1
|
Li C, An N, Song Q, Hu Y, Yin W, Wang Q, Le Y, Pan W, Yan X, Wang Y, Liu J. Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci 2024; 31:96. [PMID: 39334251 PMCID: PMC11429032 DOI: 10.1186/s12929-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past decade, organoids have emerged as a prevalent and promising research tool, mirroring the physiological architecture of the human body. However, as the field advances, the traditional use of animal or tumor-derived extracellular matrix (ECM) as scaffolds has become increasingly inadequate. This shift has led to a focus on developing synthetic scaffolds, particularly hydrogels, that more accurately mimic three-dimensional (3D) tissue structures and dynamics in vitro. The ECM-cell interaction is crucial for organoid growth, necessitating hydrogels that meet organoid-specific requirements through modifiable physical and compositional properties. Advanced composite hydrogels have been engineered to more effectively replicate in vivo conditions, offering a more accurate representation of human organs compared to traditional matrices. This review explores the evolution and current uses of decellularized ECM scaffolds, emphasizing the application of decellularized ECM hydrogels in organoid culture. It also explores the fabrication of composite hydrogels and the prospects for their future use in organoid systems.
Collapse
Affiliation(s)
- Chen Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ni An
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Yuelei Hu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenzhen Yin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinpeng Le
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Materials Science and Engineering, Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | - Juan Liu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid's Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207752. [PMID: 36929582 DOI: 10.1002/smll.202207752] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, P. R. China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
3
|
Galliger Z, Vogt CD, Helms HR, Panoskaltsis-Mortari A. Extracellular Matrix Microparticles Improve GelMA Bioink Resolution for 3D Bioprinting at Ambient Temperature. MACROMOLECULAR MATERIALS AND ENGINEERING 2022; 307:2200196. [PMID: 36531127 PMCID: PMC9757590 DOI: 10.1002/mame.202200196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 06/17/2023]
Abstract
Introduction Current bioinks for 3D bioprinting, such as gelatin-methacryloyl, are generally low viscosity fluids at room temperature, requiring specialized systems to create complex geometries. Methods and Results Adding decellularized extracellular matrix microparticles derived from porcine tracheal cartilage to gelatin-methacryloyl creates a yield stress fluid capable of forming self-supporting structures. This bioink blend performs similarly at 25°C to gelatin-methacryloyl alone at 15°C in linear resolution, print fidelity, and tensile mechanics. Conclusion This method lowers barriers to manufacturing complex tissue geometries and removes the need for cooling systems.
Collapse
Affiliation(s)
- Zachary Galliger
- Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN
| | - Caleb D. Vogt
- Biomedical Engineering Graduate Program; Medical Scientist Training Program, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN
| | - Haylie R. Helms
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cell Therapy, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN
| | - Angela Panoskaltsis-Mortari
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cell Therapy; Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep, University of Minnesota, 420 Delaware St. SE., Minneapolis, MN
| |
Collapse
|
4
|
Extracellular Matrix Scaffold Using Decellularized Cartilage for Hyaline Cartilage Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34582025 DOI: 10.1007/978-3-030-82735-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The repair of osteochondral defects is among the top ten medical needs of humans in the 21st centuries with many countries facing rapidly aging population involved with osteoarthritis as a major contributor to global disease burden. Tissue engineering methods have offered new windows of hope to treat such disorders and disabilities. Regenerative approaches to cartilage injuries require careful replication of the complex microenvironment of the native tissue. The decellularized hyaline cartilage derived from human allografts or xenografts is potentially an ideal scaffold, simulating the mechanical and biochemical properties, as well as biological microarchitecture of the hyaline cartilage. There have been many attempts to regenerate clinically viable hyaline cartilage tissue using decellularized cartilage-derived extracellular matrix with stem cell technology. This chapter describes the reproducible methods for hyaline cartilage decellularization and recellularization. In addition, quality control and characterization requirements of the product at each step, as well as the clinical applications of final product have been discussed.
Collapse
|
5
|
Wagner DE, Ikonomou L, Gilpin SE, Magin CM, Cruz F, Greaney A, Magnusson M, Chen YW, Davis B, Vanuytsel K, Rolandsson Enes S, Krasnodembskaya A, Lehmann M, Westergren-Thorsson G, Stegmayr J, Alsafadi HN, Hoffman ET, Weiss DJ, Ryan AL. Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Res 2020; 6:00123-2020. [PMID: 33123557 PMCID: PMC7569162 DOI: 10.1183/23120541.00123-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
A workshop entitled "Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases" was hosted by the University of Vermont Larner College of Medicine in collaboration with the National Heart, Lung and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, the International Society for Cell and Gene Therapy and the Pulmonary Fibrosis Foundation. The event was held from July 15 to 18, 2019 at the University of Vermont, Burlington, Vermont. The objectives of the conference were to review and discuss the current status of the following active areas of research: 1) technological advancements in the analysis and visualisation of lung stem and progenitor cells; 2) evaluation of lung stem and progenitor cells in the context of their interactions with the niche; 3) progress toward the application and delivery of stem and progenitor cells for the treatment of lung diseases such as cystic fibrosis; 4) progress in induced pluripotent stem cell models and application for disease modelling; and 5) the emerging roles of cell therapy and extracellular vesicles in immunomodulation of the lung. This selection of topics represents some of the most dynamic research areas in which incredible progress continues to be made. The workshop also included active discussion on the regulation and commercialisation of regenerative medicine products and concluded with an open discussion to set priorities and recommendations for future research directions in basic and translation lung biology.
Collapse
Affiliation(s)
- Darcy E. Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- These authors contributed equally
| | - Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- These authors contributed equally
| | - Sarah E. Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Chelsea M. Magin
- Depts of Medicine and Bioengineering, University of Colorado, Denver, Aurora, CO, USA
| | - Fernanda Cruz
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allison Greaney
- Dept of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mattias Magnusson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research, Dept of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Kim Vanuytsel
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Sara Rolandsson Enes
- Dept of Medicine, University of Vermont, Burlington, VT, USA
- Dept of Experimental Medical Science, Division of Lung Biology, Lund University, Lund, Sweden
| | | | - Mareike Lehmann
- Comprehensive Pneumology Center, Lung Repair and Regeneration Unit, Helmholtz Center Munich, Munich, Germany
| | | | - John Stegmayr
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Evan T. Hoffman
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Daniel J. Weiss
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Dept of Medicine, University of Southern California, Los Angeles, CA, USA
- Dept of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|