1
|
Nicoletti CF, Delfino HBP, Ferreira FC, Pinhel MADS, Nonino CB. Role of eating disorders-related polymorphisms in obesity pathophysiology. Rev Endocr Metab Disord 2019; 20:115-125. [PMID: 30924001 DOI: 10.1007/s11154-019-09489-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human biological system provides innumerable neuroendocrine inputs for food intake control, with effects on appetite's modulation and the satiety signs. Its regulation is very complex, engaging several molecular interactions with many tissues, hormones, and neural circuits. Thus, signaling molecules that control food intake are critical for normal energy homeostasis and a deregulation of these pathways can lead to eating disorders and obesity. In line of this, genetic factors have a significantly influence of the regulation of neural circuits controlling the appetite and satiety pathways, as well as the regulation of brain reward systems. Single Nucleotide Polymorphisms (SNPs) in genes related to hypothalamic appetite and satiety mechanisms, further in multiple neurotransmitter systems may contribute to the development of major Eating Disorders (EDs) related to obesity, among them Binge Eating Disorder (BED) and Bulimia Nervosa (BN), which are discussed in this review.
Collapse
Affiliation(s)
- Carolina Ferreira Nicoletti
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Flávia Campos Ferreira
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Laboratory of Studies in Biochemistry and Molecular Biology, Department of Molecular Biology, São José do Rio Preto Medical School, São Paulo, Brazil
| | - Carla Barbosa Nonino
- Department of Health Sciences, Ribeirão Preto Medical School - FMRP/USP - Laboratory of Nutrigenomic Studies, University of São Paulo, Av Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP, CEP: 14049-900, Brazil.
| |
Collapse
|
2
|
Timko CA, DeFilipp L, Dakanalis A. Sex Differences in Adolescent Anorexia and Bulimia Nervosa: Beyond the Signs and Symptoms. Curr Psychiatry Rep 2019; 21:1. [PMID: 30637488 PMCID: PMC6559358 DOI: 10.1007/s11920-019-0988-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW We review research related to sex differences in eating disorders (EDs) in adolescents. Prior work has explored clinical differences; thus, we examine literature in areas identified as playing an etiological or maintenance role in EDs including: genetics, hormones, neurocognitive inefficiencies, and reward circuitry. RECENT FINDINGS Sex steroids appear to a play role in the unmasking of genetic risk for development of EDs and puberty may be a heightened period of risk for females. While neurocognitive differences have been well studied in adults with ED, research with adolescents has been less conclusive. Recent work suggests that neural circuitry involved in reward and punishment may play role in development and maintenance of EDs in females. Males are underrepresented in these areas of research. Given known sex differences in healthy adolescents, it is likely there are sex differences in the putative biological etiology/maintenance of EDs. Males should be included in future research.
Collapse
Affiliation(s)
- C Alix Timko
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Child and Adolescent Psychiatry and Behavioral Science, Robert's Center for Pediatric Research, 2716 South Street, 8-212, Philadelphia, PA, 19146, USA.
| | - Levi DeFilipp
- Department of Child and Adolescent Psychiatry and Behavioral Science, Robert's Center for Pediatric Research, 2716 South Street, 8-212, Philadelphia, PA, 19146, USA
| | - Antonios Dakanalis
- Department of Medicine and Surgery, University of Milano Bicocca, Cadore 48, 20900, Monza, Italy
| |
Collapse
|
3
|
Kibitov АО, Мazo GE. [Genetics factors in pathogenesis and clinical genetics of binge eating disorder]. Zh Nevrol Psikhiatr Im S S Korsakova 2018. [PMID: 28635940 DOI: 10.17116/jnevro201611671113-119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic studies have shown that binge eating disorder (ВЕD) aggregates in families, heritability was estimated as about 60% and additive genetic influences on BED up to 50%. Using a genetic approach has proved useful for verifying the diagnostic categories of BED using DSM-IV criteria and supporting the validity of considering this pathology as a separate nosological category. The results confirmed the genetic and pathogenic originality of BED as a separate psychopathological phenomenon, but not a subtype of obesity. It seems fruitful to considerate BED as a disease with hereditary predisposition with significant genetic influence and a complex psychopathological syndrome, including not only eating disorders, but also depressive and addictive component. A possible mechanism of pathogenesis of BED may be the interaction of the neuroendocrine and neurotransmitters systems including the active involvement of the reward system in response to a variety of chronic stress influences with the important modulatory role of specific personality traits. The high level of genetic influence on the certain clinical manifestations of BED confirms the ability to identify the subphenotypes of BED on genetic basis involving clinical criteria. It can not only contribute to further genetic studies, taking into account more homogeneous samples, but also help in finding differentiated therapeutic approaches.
Collapse
Affiliation(s)
- А О Kibitov
- Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - G E Мazo
- Bekhterev St.-Petersburg Psychoneurological Research Institute, St.-Petersburg, Russia
| |
Collapse
|
4
|
Cuesto G, Everaerts C, León LG, Acebes A. Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: shedding light on the darkness. J Neurogenet 2017; 31:266-287. [PMID: 28762842 DOI: 10.1080/01677063.2017.1353092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eating-disorders (EDs) consequences to human health are devastating, involving social, mental, emotional, physical and life-threatening aspects, concluding on impairment and death in cases of extreme anorexia nervosa. It also implies that people suffering an ED need to find psychiatric and psychological help as soon as possible to achieve a fully physical and emotional recovery. Unfortunately, to date, there is a crucial lack of efficient clinical treatment to these disorders. In this review, we present an overview concerning the actual pharmacological and psychological treatments, the knowledge of cells, circuits, neuropeptides, neuromodulators and hormones in the human brain- and other organs- underlying these disorders, the studies in animal models and, finally, the genetic approaches devoted to face this challenge. We will also discuss the need for new perspectives, avenues and strategies to be developed in order to pave the way to novel and more efficient therapeutics.
Collapse
Affiliation(s)
- Germán Cuesto
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| | - Claude Everaerts
- b Centre des Sciences du Goût et de l'Alimentation , UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Franche-Comté , Dijon , France
| | - Leticia G León
- c Cancer Pharmacology Lab , AIRC Start Up Unit, University of Pisa , Pisa , Italy
| | - Angel Acebes
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| |
Collapse
|
5
|
Schroeder M, Jakovcevski M, Polacheck T, Lebow M, Drori Y, Engel M, Ben-Dor S, Chen A. A Methyl-Balanced Diet Prevents CRF-Induced Prenatal Stress-Triggered Predisposition to Binge Eating-like Phenotype. Cell Metab 2017; 25:1269-1281.e6. [PMID: 28576418 DOI: 10.1016/j.cmet.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/30/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Binge eating (BE) is a common aberrant form of eating behavior, characterized by overconsumption of food in a brief period of time. Recurrent episodes of BE constitute the BE disorder, which mostly affects females and is associated with early-life adversities. Here, we show that corticotropin releasing factor (CRF)-induced prenatal stress (PNS) in late gestation predisposes female offspring to BE-like behavior that coincides with hypomethylation of hypothalamic miR-1a and downstream dysregulation of the melanocortin system through Pax7/Pax3. Moreover, exposing the offspring to a methyl-balanced diet during adolescence prevents the dysregulation and predisposition from being triggered. We demonstrate that gestational programming, per se, will not lead to BE-like behavior, but pre-existing alterations due to prenatal programming are revealed only when challenged during adolescence. We provide experimental evidence for long-term epigenetic abnormalities stemming from PNS in predisposing female offspring to BE disorder as well as a potential non-invasive prevention strategy.
Collapse
Affiliation(s)
- Mariana Schroeder
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Tamar Polacheck
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Maya Lebow
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Yonat Drori
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Mareen Engel
- Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany.
| |
Collapse
|
6
|
Hinney A, Kesselmeier M, Jall S, Volckmar AL, Föcker M, Antel J, Heid IM, Winkler TW, Grant SFA, Guo Y, Bergen AW, Kaye W, Berrettini W, Hakonarson H, Herpertz-Dahlmann B, de Zwaan M, Herzog W, Ehrlich S, Zipfel S, Egberts KM, Adan R, Brandys M, van Elburg A, Boraska Perica V, Franklin CS, Tschöp MH, Zeggini E, Bulik CM, Collier D, Scherag A, Müller TD, Hebebrand J. Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index. Mol Psychiatry 2017; 22:192-201. [PMID: 27184124 PMCID: PMC5114162 DOI: 10.1038/mp.2016.71] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/22/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10-06/Pfemales: 3.45 × 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation.
Collapse
Affiliation(s)
- A Hinney
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - M Kesselmeier
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - S Jall
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - A-L Volckmar
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - M Föcker
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - J Antel
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - I M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - T W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - S F A Grant
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Divisions of Genetics and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Y Guo
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - W Kaye
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - W Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - H Hakonarson
- The Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - M de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - W Herzog
- Department of Internal Medicine II, General Internal and Psychosomatic Medicine, University of Heidelberg, Heidelberg, Germany
| | - S Ehrlich
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU-Dresden, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - S Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital, Tübingen, Germany
| | - K M Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - R Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - M Brandys
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - A van Elburg
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - V Boraska Perica
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- University of Split School of Medicine, Split, Croatia
| | - C S Franklin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - E Zeggini
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - C M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Collier
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- Eli Lilly and Company Ltd, Surrey, UK
| | - A Scherag
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - J Hebebrand
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Shih PAB, Woodside DB. Contemporary views on the genetics of anorexia nervosa. Eur Neuropsychopharmacol 2016; 26:663-73. [PMID: 26944296 PMCID: PMC4801707 DOI: 10.1016/j.euroneuro.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
Anorexia nervosa (AN) is a serious mental illness characterized by severe dietary restriction that leads to high rates of morbidity, chronicity, and mortality. Unfortunately, effective treatment is lacking and few options are available. High rates of familial aggregation and significant heritability suggested that the complex etiology of AN is affected by both genetic and environmental factors. In this paper, we review studies that reported common and rare genetic variation that influence susceptibility of AN through candidate gene studies, genome-wide association studies, and sequencing-based studies. We also discuss gene expression, methylation, imaging genetics, and pharmacogenetics to demonstrate that these studies have collectively advanced our knowledge of how genetic variation contributes to AN susceptibility and clinical course. Lastly, we highlight the importance of gene by environment interactions (G×E) and share our enthusiasm for the use of nutritional genomic approaches to elucidate the interaction among nutrients, metabolic intermediates, and genetic variation in AN. A deeper understanding of how nutrition alters genome stability, how genetic variation influences uptake and metabolism of nutrients, and how response to food components affects disordered eating, will lead to personalized dietary interventions and effective nutraceutical and pharmacological treatments for AN.
Collapse
Affiliation(s)
- Pei-an Betty Shih
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive #0664, La Jolla, CA 92093-0664, USA.
| | - D Blake Woodside
- Inpatient Eating Disorders Service, Toronto General Hospital, Canada; Department of Psychiatry, University of Toronto, Canada.
| |
Collapse
|
8
|
Kibitov АО, Мazo GE. [Genetic aspects of binge eating disorder Part 2. Molecular genetics and pharmacogenetic approaches]. Zh Nevrol Psikhiatr Im S S Korsakova 2016. [PMID: 28635745 DOI: 10.17116/jnevro201611681102-108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic risk of binge eating disorder (ВЕD) is a consequence of joint participation of many genes, the contribution of each one is small, but the total (additive) effect is significant and greatly influences the age at onset, clinical dynamics and the level of treatment resistance. It is assumed that the carriers of different polymorphic variants of genes and their combinations have different levels of genetic risk. No Genom Wide Association studies of ВЕD has been performed and the analysis of the results of candidate genes studies gives reason to believe that pathogenetically substantiated panel of genes, including serotonin system, BDNF and, especially dopamine and endogenous opioid system, would be most useful, taking into account the mechanism of action of drugs for the ВЕD treatment. Genetic studies with this panel if using evidence-based design, detailed and quantitative analysis of the family history of binge eating can give good results for: 1) assessment of the genetic risk of ВЕD for primary prevention programs; 2) identification of the specific clinical forms of development and course of ВЕD with significant genetic influence; 3) identification of the specific genetic variants that increase the effectiveness of personalized pharmacotherapy of ВЕD within pharmacogenetic approach.
Collapse
Affiliation(s)
- А О Kibitov
- Serbsky Federal Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - G E Мazo
- Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg, Russia
| |
Collapse
|
9
|
Hasstedt SJ, Coon H, Xin Y, Adams TD, Hunt SC. APOH interacts with FTO to predispose to healthy thinness. Hum Genet 2015; 135:201-7. [PMID: 26711810 DOI: 10.1007/s00439-015-1629-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/18/2015] [Indexed: 01/17/2023]
Abstract
We identified eight candidate thinness predisposition variants from the Illumina HumanExome chip genotyped on members of pedigrees selected for either healthy thinness or severe obesity. For validation, we tested the candidates for association with healthy thinness in additional pedigree members while accounting for effects of obesity-associated genes: NPFFR2, NPY2R, FTO, and MC4R. Significance was obtained for the interaction of FTO rs9939609 with APOH missense variant rs52797880 (minor allele frequency 0.054). The thinness odds ratio was estimated as 2.15 (p < 0.05) for the combination of APOH heterozygote with the homozygote for the non-obesity FTO allele. Significance was not obtained for any other combination of a candidate variant with an obesity gene or for any of the eight candidates tested independently.
Collapse
Affiliation(s)
- Sandra J Hasstedt
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT, 84112-5330, USA.
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yuanpei Xin
- Cardiovascular Genetics Division, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ted D Adams
- Cardiovascular Genetics Division, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Steven C Hunt
- Cardiovascular Genetics Division, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| |
Collapse
|
10
|
A new social-family model for eating disorders: A European multicentre project using a case–control design. Appetite 2015; 95:544-53. [DOI: 10.1016/j.appet.2015.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 01/05/2023]
|
11
|
Montalbano G, Mania M, Guerrera MC, Abbate F, Laurà R, Navarra M, Vega JA, Ciriaco E, Germanà A. Morphological differences in adipose tissue and changes in BDNF/Trkb expression in brain and gut of a diet induced obese zebrafish model. Ann Anat 2015; 204:36-44. [PMID: 26617157 DOI: 10.1016/j.aanat.2015.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/14/2015] [Accepted: 11/04/2015] [Indexed: 12/15/2022]
Abstract
Obesity is a multifactorial disease generated by an alteration in balance between energy intake and expenditure, also dependent on genetic and non-genetic factors. Moreover, various nuclei of the hypothalamus receive and process peripheral stimuli from the gastrointestinal tract, controlling food intake and therefore energy balance. Among anorexigenic molecules, brain-derived neurotrophic factor (BDNF) acts through the tyrosine-kinase receptor TrkB. Numerous data demonstrate that the BDNF/TrkB system has a fundamental role in the control of food intake and body weight. Quantitative PCR and immunohistochemistry for both BDNF and TrkB were used to determine changes in levels in the brain and gastro-intestinal tract of an experimental zebrafish model of diet-induced obesity. Overfed animals showed increased weight and body mass index as well as accumulation of adipose tissue in the visceral, subcutaneous and hepatic areas. These changes were concomitant with decreased levels of BDNF mRNA in the gastro-intestinal tract and increased expression of TrkB mRNA in the brain. Overfeeding did not change the density of cells displaying immunoreactivity for BDNF or TrkB in the brain although both were significantly diminished in the gastro-intestinal tract. These results suggest an involvement of the BDNF/TrkB system in the regulation of food intake and energy balance in zebrafish, as in mammals.
Collapse
Affiliation(s)
- Giuseppe Montalbano
- Dipartimento di Scienze Veterinarie, 98168 Messina, Italy; Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario SS. Annunziata, 98168 Messina, Italy.
| | - Manuela Mania
- Dipartimento di Scienze Veterinarie, 98168 Messina, Italy; Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario SS. Annunziata, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Dipartimento di Scienze Veterinarie, 98168 Messina, Italy; Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario SS. Annunziata, 98168 Messina, Italy
| | - Francesco Abbate
- Dipartimento di Scienze Veterinarie, 98168 Messina, Italy; Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario SS. Annunziata, 98168 Messina, Italy
| | - Rosaria Laurà
- Dipartimento di Scienze Veterinarie, 98168 Messina, Italy; Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario SS. Annunziata, 98168 Messina, Italy
| | - Michele Navarra
- Dipartimento di Scienza del Farmaco e Prodotti per la Salute, Università di Messina, Polo Universitario SS. Annunziata, 98168 Messina, Italy
| | - Jose A Vega
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, Universidad de Oviedo, Av de Julián Clavería 6, 33006 Oviedo, España; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, 5 Poniente, 1670 Talca, Chile
| | - Emilia Ciriaco
- Dipartimento di Scienze Veterinarie, 98168 Messina, Italy; Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario SS. Annunziata, 98168 Messina, Italy
| | - Antonino Germanà
- Dipartimento di Scienze Veterinarie, 98168 Messina, Italy; Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario SS. Annunziata, 98168 Messina, Italy
| |
Collapse
|
12
|
Booij L, Casey KF, Antunes JM, Szyf M, Joober R, Israël M, Steiger H. DNA methylation in individuals with anorexia nervosa and in matched normal-eater controls: A genome-wide study. Int J Eat Disord 2015; 48:874-82. [PMID: 25808061 DOI: 10.1002/eat.22374] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/08/2014] [Accepted: 11/19/2014] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Evidence associates anorexia nervosa (AN) with epigenetic alterations that could contribute to illness risk or entrenchment. We investigated the extent to which AN is associated with a distinct methylation profile compared to that seen in normal-eater women. METHOD Genome-wide methylation profiles, obtained using DNA from whole blood, were determined in 29 women currently ill with AN (10 with AN-restrictive type, 19 with AN-binge/purge type) and 15 normal-weight, normal-eater control women, using 450 K Illumina bead arrays. RESULTS Regardless of type, AN patients showed higher and less-variable global methylation patterns than controls. False Discovery Rate corrected comparisons identified 14 probes that were hypermethylated in women with AN relative to levels obtained in normal-eater controls, representing genes thought to be associated with histone acetylation, RNA modification, cholesterol storage and lipid transport, and dopamine and glutamate signaling. Age of onset was significantly associated with differential methylation in gene pathways involved in development of the brain and spinal cord, while chronicity of illness was significantly linked to differential methylation in pathways involved with synaptogenesis, neurocognitive deficits, anxiety, altered social functioning, and bowel, kidney, liver and immune function. DISCUSSION Although pre-existing differences cannot be ruled out, our findings are consistent with the idea of secondary alterations in methylation at genomic regions pertaining to social-emotional impairments and physical sequelae that are commonly seen in AN patients. Further investigation is needed to establish the clinical relevance of the affected genes in AN, and, importantly, reversibility of effects observed with nutritional rehabilitation and treatment.
Collapse
Affiliation(s)
- Linda Booij
- Department of Psychology, Queen's University, Kingston, ON, Canada, K7L 3N6.,Sainte-Justine Hospital Research Centre, University of Montreal, 3175, Chemin Côte Ste-Catherine, Montreal, QC, Canada, H3T 1C5.,Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1 A1
| | - Kevin F Casey
- Sainte-Justine Hospital Research Centre, University of Montreal, 3175, Chemin Côte Ste-Catherine, Montreal, QC, Canada, H3T 1C5
| | - Juliana M Antunes
- Eating Disorders Program, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3
| | - Moshe Szyf
- Department of Pharmacology, McGill University, 1309-3655 Sir William Osler Promenade, Montreal, QC, Canada, H3G 1Y6
| | - Ridha Joober
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1 A1.,Research Centre, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3
| | - Mimi Israël
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1 A1.,Eating Disorders Program, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3.,Research Centre, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3
| | - Howard Steiger
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A1 A1.,Eating Disorders Program, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3.,Research Centre, Douglas University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada, H4H 1R3
| |
Collapse
|
13
|
Hasstedt SJ, Xin Y, Mao R, Lewis T, Adams TD, Hunt SC. A Copy Number Variant on Chromosome 20q13.3 Implicated in Thinness and Severe Obesity. J Obes 2015; 2015:623431. [PMID: 26881067 PMCID: PMC4736014 DOI: 10.1155/2015/623431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/20/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES To identify copy number variants (CNVs) which are associated with body mass index (BMI). SUBJECTS/METHODS CNVs were identified using array comparative genomic hybridization (aCGH) on members of pedigrees ascertained through severely obese (BMI ≥ 35 kg/m(2)) sib pairs (86 pedigrees) and thin (BMI ≤ 23 kg/m(2)) probands (3 pedigrees). Association was inferred through pleiotropy of BMI with CNV log2 intensity ratio. RESULTS A 77-kilobase CNV on chromosome 20q13.3, confirmed by real-time qPCR, exhibited deletions in the obese subjects and duplications in the thin subjects (P = 2.2 × 10(-6)). Further support for the presence of a deletion derived from inference by likelihood analysis of null alleles for SNPs residing in the region. CONCLUSIONS One or more of 7 genes residing in a chromosome 20q13.3 CNV region appears to influence BMI. The strongest candidate is ARFRP1, which affects glucose metabolism in mice.
Collapse
Affiliation(s)
- Sandra J. Hasstedt
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- *Sandra J. Hasstedt:
| | - Yuanpei Xin
- Cardiovascular Genetics Division, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Rong Mao
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Tracey Lewis
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Ted D. Adams
- Cardiovascular Genetics Division, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Steven C. Hunt
- Cardiovascular Genetics Division, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| |
Collapse
|
14
|
Abstract
We examined the association between 15 single nucleotide polymorphisms (SNPs) in HTR2A and characteristics of disordered eating, including weight/shape concerns, binge eating (with or without loss of control), and compensatory behaviors (purging and nonpurging). Whether a lifetime history of major depressive disorder (MDD) moderated or mediated this association was also investigated. A sample of 1533 twin women of White descent that were part of the Missouri Adolescent Female Twin Study was used. Data were collected using self-report responses to a semistructured interview. Logistic regression analyses were used to examine the association between weight/shape concerns, binge eating, and compensatory behaviors and SNPs (where carriers of the minor allele were coded as 1). Two SNPs, rs6561333 and rs2296972, showed a protective influence against binge eating, with rs2296972 being significant at a trend level after application of the false discovery rate. The SNP was not associated with MDD nor did MDD moderate its putative relation with binge eating. Pending replication, our analyses provide preliminary evidence for intronic SNPs in HTR2A and their association with binge eating. Given the well-documented role of serotonergic dysfunction in eating psychopathology, this report warrants considerable further study.
Collapse
|
15
|
Genis-Mendoza AD, Tovilla-Zarate CA, Nicolini H. [Genomic Advances in Eating Behavior Disorders]. ACTA ACUST UNITED AC 2013; 42:350-5. [PMID: 26573119 DOI: 10.1016/s0034-7450(13)70031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/19/2013] [Indexed: 11/17/2022]
Abstract
Eating behavior disorders are a public health issue. The etiology of these types of disorders is unknown, and they may have psychiatric, chemical and biological origins. The aim of this review is to present evidence that shows the contribution of genomic research in the study of eating behavior disorders. It also shows the considerable research that has been undertaken to identify the genes that may participate in the etiology of eating behavior disorders.
Collapse
Affiliation(s)
- Alma D Genis-Mendoza
- Instituto Nacional de Medicina Genómica (INMEGEN), Servicios de Atención Psiquiátrica (SAP), Secretaria de Salud, México D.F., México
| | - Carlos Alfonso Tovilla-Zarate
- Laboratorio de Genómica, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, México; CIGEN, Centro de Investigación Genómica, Comalcalco, Tabasco, México.
| | - Humberto Nicolini
- Instituto Nacional de Medicina Genómica (INMEGEN), Servicios de Atención Psiquiátrica (SAP), Secretaria de Salud, México D.F., México
| |
Collapse
|
16
|
Kanakam N, Krug I, Raoult C, Collier D, Treasure J. Social and Emotional Processing as a Behavioural Endophenotype in Eating Disorders: A Pilot Investigation in Twins. EUROPEAN EATING DISORDERS REVIEW 2013; 21:294-307. [DOI: 10.1002/erv.2232] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Isabel Krug
- Eating Disorders Research Unit; Guys Hospital; London; UK
| | | | - David Collier
- Eating Disorders Research Unit; Guys Hospital; London; UK
| | - Janet Treasure
- Eating Disorders Research Unit; Guys Hospital; London; UK
| |
Collapse
|
17
|
Abstract
Disease-causing aberrations in the normal function of a gene define that gene as a disease gene. Proving a causal link between a gene and a disease experimentally is expensive and time-consuming. Comprehensive prioritization of candidate genes prior to experimental testing drastically reduces the associated costs. Computational gene prioritization is based on various pieces of correlative evidence that associate each gene with the given disease and suggest possible causal links. A fair amount of this evidence comes from high-throughput experimentation. Thus, well-developed methods are necessary to reliably deal with the quantity of information at hand. Existing gene prioritization techniques already significantly improve the outcomes of targeted experimental studies. Faster and more reliable techniques that account for novel data types are necessary for the development of new diagnostics, treatments, and cure for many diseases.
Collapse
Affiliation(s)
- Yana Bromberg
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
18
|
Abstract
Several lines of research have found that genes in the serotonergic system may cause susceptibility to eating disorders (EDs). In particular, functional polymorphisms of the serotonin transporter gene (5-HTT) have been suspected to play a role in the pathogenesis of eating disorders. Several studies have examined the association between the 5-HTTLPR polymorphism and bulimia nervosa (BN). The results of these investigations have been unclear. The aims of this meta-analysis were to clarify the association between BN and 5-HTTLPR using statistical models not used by previous meta-analyses, and extend upon previous meta-analyses by including new samples. PsychINFO, ISI, and PubMed databases were searched for studies published up to May 2011. Ultimately, six case-control samples were included. Data were pooled using dominant and additive models. Both models showed a nonsignificant association between the 5-HTTLPR polymorphism and BN. However, this does not detract from recent research suggesting that the 5-HTTLPR polymorphism may be responsible for the phenotypic variability in the psychopathological symptoms observed in patients with BN. Future research should examine the association of BN with 5-HTTLPR using the recently proposed triallelic model.
Collapse
|
19
|
Dmitrzak-Weglarz M, Moczko J, Skibinska M, Slopien A, Tyszkiewicz M, Pawlak J, Zaremba D, Szczepankiewicz A, Rajewski A, Hauser J. The study of candidate genes related to the neurodevelopmental hypothesis of anorexia nervosa: classical association study versus decision tree. Psychiatry Res 2013; 206:117-21. [PMID: 23107791 DOI: 10.1016/j.psychres.2012.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 01/03/2023]
Abstract
In this research, we conducted a study of genes connected with the neurodevelopmental hypothesis of anorexia nervosa, using classical statistical and data-mining methods to establish a relationship with disease risk and algorithms to identify the best genetic predictors of anorexia nervosa.
Collapse
Affiliation(s)
- Monika Dmitrzak-Weglarz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gicquel L. Anorexia nervosa during adolescence and young adulthood: towards a developmental and integrative approach sensitive to time course. ACTA ACUST UNITED AC 2013; 107:268-77. [PMID: 23542549 DOI: 10.1016/j.jphysparis.2013.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Anorexia nervosa is situated at the junction between two time scales, the time scale of adolescence, in which intense physiological and psychological upheavals are occurring over a relatively short period of time, and the time scale of the potentially chronic evolution of the disease over the course of the patient's lifespan. This second time scale links the critical period of adolescence with the pre-morbid period, during which a complex state of vulnerability, often unseen and unheard, combines with different risk factors, which may be isolated, associated, dissociated or concomitant, to produce the emergence of anorexia; it ushers also adolescence into the period of adulthood, flagged with the reorganization that occurs in the course of the healing process (in case of recovery), or pervaded by somatic and mental distress (in cases where the condition becomes chronic). Given the lifespan nature of the disease, it is difficult to differentiate premorbid pathogenic factors from changes resulting from the acute or chronic phases of the illness. It is also difficult to establish straightforward correlations between physiological disturbances and their clinical consequences, or conversely to assume that the restoration of physiological parameters means the disappearance of the underlying mental disorder. Taken together, these observations support an approach to anorexia nervosa that is both developmental and integrative, taking into account both the complexity of the pathways involved and the developmental timescales of these pathways. This type of approach can help to adjust therapeutic strategies and thus enhance prognosis, in particular by integrating the temporal parameter into the dynamics of care plans.
Collapse
Affiliation(s)
- Ludovic Gicquel
- INSERM U 894 Team 1, Centre de Psychiatrie et de Neurosciences, Paris, France.
| |
Collapse
|
21
|
Atalayer D, Gibson C, Konopacka A, Geliebter A. Ghrelin and eating disorders. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:70-82. [PMID: 22960103 PMCID: PMC3522761 DOI: 10.1016/j.pnpbp.2012.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/03/2012] [Accepted: 08/19/2012] [Indexed: 12/25/2022]
Abstract
There is growing evidence supporting a multifactorial etiology that includes genetic, neurochemical, and physiological components for eating disorders above and beyond the more conventional theories based on psychological and sociocultural factors. Ghrelin is one of the key gut signals associated with appetite, and the only known circulating hormone that triggers a positive energy balance by stimulating food intake. This review summarizes recent findings and several conflicting reports on ghrelin in eating disorders. Understanding these findings and inconsistencies may help in developing new methods to prevent and treat patients with these disorders.
Collapse
Affiliation(s)
- Deniz Atalayer
- Department of Medicine, New York Obesity Research and Nutrition Center, St. Luke's-Roosevelt Hospital, New York, NY, USA.
| | - Charlisa Gibson
- Department of Medicine, New York Obesity Research and Nutrition Center, St. Luke’s-Roosevelt Hospital, New York NY, USA
| | - Alexandra Konopacka
- Department of Medicine, New York Obesity Research and Nutrition Center, St. Luke’s-Roosevelt Hospital, New York NY, USA
| | - Allan Geliebter
- Department of Medicine, New York Obesity Research and Nutrition Center, St. Luke’s-Roosevelt Hospital, New York NY, USA,Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA,Department of Psychology, Touro College, New York, NY, USA
| |
Collapse
|
22
|
|
23
|
Boraska V, Davis OSP, Cherkas LF, Helder SG, Harris J, Krug I, Pei-Chi Liao T, Treasure J, Ntalla I, Karhunen L, Keski-Rahkonen A, Christakopoulou D, Raevuori A, Shin SY, Dedoussis GV, Kaprio J, Soranzo N, Spector TD, Collier DA, Zeggini E. Genome-wide association analysis of eating disorder-related symptoms, behaviors, and personality traits. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:803-11. [PMID: 22911880 PMCID: PMC3494378 DOI: 10.1002/ajmg.b.32087] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/11/2012] [Indexed: 12/18/2022]
Abstract
Eating disorders (EDs) are common, complex psychiatric disorders thought to be caused by both genetic and environmental factors. They share many symptoms, behaviors, and personality traits, which may have overlapping heritability. The aim of the present study is to perform a genome-wide association scan (GWAS) of six ED phenotypes comprising three symptom traits from the Eating Disorders Inventory 2 [Drive for Thinness (DT), Body Dissatisfaction (BD), and Bulimia], Weight Fluctuation symptom, Breakfast Skipping behavior and Childhood Obsessive-Compulsive Personality Disorder trait (CHIRP). Investigated traits were derived from standardized self-report questionnaires completed by the TwinsUK population-based cohort. We tested 283,744 directly typed SNPs across six phenotypes of interest in the TwinsUK discovery dataset and followed-up signals from various strata using a two-stage replication strategy in two independent cohorts of European ancestry. We meta-analyzed a total of 2,698 individuals for DT, 2,680 for BD, 2,789 (821 cases/1,968 controls) for Bulimia, 1,360 (633 cases/727 controls) for Childhood Obsessive-Compulsive Personality Disorder trait, 2,773 (761 cases/2,012 controls) for Breakfast Skipping, and 2,967 (798 cases/2,169 controls) for Weight Fluctuation symptom. In this GWAS analysis of six ED-related phenotypes, we detected association of eight genetic variants with P < 10(-5) . Genetic variants that showed suggestive evidence of association were previously associated with several psychiatric disorders and ED-related phenotypes. Our study indicates that larger-scale collaborative studies will be needed to achieve the necessary power to detect loci underlying ED-related traits.
Collapse
Affiliation(s)
- Vesna Boraska
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Oliver SP Davis
- MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College LondonLondon, UK
| | - Lynn F Cherkas
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital CampusWestminster Bridge Road, London, UK
| | - Sietske G Helder
- MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College LondonLondon, UK
| | - Juliette Harris
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital CampusWestminster Bridge Road, London, UK
| | - Isabel Krug
- MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College LondonLondon, UK,School of Psychological Sciences, University of MelbourneMelbourne, Victoria, Australia
| | - Thomas Pei-Chi Liao
- MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College LondonLondon, UK
| | - Janet Treasure
- Department Academic Psychiatry, King's College LondonLondon, UK
| | - Ioanna Ntalla
- Department of Dietetics and Nutrition, Harokopio University of AthensAthens, Greece
| | - Leila Karhunen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern FinlandKuopio, Finland
| | - Anna Keski-Rahkonen
- Department of Public Health, The Hjelt Institute, University of HelsinkiHelsinki, Finland
| | | | - Anu Raevuori
- Department of Public Health, The Hjelt Institute, University of HelsinkiHelsinki, Finland
| | - So-Youn Shin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, UK
| | - George V Dedoussis
- Department of Dietetics and Nutrition, Harokopio University of AthensAthens, Greece
| | - Jaakko Kaprio
- Department of Public Health, The Hjelt Institute, University of HelsinkiHelsinki, Finland,Institute of Molecular Medicine, University of HelsinkiHelsinki, Finland,Unit for Child and Adolescent Mental Health, National Institute for Health and WelfareHelsinki, Finland
| | - Nicole Soranzo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, UK
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital CampusWestminster Bridge Road, London, UK
| | - David A Collier
- MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College LondonLondon, UK
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, UK
| |
Collapse
|
24
|
Solheim TS, Fayers PM, Fladvad T, Tan B, Skorpen F, Fearon K, Baracos VE, Klepstad P, Strasser F, Kaasa S. Is there a genetic cause of appetite loss?-an explorative study in 1,853 cancer patients. J Cachexia Sarcopenia Muscle 2012; 3:191-8. [PMID: 22535570 PMCID: PMC3424193 DOI: 10.1007/s13539-012-0064-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/20/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Appetite loss has a major impact on cancer patients. It is exceedingly prevalent, is a prognostic indicator and is associated with inferior quality of life. Cachexia is a multi-factorial syndrome defined by a negative protein and energy balance, driven by a variable combination of reduced food intake and abnormal metabolism. Not all cancer patients that experience weight loss have appetite loss, and the pathophysiology between cachexia and appetite loss may thus be different. Knowledge of pathophysiology of appetite loss in cancer patients is still limited. The primary object of this study was to explore the association with 93 predefined candidate single-nucleotide polymorphisms (SNPs) and appetite loss in cancer patients to possibly generate new theories of the pathophysiology of the condition. METHODS A total of 1,853 cancer patients were phenotyped according to appetite loss and then genotyped. RESULTS After allowing for multiple testing, there was no statistically significant association between any of the SNPs analysed and appetite loss. The ten most significant SNPs in the co-dominant model had observed odds ratios varying from 0.72 to 1.28. CONCLUSIONS This large exploratory study could not find any associations with loss of appetite and 93 SNPs with a potential to be involved in appetite loss in cancer patients. This does not however rule out genes putative role in the development of the symptom, but the observed odds ratios are close to one which makes it unlikely that any of the individual SNPs explored in the present study have great importance.
Collapse
Affiliation(s)
- Tora S Solheim
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), 7030, Trondheim, Norway,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Hannah Lowes
- King's College London School of Medicine; King's College London; First Floor, Management Suite, Hodgkin Building, Guy's Campus; SE1 1UL; UK
| | - Julia Kopeika
- Academic Clinical Fellow, Obstetrics and Gynaecology; Guy's and St Thomas’ NHS Foundation Trust; London; UK
| | - Nadia Micali
- Behavioural and Brain Sciences Unit; UCL Institute of Child Health; 30 Guilford Street; London; WC1N 1EH; UK
| | - Alok Ash
- Guy's and St Thomas’ Hospital NHS Foundation Trust/King's Health Partners; London; UK
| |
Collapse
|
26
|
Herpertz-Dahlmann B, Seitz J, Konrad K. Aetiology of anorexia nervosa: from a "psychosomatic family model" to a neuropsychiatric disorder? Eur Arch Psychiatry Clin Neurosci 2011; 261 Suppl 2:S177-81. [PMID: 21866370 DOI: 10.1007/s00406-011-0246-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/28/2011] [Indexed: 12/16/2022]
Abstract
Eating disorders and, in particular, anorexia nervosa (AN) have morbidity and mortality rates that are among the highest of any mental disorders and are associated with significant functional impairment. More than 25 years ago, several researchers hypothesised that the prerequisite for the development of AN was a family process characterised by an overprotective and conflict-avoiding parent-child interaction. Family studies, however, suggest that AN is a complex genetic disorder that is likely expressed primarily by temperament and specific traits during childhood, including inhibition, perfectionism and harm avoidance. Recent studies have described an impaired flexibility and deficits in social cognition that are independent of body weight and the current state of the eating disorder, providing further evidence for a genetic component of AN. The physiological and psychological alterations and the increasing societal demands that occur during puberty may trigger onset. The starvation process itself is associated with severe alterations of central and peripheral metabolism, especially neuroendocrine and neurotransmitter changes, which are thought to affect the adolescent brain during the vulnerable period of neural restructuring. Long-standing malnutrition during adolescence and young adulthood associated with hormonal and neuropeptide dysfunctions may produce "biological scars" that maintain and accelerate the disorder and likely result in chronic mental disorders in adulthood as well as poor social functioning.
Collapse
Affiliation(s)
- Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Neuenhofer Weg 21, 52074 Aachen, Germany.
| | | | | |
Collapse
|
27
|
Brain-derived neurotrophic factor, food intake regulation, and obesity. Arch Med Res 2011; 42:482-94. [PMID: 21945389 DOI: 10.1016/j.arcmed.2011.09.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/10/2011] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a fundamental role in development and plasticity of the central nervous system (CNS). It is currently recognized as a major participant in the regulation of food intake. Multiple studies have shown that different regulators of appetite such as leptin, insulin and pancreatic polypeptide (PP) potentially exert anorexigenic effects through BDNF. Low circulating levels of BDNF are associated with a higher risk of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Strict food restriction reduces BDNF and may trigger binge-eating episodes and weight gain. The existence of mutations that cause haploinsufficiency of BDNF as well as some genetic variants, notably the BDNF p.Val66Met polymorphism, are also associated with the development of obese phenotypes and hyperphagia. However, association of the Met allele with AN and BN, which have different phenotypic characteristics, shows clearly the existence of other relevant factors that regulate eating behavior. This may, in part, be explained by the epigenetic regulation of BDNF through mechanisms like DNA methylation and histone acetylation. Environmental factors, primarily during early development, are crucial to the establishment of these stable but reversible changes that alter the transcriptional expression and are transgenerationally heritable, with potential concomitant effects on the development of eating disorders and body weight control.
Collapse
|
28
|
Corwin RL, Avena NM, Boggiano MM. Feeding and reward: perspectives from three rat models of binge eating. Physiol Behav 2011; 104:87-97. [PMID: 21549136 PMCID: PMC3132131 DOI: 10.1016/j.physbeh.2011.04.041] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 12/24/2022]
Abstract
Research has focused on understanding how overeating can affect brain reward mechanisms and subsequent behaviors, both preclinically and in clinical research settings. This work is partly driven by the need to uncover the etiology and possible treatments for the ongoing obesity epidemic. However, overeating, or non-homeostatic feeding behavior, can occur independent of obesity. Isolating the variable of overeating from the consequence of increased body weight is of great utility, as it is well known that increased body weight or obesity can impart its own deleterious effects on physiology, neural processes, and behavior. In this review, we present data from three selected animal models of normal-weight non-homeostatic feeding behavior that have been significantly influenced by Bart Hoebel's 40+-yr career studying motivation, feeding, reinforcement, and the neural mechanisms that participate in the regulation of these processes. First, a model of sugar bingeing is described (Avena/Hoebel), in which animals with repeated, intermittent access to a sugar solution develop behaviors and brain changes that are similar to the effects of some drugs of abuse, serving as the first animal model of food addiction. Second, another model is described (Boggiano) in which a history of dieting and stress can perpetuate further binge eating of palatable and non-palatable food. In addition, a model (Boggiano) is described that allows animals to be classified as having a binge-prone vs. binge-resistant behavioral profile. Lastly, a limited access model is described (Corwin) in which non-food deprived rats with sporadic limited access to a high-fat food develop binge-type behaviors. These models are considered within the context of their effects on brain reward systems, including dopamine, the opioids, cholinergic systems, serotonin, and GABA. Collectively, the data derived from the use of these models clearly show that behavioral and neuronal consequences of bingeing on a palatable food, even when at a normal body weight, are different from those that result from simply consuming the palatable food in a non-binge manner. These findings may be important in understanding how overeating can influence behavior and brain chemistry.
Collapse
Affiliation(s)
- Rebecca L Corwin
- Nutritional Sciences Dept., College of Health and Human Development, The Pennsylvania State University, University Park, PA 16802, United States.
| | | | | |
Collapse
|