1
|
Clyne M, Ó Cróinín T. Pathogenicity and virulence of Helicobacter pylori: A paradigm of chronic infection. Virulence 2025; 16:2438735. [PMID: 39725863 DOI: 10.1080/21505594.2024.2438735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Infection with Helicobacter pylori is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis. Most infected individuals are asymptomatic, but infection also causes gastric and duodenal ulceration, and gastric cancer. H. pylori possesses an arsenal of virulence factors, including a potent urease enzyme for protection from acid, flagella that mediate motility, an abundance of outer membrane proteins that can mediate attachment, several immunomodulatory proteins, and an ability to adapt to specific conditions in individual human stomachs. The presence of a type 4 secretion system that injects effector molecules into gastric cells and subverts host cell signalling is associated with virulence. In this review we discuss the interplay of H. pylori colonization and virulence factors with host and environmental factors to determine disease outcome in infected individuals.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tadhg Ó Cróinín
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Xue Z, Li W, Ding H, Pei F, Zhang J, Gong Y, Fan R, Wang F, Wang Y, Chen Q, Li Y, Yang X, Zheng Y, Su G. Virulence gene polymorphisms in Shandong Helicobacter pylori strains and their relevance to gastric cancer. PLoS One 2024; 19:e0309844. [PMID: 39250512 PMCID: PMC11383249 DOI: 10.1371/journal.pone.0309844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) virulence factors, particularly the cagA and vacA genotypes, play important roles in the pathogenic process of gastrointestinal disease. METHODS The cagA and vacA genotypes of 87 H. pylori strains were determined by PCR and sequencing. The EPIYA and CM motif patterns were analyzed and related to clinical outcomes. We examined the associations between the virulence genes of H. pylori and gastrointestinal diseases in Shandong, and the results were analyzed via the chi-square test and logistic regression model. RESULTS Overall, 76 (87.36%) of the strains carried the East Asian-type CagA, with the ABD types being the most prevalent (90.79%). However, no significant differences were observed among the different clinical outcomes. The analysis of CagA sequence types revealed 8 distinct types, encompassing 250 EPIYA motifs, including 4 types of EPIYA or EPIYA-like sequences. Additionally, 28 CM motifs were identified, with the most prevalent patterns being E (66.67%), D (16.09%), and W-W (5.75%). Notably, a significant association was discovered between strains with GC and the CM motif pattern D (P < 0.01). With respect to the vacA genotypes, the strains were identified as s1, s2, m1, m2, i1, i2, d1, d2, c1, and c2 in 87 (100%), 0 (0), 26 (29.89%), 61 (70.11%), 73 (83.91%), 14 (16.09%), 76 (87.36%), 11 (12.64%), 18 (20.69%), and 69 (79.31%), respectively. Specifically, the vacA m1 and c1 genotypes presented a significantly greater prevalence in strains from GC compared to CG (P < 0.05). Following adjustment for age and sex, the vacA c1 genotype demonstrated a notable association with GC (OR = 5.174; 95% CI, 1.402-20.810; P = 0.012). This association was both independent of and more pronounced than the correlations between vacA m1 and GC. CONCLUSIONS CagA proteins possessing CM motif pattern D were more frequently observed in patients with GC (P < 0.01), implying a potentially higher virulence of CM motif pattern D than the other CM motif patterns. Moreover, a strong positive association was identified between the vacA c1 genotype and GC, indicating that the vacA c1 genotype is a robust risk indicator for GC among male patients aged ≥55 years in Shandong.
Collapse
Affiliation(s)
- Zhijing Xue
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijia Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hailing Ding
- The Faculty of Medicine, Qilu Institute of Technology, Jinan, Shandong, China
| | - Fengyan Pei
- Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianzhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanan Gong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruyue Fan
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Fang Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Youjun Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qing Chen
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yanran Li
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Yang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Zheng
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
MOLODOZHNIKOVA N, BERESTOVA A, BERECHIKIDZE I, SHORINA D, MORUGINA O. Changes in the tissue elements of the gastric mucosa interacting with different strains of Helicobacter pylori, taking into consideration the patient's genotype. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:213-221. [PMID: 38966050 PMCID: PMC11220335 DOI: 10.12938/bmfh.2023-070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 07/06/2024]
Abstract
The present study aimed to investigate the peculiarities of adaptation of tissue elements of the gastric mucosa during interaction with Helicobacter pylori, as determined by genetic characteristics of the bacterium and the host. Venous blood and biopsy samples of the mucosa of the antrum and body of the stomach from young patients (18 to 25 years old) were examined. The condition of the gastric mucosa was assessed using stained histological preparations. Venous blood was collected from the patients to ascertain the polymorphisms of the IL-lß and IL-IRN genes. The most pronounced changes were observed in the parameters of reparative regeneration of epithelial differentiation during colonization of the gastric mucosa by H. pylori strains carrying the CagA(+) and BabA2(+) genes. These included an increase in proliferation and apoptosis rates and alterations in epithelial differentiation markers characterized by elevated production of Shh and MUC5AC, as well as a reduction in the production of the protective mucin MUC6 by isthmus gland cells. The presence of the vacAs1 and vacAs2 genes of H. pylori results in a high level of apoptosis in epithelial cells without accelerating proliferation. It was found that after eradication, patients with preserved cellular infiltrates in their gastric mucosa plates were carriers of mainly the IL-1ß*T/IL-1RN*2R haplotypes after 12 months.
Collapse
Affiliation(s)
- Natalia MOLODOZHNIKOVA
- Department of Biology and General Genetics, I.M. Sechenov
First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow
119991, Russian Federation
| | - Anna BERESTOVA
- Institute of Clinical Morphology and Digital Pathology, I.M.
Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya
str., Moscow 119991, Russian Federation
| | - Iza BERECHIKIDZE
- Department of Biology and General Genetics, I.M. Sechenov
First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow
119991, Russian Federation
| | - Dariya SHORINA
- Department of Polyclinic Therapy, I.M. Sechenov First Moscow
State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow 119991,
Russian Federation
| | - Olga MORUGINA
- Department of Nursing Management and Social Work, I.M.
Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya
str., Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Al-Fakhrany OM, Elekhnawy E. Helicobacter pylori in the post-antibiotics era: from virulence factors to new drug targets and therapeutic agents. Arch Microbiol 2023; 205:301. [PMID: 37550555 PMCID: PMC10406680 DOI: 10.1007/s00203-023-03639-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Helicobacter pylori is considered one of the most prevalent human pathogenic microbes globally. It is the main cause of a number of gastrointestinal ailments, including peptic and duodenal ulcers, and gastric tumors with high mortality rates. Thus, eradication of H. pylori is necessary to prevent gastric cancer. Still, the rise in antibiotic resistance is the most important challenge for eradication strategies. Better consideration of H. pylori virulence factors, pathogenesis, and resistance is required for better eradication rates and, thus, prevention of gastrointestinal malignancy. This article is aimed to show the role of virulence factors of H. pylori. Some are involved in its survival in the harsh environment of the human gastric lumen, and others are related to pathogenesis and the infection process. Furthermore, this work has highlighted the recent advancement in H. pylori treatment, as well as antibiotic resistance as a main challenge in H. pylori eradication. Also, we tried to provide an updated summary of the evolving H. pylori control strategies and the potential alternative drugs to fight this lethal resistant pathogen. Recent studies have focused on evaluating the efficacy of alternative regimens (such as sequential, hybrid, concomitant treatment, vonoprazan (VPZ)-based triple therapy, high-dose PPI-amoxicillin dual therapy, probiotics augmented triple therapy, or in combination with BQT) in the effective eradication of H. pylori. Thus, innovating new anti-H. pylori drugs and establishing H. pylori databanks are upcoming necessities in the near future.
Collapse
Affiliation(s)
- Omnia Momtaz Al-Fakhrany
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
5
|
Svarval AV, Starkova DA, Ferman RS. Virulence determinants and genotypes of <i>Helicobacter pylori</i> clinical isolates. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2023. [DOI: 10.36233/0372-9311-298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background. H. pylori is the principal causative agent of gastroduodenal disorders in humans. The development and severity of lesions in infected individuals depend on the virulence of H. pylori strains.
Aims: Detection of virulence determinants and comparative analysis of H. pylori genotypes in patients with chronic gastritis (CG) and duodenal ulcer (DU).
Materials and methods. The 53 H. pylori strains were isolated in St. Petersburg from patients with CG (n = 34) and DU (n = 19). The genetic determinants of virulence cagA, iceA, vacA and H. pylori genotypes in patients with CG and UC were determined using the standard PCR method.
Results. The cagA gene was found in 64.1% of H. pylori strains. The proportions of cagA+ isolates from patients with CG and DU was 55.8% (15/34) and 78.9% (15/19), respectively (p 0.05). The iceA1 allele of H. pylori was detected in 47.4% of patients with DU, the iceA2 in 47.1% of patients with CG (p 0.05). The vacAs1 allele was significantly dominant in patients with DU 94.7% versus 70.6% in CG (p 0.05). No significant difference in vacA m1 and m2 alleles was found in H. pylori from different groups of patients (p 0.05). All cagA+ strains were carriers of the vacA s1 allele. The vast majority of strains (10 out of 11) of the cagA/vacAs2 genotype were isolated from patients with CG.
Conclusion. The significant association between vacAs1, vacAs2 allelic variants, as well as vacA s1/m2, vacA s2/m2 genotypes of the pathogen and severity of clinical manifestations of H. pylori infection has been established in our study. The vacAs1 and vacA s1/m2 genotypes of the pathogen are associated with duodenal ulcer.
Collapse
|
6
|
Insights into the Orchestration of Gene Transcription Regulators in Helicobacter pylori. Int J Mol Sci 2022; 23:ijms232213688. [PMID: 36430169 PMCID: PMC9696931 DOI: 10.3390/ijms232213688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Bacterial pathogens employ a general strategy to overcome host defenses by coordinating the virulence gene expression using dedicated regulatory systems that could raise intricate networks. During the last twenty years, many studies of Helicobacter pylori, a human pathogen responsible for various stomach diseases, have mainly focused on elucidating the mechanisms and functions of virulence factors. In parallel, numerous studies have focused on the molecular mechanisms that regulate gene transcription to attempt to understand the physiological changes of the bacterium during infection and adaptation to the environmental conditions it encounters. The number of regulatory proteins deduced from the genome sequence analyses responsible for the correct orchestration of gene transcription appears limited to 14 regulators and three sigma factors. Furthermore, evidence is accumulating for new and complex circuits regulating gene transcription and H. pylori virulence. Here, we focus on the molecular mechanisms used by H. pylori to control gene transcription as a function of the principal environmental changes.
Collapse
|
7
|
Mărginean CO, Meliț LE, Săsăran MO. Traditional and Modern Diagnostic Approaches in Diagnosing Pediatric Helicobacter pylori Infection. CHILDREN 2022; 9:children9070994. [PMID: 35883980 PMCID: PMC9316053 DOI: 10.3390/children9070994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori (H. pylori) is the most common bacterial infection worldwide, is usually acquired during childhood and is related to gastric carcinogenesis during adulthood. Therefore, its early proper diagnosis and subsequent successful eradication represent the cornerstones of gastric cancer prevention. The aim of this narrative review was to assess traditional and modern diagnostic methods in terms of H. pylori diagnosis. Several invasive and non-invasive methods were described, each with its pros and cons. The invasive diagnostic methods comprise endoscopy with biopsy, rapid urease tests, histopathological exams, cultures and biopsy-based molecular tests. Among these, probably the most available, accurate and cost-effective test remains histology, albeit molecular tests definitely remain the most accurate despite their high costs. The non-invasive tests consist of urea breath tests, serology, stool antigens and non-invasive molecular tests. Urea breath tests and stool antigens are the most useful in clinical practice both for the diagnosis of H. pylori infection and for monitoring the eradication of this infection after therapy. The challenges related to accurate diagnosis lead to a choice that must be based on H. pylori virulence, environmental factors and host peculiarities.
Collapse
Affiliation(s)
- Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
| | - Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
- Correspondence:
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
| |
Collapse
|
8
|
Cardos AI, Maghiar A, Zaha DC, Pop O, Fritea L, Miere (Groza) F, Cavalu S. Evolution of Diagnostic Methods for Helicobacter pylori Infections: From Traditional Tests to High Technology, Advanced Sensitivity and Discrimination Tools. Diagnostics (Basel) 2022; 12:508. [PMID: 35204598 PMCID: PMC8871415 DOI: 10.3390/diagnostics12020508] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023] Open
Abstract
Rapid diagnosis and treatment application in the early stages of H. pylori infection plays an important part in inhibiting the transmission of this infection as this bacterium is involved in various gastric pathologies such as gastritis, gastro-duodenal ulcer, and even gastric neoplasia. This review is devoted to a quick overview of conventional and advanced detection techniques successfully applied to the detection of H. pylori in the context of a compelling need to upgrade the standards of the diagnostic methods which are currently being used. Selecting the best diagnostic method implies evaluating different features, the use of one or another test depending on accessibility, laboratories equipment, and the clinical conditions of patients. This paper aims to expose the diagnosis methods for H. pylori that are currently available, highlighting their assets and limitations. The perspectives and the advantages of nanotechnology along with the concept of nano(bio)sensors and the development of lab-on-chip devices as advanced tools for H. pylori detection, differentiation, and discrimination is also presented, by emphasizing multiple advantages: simple, fast, cost-effective, portable, miniaturized, small volume of samples required, highly sensitive, and selective. It is generally accepted that the development of intelligent sensors will completely revolutionize the acquisition procedure and medical decision in the framework of smart healthcare monitoring systems.
Collapse
Affiliation(s)
| | - Adriana Maghiar
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania; (A.I.C.); (D.C.Z.); (O.P.); (L.F.); (F.M.)
| | | | | | | | | | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania; (A.I.C.); (D.C.Z.); (O.P.); (L.F.); (F.M.)
| |
Collapse
|
9
|
Glycosaminoglycan biosynthesis pathway in host genome is associated with Helicobacter pylori infection. Sci Rep 2021; 11:18235. [PMID: 34521966 PMCID: PMC8440747 DOI: 10.1038/s41598-021-97790-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is a causative pathogen of many gastric and extra-gastric diseases. It has infected about half of the global population. There were no genome-wide association studies (GWAS) for H. pylori infection conducted in Chinese population, who carried different and relatively homogenous strain of H. pylori. In this work, we performed SNP (single nucleotide polymorphism)-based, gene-based and pathway-based genome-wide association analyses to investigate the genetic basis of host susceptibility to H. pylori infection in 480 Chinese individuals. We also profiled the composition and function of the gut microbiota between H. pylori infection cases and controls. We found several genes and pathways associated with H. pylori infection (P < 0.05), replicated one previously reported SNP rs10004195 in TLR1 gene region (P = 0.02). We also found that glycosaminoglycan biosynthesis related pathway was associated with both onset and progression of H. pylori infection. In the gut microbiome association study, we identified 2 species, 3 genera and several pathways had differential abundance between H. pylori infected cases and controls. This paper is the first GWAS for H. pylori infection in Chinese population, and we combined the genetic and microbial data to comprehensively discuss the basis of host susceptibility to H. pylori infection.
Collapse
|
10
|
Genotyping of Helicobacter pylori Virulence Genes cagA and vacA: Regional and National Study. Int J Microbiol 2021; 2021:5540560. [PMID: 34306090 PMCID: PMC8263242 DOI: 10.1155/2021/5540560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Helicobacter pylori (H. pylori) plays a crucial role in the pathogenesis of gastritis, peptic ulcer, and gastric cancer. The presence of pathogenicity islands (PAI) genes contributes to the pathogenesis of many gastrointestinal disorders. Cytotoxin-associated gene A (cagA) and vacuolating cytotoxin gene (vacA) are the most known virulence genes in H. pylori. So, our aim was to study H. pylori virulence genes' role in gastric disorders pathogenesis. Our study included 150 adult patients who suffered dyspeptic symptoms and were referred to the GIT endoscopy unit. Gastric biopsies were attained for rapid urease test (RUT) and histopathological examination, and multiplex PCR technique for detection of virulence genes was performed. It was found that 100 specimens were (RUT) positive, of which sixty samples (60%) were PCR positive for H. pylori ureC gene. The vacA and cagA genes were identified in 61.6% and 53% of H. pylori strains, respectively. Only 5 cases were vacA-positive and cagA-negative. The most virulent vacA s1 allele existed in 56.6% of cases. Out of the 60 H. pylori strains, 66% had at least one virulence gene and 34% did not show any virulence gene. H. pylori infection showed significant increase with age. H. pylori are prevalent amid dyspeptic patients in our region. The main genotype combinations were vacA+/cagA+ of s1m1 genotype and they were frequently associated with peptic ulcer diseases, gastritis, and gastroesophageal reflux disease.
Collapse
|
11
|
Anti- Helicobacter pylori Activity of Artemisia ludoviciana subsp. mexicana and Two of Its Bioactive Components, Estafiatin and Eupatilin. Molecules 2021; 26:molecules26123654. [PMID: 34203927 PMCID: PMC8232798 DOI: 10.3390/molecules26123654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Artemisia ludoviciana subsp. mexicana has been traditionally used for the treatment of digestive ailments such as gastritis, whose main etiological agent is Helicobacter pylori. In a previous screening study, the aqueous extract exhibited a good in vitro anti-H. pylori activity. With the aim of determining the efficacy of this species as a treatment for H. pylori related diseases and finding bioactive compounds, its aqueous extract was subjected to solvent partitioning and the fractions obtained were tested for their in vitro anti-H. pylori effect, as well as for their in vivo gastroprotective and anti-inflammatory activities. The aqueous extract showed a MIC = 250 µg/mL. No acute toxicity was induced in mice. A gastroprotection of 69.8 ± 3.8%, as well as anti-inflammatory effects of 47.6 ± 12.4% and 38.8 ± 10.2% (by oral and topical administration, respectively), were attained. Estafiatin and eupatilin were isolated and exhibited anti-H. pylori activity with MBCs of 15.6 and 31.2 µg/mL, respectively. The finding that A. ludoviciana aqueous extract has significant anti-H. pylori, gastroprotective and anti-inflammatory activities is a relevant contribution to the ethnopharmacological knowledge of this species. This work is the first report about the in vivo gastroprotective activity of A. ludoviciana and the anti-H. pylori activity of eupatilin and estafiatin.
Collapse
|
12
|
Abstract
INTRODUCTION Various types of cancers threaten human life. The role of bacteria in causing cancer is controversial, but it has been determined that the Helicobacter pylori infection is one of the identified risk factors for gastric cancer. Helicobacter pylori infection is highly prevalent, and about half of the world,s population is infected with it. OBJECTIVE The aim of this study was the role of Helicobacter pylori in the development of gastric cancer. METHOD We obtained information from previously published articles. RESULTS AND CONCLUSION The bacterium has various virulence factors, including cytotoxin- associated gene A, vacuolating cytotoxin A, and the different outer membrane proteins that cause cancer by different mechanisms. These virulence factors activate cell signaling pathways such as PI3-kinase/Akt, JAK/STAT and Ras, Raf, and ERK signaling that control cell proliferation. Uncontrolled proliferation can lead to cancer.
Collapse
Affiliation(s)
- Majid Alipour
- Department of Cell and Molecular Biology, Islamic Azad University, Babol Branch, Babol, Iran.
| |
Collapse
|
13
|
Optimized high-purity protein preparation of biologically active recombinant VacA cytotoxin variants from Helicobacter pylori. Protein Expr Purif 2020; 175:105696. [PMID: 32681955 DOI: 10.1016/j.pep.2020.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 11/23/2022]
Abstract
Vacuolating cytotoxin A (VacA) is a highly polymorphic virulence protein produced by the human gastric pathogen Helicobacter pylori which can cause gastritis, peptic ulcer and gastric cancer. Here, we present an optimized protein preparation of the mature full-length VacA variants (m1-and m2-types) and their 33-kDa N-terminal and 55/59-kDa C-terminal domains as biologically active recombinant proteins fused with an N-terminal His(6) tag. All recombinant VacA constructs were over-expressed in Escherichia coli as insoluble inclusions which were soluble when phosphate buffer (pH 7.4) was supplemented with 5-6 M urea. Upon immobilized-Ni2+ affinity purification under 5-M urea denaturing conditions, homogenous products (>95% purity) of 55/59-kDa domains were consistently obtained while only ~80% purity of both mature VacA variants and the 33-kDa truncate was achieved, thus requiring additional purification by size-exclusion chromatography. After successive refolding via optimized stepwise dialysis, all refolded VacA proteins were proven to possess both cytotoxic and vacuolating activity against cultured human gastric epithelial cells albeit the activity observed for VacA-m2 was lower than the m1-type variant. Such an optimized protocol described herein was effective for production of high-purity recombinant VacA proteins in large amounts (~30-40 mg per liter culture) that would pave the way for further studies on sequence-structure and function relationships of different VacA variants.
Collapse
|
14
|
Mohammad-Hossein Haddadi, Mahdian S, Gheysarzadeh A, Khosravi M, Abangah G, Maleki A, Kouhsari E, Sadeghifard N. The cagA EPIYA Motifs and vacA Genotypes in Upper Gastrointestinal Diseases. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2020. [DOI: 10.3103/s0891416820020068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Zhao Q, Song C, Wang K, Li D, Yang Y, Liu D, Wang L, Zhou N, Xie Y. Prevalence of Helicobacter pylori babA, oipA, sabA, and homB genes in isolates from Chinese patients with different gastroduodenal diseases. Med Microbiol Immunol 2020; 209:565-577. [PMID: 32219508 DOI: 10.1007/s00430-020-00666-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Disease outcome is associated with virulence factors of Helicobacter pylori (H. pylori), which are partially attributed to the outer membrane protein (OMP). This study aimed to investigate the correlation between the four OMP genes (babA, oipA, sabA, and homB) and gastroduodenal diseases. One hundred and seventy-seven H. pylori strains were isolated from Chinese patients with different gastroduodenal diseases (49 chronic gastritis, 19 gastric ulcer, 33 gastric cancer, and 76 duodenal ulcer), 94 of which contained pathological information (41 superficial gastritis, 24 intestinal hyperplasia, and 29 gastric adenocarcinoma). The full-length amplification of babA, oipA, sabA, and homB genes was acquired and sequenced. Then, the genetic polymorphism was analyzed to compare with the reference strains from the GenBank database. Functional status and cluster analysis were also performed to evaluate the impact of genetic polymorphism on disease outcome. The prevalence of babA, oipA, sabA, and homB genes were 91.5%, 100%, 94.0%, and 95.5%, respectively. The four OMP genes were characterized by genetic polymorphism and in the status of positive selection (Ka/Ks> 1). The proportion of strains with functional status on for oipA and sabA gene was 100% and 76.2%, respectively. The sequences of four OMP genes were mainly clustered together with the East Asian references. The four OMP genes were not different in patients with gastroduodenal diseases and pathologic changes (P > 0.05). H. pylori babA, oipA, sabA, and homB genes were common in the Chinese populations, but did not seem to be involved in the development of gastroduodenal diseases.
Collapse
Affiliation(s)
- Qiaoyun Zhao
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Conghua Song
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Department of Gastroenterology, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Ke Wang
- Laboratory of Biochemistry and Molecular Biology, Jiangxi Institute of Medical Sciences, Nanchang, 330006, Jiangxi, China
| | - Donghong Li
- Laboratory of Biochemistry and Molecular Biology, Jiangxi Institute of Medical Sciences, Nanchang, 330006, Jiangxi, China
| | - Yang Yang
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Dongsheng Liu
- Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Le Wang
- Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Nanjin Zhou
- Laboratory of Biochemistry and Molecular Biology, Jiangxi Institute of Medical Sciences, Nanchang, 330006, Jiangxi, China
| | - Yong Xie
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China. .,Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China. .,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
16
|
Seeger AY, Ringling MD, Zohair H, Blanke SR. Risk factors associated with gastric malignancy during chronic Helicobacter pylori Infection. MEDICAL RESEARCH ARCHIVES 2020; 8:2068. [PMID: 37655156 PMCID: PMC10470974 DOI: 10.18103/mra.v8i3.2068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chronic Helicobacter pylori (Hp) infection is considered to be the single most important risk factor for the development of gastric adenocarcinoma in humans, which is a leading cause of cancer-related death worldwide. Nonetheless, Hp infection does not always progress to malignancy, and, gastric adenocarcinoma can occur in the absence of detectable Hp carriage, highlighting the complex and multifactorial nature of gastric cancer. Here we review known contributors to gastric malignancy, including Hp virulence factors, host genetic variation, and multiple environmental variables. In addition, we assess emerging evidence that resident gastric microflora in humans might impact disease progression in Hp-infected individuals. Molecular approaches for microbe identification have revealed differences in the gastric microbiota composition between cancer and non-cancerous patients, as well as infected and uninfected individuals. Although the reasons underlying differences in microbial community structures are not entirely understood, gastric atrophy and hypochlorhydria that accompany chronic Hp infection may be a critical driver of gastric dysbiosis that promote colonization of microbes that contribute to increased risk of malignancy. Defining the importance and role of the gastric microbiota as a potential risk factor for Hp-associated gastric cancer is a vital and exciting area of current research.
Collapse
Affiliation(s)
- Ami Y. Seeger
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Megan D. Ringling
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Huzaifa Zohair
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Steven R. Blanke
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Biomedical and Translational Sciences Department, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
17
|
Šterbenc A, Jarc E, Poljak M, Homan M. Helicobacter pylori virulence genes. World J Gastroenterol 2019; 25:4870-4884. [PMID: 31543679 PMCID: PMC6737321 DOI: 10.3748/wjg.v25.i33.4870] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most important human pathogens, infecting approximately half of the global population. Despite its high prevalence, only a subset of H. pylori infected individuals develop serious gastroduodenal pathology. The pathogenesis of H. pylori infection and disease outcome is thus thought to be mediated by an intricate interplay between host, environmental and bacterial virulence factors. H. pylori has adapted to the harsh milieu of the human stomach through possession of various virulence genes that enable survival of the bacteria in the acidic environment, movement towards the gastric epithelium, and attachment to gastric epithelial cells. These virulence factors enable successful colonization of the gastric mucosa and sustain persistent H. pylori infection, causing chronic inflammation and tissue damage, which may eventually lead to the development of peptic ulcers and gastric cancer. Numerous studies have focused on the prevalence and role of putative H. pylori virulence genes in disease pathogenesis. While several virulence factors with various functions have been identified, disease associations appear to be less evident, especially among different study populations. This review presents key findings on the most important H. pylori virulence genes, including several bacterial adhesins and toxins, in children and adults, and focuses on their prevalence, clinical significance and potential relationships.
Collapse
Affiliation(s)
- Anja Šterbenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Erika Jarc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Matjaž Homan
- Department of Gastroenterology, Hepatology and Nutrition, University Children’s Hospital, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|