosome formation in mammalian cells. In this study, human hepatoma C3A cells were reprogrammed by four transcription factors, Oct4, Sox2, Klf4 and c-Myc, into induced cancer stem cells, termed C3A-induced cancer stem cells (C3A-iCSCs). We found that PES1 was up-regulated in C3A-iCSCs and promoted cell proliferation. Moreover, the cancer stem cell marker CD44, which is located in the cytomembrane, translocated to the nucleus and was up-regulated in C3A-iCSCs. Our results suggest that CD44 has a negative effect on miR-105-5p. We found that PES1 is a direct target of, and was negatively regulated by, miR-105-5p. In summary, CD44 regulates PES1 in liver cancer stem cells via miR-105-5p to promote cell growth.
Collapse
Affiliation(s)
- Shiruo Wei
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Kaiyu Liu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qihua He
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Shen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Haidian District, Beijing, China
| |
Collapse
|
10
|
New Strategies and In Vivo Monitoring Methods for Stem Cell-Based Anticancer Therapies. Stem Cells Int 2018; 2018:7315218. [PMID: 30581474 PMCID: PMC6276456 DOI: 10.1155/2018/7315218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a devastating disease and the second cause of death in the developed world. Despite significant advances in recent years, such as the introduction of targeted therapies such as receptor tyrosine kinase inhibitors and immunotherapy, current approaches are insufficient to stop the advance of the disease and many cancer types remain largely intractable. In this review, we describe the latest and most revolutionary stem cell-based approaches for the treatment of cancer. We also summarize the emerging imaging modalities being applied for monitoring anticancer stem cell therapy success and discuss the implications of these novel technologies for precision medicine.
Collapse
|