1
|
Mekhtiev AA, Asadova SM. Impact of dihydropyrimidinase-related protein 2 in memory formation on rats and its possible role in neuronal back remodeling. IBRO Neurosci Rep 2024; 16:155-161. [PMID: 38304064 PMCID: PMC10831146 DOI: 10.1016/j.ibneur.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
The article concerns the problem of molecular mechanisms of memory formation. In this study the effects of polyclonal antibodies to serotonin-modulating anticonsolidation protein (SMAP) complex and its component dihydropyrimidinase-related protein 2 (DRP2) have been analyzed. Intra-cerebral administration of polyclonal anti-SMAP antibody significantly enhanced elaboration and strengthened memory formation in two complex behavioral conditioned models. At the same time, intra-cerebral administration of anti-SMAP antibody resulted in an increase of the content of nerve growth factor (NGF) in the water-soluble fraction of the hippocampus while intra-cerebral administration of anti-DRP2 antibody caused a decrease in the content of β-III tubulin (a marker of differentiated neurons) in the hippocampus and in the left parietal cortex of untrained rats. The obtained results indicate that DRP2 might participate in regulation of the processes of back remodeling of mature nerve cells of adult organisms, occurring during training of rats in the behavioral paradigm used in this study under the effects of anti-SMAP and anti-DRP2 antibodies. Conclusion is made that back remodeling (dedifferentiation) of mature nerve cells, apparently, is engaged in memory formation.
Collapse
Affiliation(s)
- Arif A. Mekhtiev
- Academician Abdulla Garayev Institute of Physiology, Ministry of Science and Education, Baku, Azerbaijan
| | - Shamsiyya M. Asadova
- Academician Abdulla Garayev Institute of Physiology, Ministry of Science and Education, Baku, Azerbaijan
| |
Collapse
|
2
|
Kumar H, Garg V, Kaur K, Kaur R. Role of Spirulina in Structural Remodeling of Synapse in Telencephalon of Chronic Unpredictable Stress Model of Zebrafish. Ann Neurosci 2023; 30:236-241. [PMID: 38020403 PMCID: PMC10662278 DOI: 10.1177/09727531231166202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 12/01/2023] Open
Abstract
Background Stress can affect the morphology and synaptic organization of the telencephalon. These structural changes at the cellular level can lead to the development of various psychopathologies. Purpose Given that the telencephalon plays a major role in stress responses, the current study aimed to investigate the role of Spirulina platensis as a neuroprotectant supplement in the early life of zebrafish in averting the alteration of synapse morphology in the telencephalon caused by chronic unpredictable stress (CUS) in the later stage. Methods 5dpf larvae were divided into two groups: one group was fed with a commercial fish diet and a second group with a 1% Spirulina-supplemented diet for 90 days. After 90 days, the adult zebrafish were exposed to CUS with different chronic stressors for 15 days. The synaptic plasticity was evaluated by morphometric analysis of synapse in telencephalon of zebrafish by transmission electron microscopy. Results The ultrastructural study demonstrated the protective role of Spirulina in the CUS model as no significant alterations in the length of the active zone, postsynaptic density, and synaptic cleft were observed as compared to the control group in the CUS model. Conclusion Thus, suggesting that the Spirulina supplementation can avert the remodeling effect of stress on synapse ultrastructure.
Collapse
Affiliation(s)
- Harender Kumar
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| | - Vincy Garg
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| | - Kawalpreet Kaur
- Department of Botany, SGGS College, Chandigarh, Punjab, India
| | - Ravneet Kaur
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|
3
|
Liu D, Chen J, Ge H, Yan Z, Luo B, Hu X, Yang K, Liu Y, Xiao C, Zhang W, Liu H. Structural plasticity of the contralesional hippocampus and its subfields in patients with glioma. Eur Radiol 2023; 33:6107-6115. [PMID: 37036480 DOI: 10.1007/s00330-023-09582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVES To characterize the structural plasticity of the contralesional hippocampus and its subfields in patients with unilateral glioma. METHODS 3D T1-weighted MRI images were collected from 55 patients with tumors infiltrating the left (HipL, n = 27) or right (HipR, n = 28) hippocampus, along with 30 age- and sex-matched healthy controls (HC). Gray matter volume differences of the contralesional hippocampal regions and three control regions (superior frontal gyrus, caudate nucleus, and superior occipital gyrus) were evaluated using voxel-based morphometry (VBM) analyses. Volumetric differences in the hippocampus and its subregional volume were measured using the FreeSurfer software. RESULTS Compared with HC, patients with unilateral hippocampal glioma exhibited significantly larger gray matter volume in the contralesional hippocampus and parahippocampal regions (cluster = 571 voxels for HipL; cluster 1 = 538 voxels and cluster 2 = 88 voxels for HipR; family-wise error corrected p < 0.05). No significant alterations were found in control regions. Volumetric analyses showed the same trend in the contralesional hippocampal subregions for both patient groups, including the CA1 head, CA3 head, hippocampus amygdala transition area (HATA), fimbria, and the granule cell molecular layer of the dentate gyrus head (GC-ML-DG head). Notably, the differences of the contralesional HATA (HipL: η2 = 0.418, corrected p = 0.002; HipR: η2 = 0.313, corrected p = 0.052) and fimbria (HipL: η2 = 0.450, corrected p < 0.001; HipR: η2 = 0.358, corrected p = 0.012) still held after the Bonferroni correction. CONCLUSIONS Our findings provide evidence for macrostructural plasticity of the contralateral hippocampus in patients with unilateral hippocampal glioma. Specifically, HATA and fimbria exhibit great potential in this process. KEY POINTS • Glioma infiltration of the hippocampal regions induces a significant increase in gray matter volume on the contralateral side. • Specifically, the HATA and fimbria regions exhibit favorable plastic potential in the process of lesion-induced structural remolding.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Institute of Brain Sciences, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Honglin Ge
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
| | - Zhen Yan
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
| | - Bei Luo
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
- Institute of Brain Sciences, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbin Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China.
- Institute of Brain Sciences, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China.
- Institute of Brain Sciences, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
4
|
Yin BK, Lázaro D, Wang ZQ. TRRAP-mediated acetylation on Sp1 regulates adult neurogenesis. Comput Struct Biotechnol J 2022; 21:472-484. [PMID: 36618986 PMCID: PMC9804013 DOI: 10.1016/j.csbj.2022.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The adult hippocampal neurogenesis plays a vital role in the function of the central nervous system (CNS), including memory consolidation, cognitive flexibility, emotional function, and social behavior. The deficiency of adult neural stem cells (aNSCs) in maintaining the quiescence and entering cell cycle, self-renewal and differentiation capacity is detrimental to the functional integrity of neurons and cognition of the adult brain. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) have been shown to modulate brain functionality and are important for embryonic neurogenesis via regulation of gene transcription. We showed previously that Trrap, an adapter for several HAT complexes, is required for Sp1 transcriptional control of the microtubule dynamics in neuronal cells. Here, we find that Trrap deletion compromises self-renewal and differentiation of aNSCs in mice and in cultures. We find that the acetylation status of lysine residues K16, K19, K703 and K639 all fail to overcome Trrap-deficiency-incurred instability of Sp1, indicating a scaffold role of Trrap. Interestingly, the deacetylation of Sp1 at K639 and K703 greatly increases Sp1 binding to the promoter of target genes, which antagonizes Trrap binding, and thereby elevates Sp1 activity. However, only deacetylated K639 is refractory to Trrap deficiency and corrects the differentiation defects of Trrap-deleted aNSCs. We demonstrate that the acetylation pattern at K639 by HATs dictates the role of Sp1 in the regulation of adult neurogenesis.
Collapse
Affiliation(s)
- Bo-Kun Yin
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - David Lázaro
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany,Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Bachstrasse 18k, 07743 Jena, Germany,Corresponding author at: Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany,.
| |
Collapse
|
5
|
Brett BL, Walton S, Meier T, Nencka AS, Powell JR, Giovanello KS, Guskiewicz KK, McCrea M. Head impact exposure, grey matter volume, and moderating effects of estimated IQ and educational attainment in former athletes at midlife. J Neurotrauma 2022; 39:497-507. [PMID: 35044240 PMCID: PMC8978573 DOI: 10.1089/neu.2021.0449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Repetitive head impact (RHI) exposure has been associated with differences in brain structure among younger active athletes, most often within the hippocampus. Studies of former athletes at early-midlife are limited. We investigated the association between RHI exposure and grey matter structure, as well as moderating factors, among former athletes in early-midlife. Former collegiate football players (N=55; age=37.9+1.5 years) completed magnetic resonance imaging to quantify grey matter morphometry and extensive structured interviews of RHI history (Head Impact Exposure Estimate). Linear regression models tested the association between RHI exposure and GM structures of interest. Interactions were tested for moderators: two estimates of IQ (single word reading and picture vocabulary) and education history. Greater RHI exposure was associated with smaller hippocampal volume, β=-.36, p=.004. Conversely, RHI exposure was not significantly associated with other GM outcomes ps>.05. Education history significantly moderated the association between RHI exposure and hippocampal volume, β=.69, p=.047. Among those with a bachelor's degree, greater RHI exposure was significantly associated with smaller hippocampal volumes, β=-.58, p<.001. For those with graduate/professional degrees, the association between RHI and hippocampal volume was not significant, β=-.33, p=.134. Consistent with studies involving younger, active athletes, smaller hippocampal volumes were selectively associated with greater RHI exposure among former collegiate football players at midlife. This relationship was moderated by higher levels of education. Future longitudinal studies are needed to investigate the course of possible changes that can occur between early-midlife to older ages, as well as the continued protective effect of education and other potential influential factors.
Collapse
Affiliation(s)
- Benjamin L Brett
- Medical College of Wisconsin, 5506, Neurosurgery and Neurology, 8701 W Watertown Plank Rd, Milwaukee, Wisconsin, United States, 53226;
| | - Samuel Walton
- University of North Carolina at Chapel Hill College of Arts and Sciences, 169101, Department of Exercise and Sport Science, Chapel Hill, North Carolina, United States;
| | - Timothy Meier
- Medical College of Wisconsin, Neurosurgery, 8701 Watertown Plank Road, Milwaukee, Wisconsin, United States, 53226;
| | - Andrew S Nencka
- Medical College of Wisconsin, Biophysics, Milwaukee, Wisconsin, United States;
| | - Jacob R Powell
- University of North Carolina at Chapel Hill College of Arts and Sciences, 169101, Department of Exercise and Sport Science, Chapel Hill, North Carolina, United States;
| | - Kelly S Giovanello
- University of North Carolina at Chapel Hill, Psychology, Chapel Hill, North Carolina, United States;
| | - Kevin K Guskiewicz
- University of North Carolina, Exercise and Sport Science, CB#8700, Chapel Hill, North Carolina, United States, 27599-8700;
| | - Michael McCrea
- Medical College of Wisconsin, Neurosurgery, Hub for Collaborative Medicine, 8701 Watertown Plank Road, Milwaukee, Wisconsin, United States, 53226;
| |
Collapse
|
6
|
Chen P, Chen F, Wu Y, Zhou B. New Insights Into the Role of Aberrant Hippocampal Neurogenesis in Epilepsy. Front Neurol 2022; 12:727065. [PMID: 34975709 PMCID: PMC8714646 DOI: 10.3389/fneur.2021.727065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Data accumulated over the past four decades have confirmed that adult hippocampal neurogenesis (HN) plays a key role in the wide spectrum of hippocampal pathology. Epilepsy is a disorder of the central nervous system characterized by spontaneous recurrent seizures. Although neurogenesis in persistent germinative zones is altered in the adult rodent models of epilepsy, the effects of seizure-induced neurogenesis in the epileptic brain, in terms of either a pathological or reparative role, are only beginning to be explored. In this review, we described the most recent advances in neurogenesis in epilepsy and outlooked future directions for neural stem cells (NSCs) and epilepsy-in-a-dish models. We proposed that it may help in refining the underlying molecular mechanisms of epilepsy and improving the therapies and precision medicine for patients with epilepsy.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Yue Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Brocato E, Wolstenholme JT. Neuroepigenetic consequences of adolescent ethanol exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:45-84. [PMID: 34696879 DOI: 10.1016/bs.irn.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adolescence is a critical developmental period characterized by ongoing brain maturation processes including myelination and synaptic pruning. Adolescents experience heightened reward sensitivity, sensation seeking, impulsivity, and diminished inhibitory self-control, which contribute to increased participation in risky behaviors, including the initiation of alcohol use. Ethanol exposure in adolescence alters memory and cognition, anxiety-like behavior, and ethanol sensitivity as well as brain myelination and dendritic spine morphology, with effects lasting into adulthood. Emerging evidence suggests that epigenetic modifications may explain these lasting effects. Focusing on the amygdala, prefrontal cortex and hippocampus, we review studies investigating the epigenetic consequences of adolescent ethanol exposure. Ethanol metabolism globally increases donor substrates for histone acetylation and histone and DNA methylation, and this chapter discusses how this can further impact epigenetic programming of the adolescent brain. Elucidation of the mechanisms through which ethanol can alter the epigenetic code at specific transcripts may provide therapeutic targets for intervention.
Collapse
Affiliation(s)
- Emily Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
8
|
Ribeiro FF, Xapelli S. An Overview of Adult Neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:77-94. [PMID: 34453294 DOI: 10.1007/978-3-030-74046-7_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurogenesis is maintained in the mammalian brain throughout adulthood in two main regions: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Adult neurogenesis is a process composed of multiple steps by which neurons are generated from dividing adult neural stem cells and migrate to be integrated into existing neuronal circuits. Alterations in any of these steps impair neurogenesis and may compromise brain function, leading to cognitive impairment and neurodegenerative diseases. Therefore, understanding the cellular and molecular mechanisms that modulate adult neurogenesis is the centre of attention of regenerative research. In this chapter, we review the main properties of the adult neurogenic niches.
Collapse
Affiliation(s)
- Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
9
|
Hu Z, Ma J, Gu Y. Lin28a is Essential for Synaptic Plasticity in Dentate Granule Cells and Spatial Memory. Neurosci Bull 2020; 37:261-266. [PMID: 33044741 DOI: 10.1007/s12264-020-00591-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Zhechun Hu
- Center of Stem Cell and Regenerative Medicine, Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiao Ma
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Sun B, Jia X, Yang F, Ren G, Wu X. CREB-mediated generation and neuronal growth regulates the behavioral improvement of geniposide in diabetes-associated depression mouse model. Neurosci Res 2020; 165:38-44. [PMID: 32428538 DOI: 10.1016/j.neures.2020.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Metabolic disorder particularly diabetes is one of the leading causes of psychiatric or other neurodegenerative diseases. Previous clinical and pre-clinical studies indicate anti-diabetic drugs such as GLP-1 analogs or GLP-1 receptor (GLP-1R) agonists could perform the neuroprotective effects with multiple molecular mechanisms. As one of natural compound to stimulate GLP-1R, geniposide was reported could improve cognitive behaviors in diabetes associated Alzheimer's disease rat model. Stimulating of GLP-1R could act the crosstalk downstream like neurotrophic factor mediated cAMP-response element binding protein (CREB) would be activated and exert cellular events including promotion of adult neurogenesis, which is one of important treatment targets in antidepressant. Here in this study, we employed HDF in combined with corticosterone (CORT) treatment to create diabetes associated depression model. Geniposide treatment could not only correct the metabolic pattern but could also improve the cognitive dysfunctions and depressive/anxiety symptoms. In consistent with its pro-neurogenic effects, geniposide also enhanced the activity of CREB in hippocampal tissue. Moreover, blocking CREB activity with 666-15 significantly compromised the effects of geniposide in promotion of neurogenesis and behavioral protective effects. In conclusion, this study expands the application of geniposide to treat diabetes associated depression subject and identified the underlying molecular mechanism for such effects.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neurology, General Hospital of TISCO, Taiyuan, China
| | - Xiayan Jia
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fei Yang
- Department of Neurology, General Hospital of TISCO, Taiyuan, China
| | - Guoyong Ren
- Department of Neurology, General Hospital of TISCO, Taiyuan, China
| | - Xuemei Wu
- Department of Neurology, General Hospital of TISCO, Taiyuan, China.
| |
Collapse
|
11
|
B cells migrate into remote brain areas and support neurogenesis and functional recovery after focal stroke in mice. Proc Natl Acad Sci U S A 2020; 117:4983-4993. [PMID: 32051245 PMCID: PMC7060723 DOI: 10.1073/pnas.1913292117] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neuroinflammation occurs immediately after stroke onset in the ischemic infarct, but whether neuroinflammation occurs in remote regions supporting plasticity and functional recovery remains unknown. We used advanced imaging to quantify whole-brain diapedesis of B cells, an immune cell capable of producing neurotrophins. We identify bilateral B cell diapedesis into remote regions, outside of the injury, that support motor and cognitive recovery in young male mice. Poststroke depletion of B cells confirms a positive role in neurogenesis, neuronal survival, and recovery of motor coordination, spatial learning, and anxiety. More than 80% of stroke survivors have long-term disability uniquely affected by age and lifestyle factors. Thus, identifying beneficial neuroinflammation during long-term recovery increases the opportunity of therapeutic interventions to support functional recovery. Lymphocytes infiltrate the stroke core and penumbra and often exacerbate cellular injury. B cells, however, are lymphocytes that do not contribute to acute pathology but can support recovery. B cell adoptive transfer to mice reduced infarct volumes 3 and 7 d after transient middle cerebral artery occlusion (tMCAo), independent of changing immune populations in recipient mice. Testing a direct neurotrophic effect, B cells cocultured with mixed cortical cells protected neurons and maintained dendritic arborization after oxygen-glucose deprivation. Whole-brain volumetric serial two-photon tomography (STPT) and a custom-developed image analysis pipeline visualized and quantified poststroke B cell diapedesis throughout the brain, including remote areas supporting functional recovery. Stroke induced significant bilateral B cell diapedesis into remote brain regions regulating motor and cognitive functions and neurogenesis (e.g., dentate gyrus, hypothalamus, olfactory areas, cerebellum) in the whole-brain datasets. To confirm a mechanistic role for B cells in functional recovery, rituximab was given to human CD20+ (hCD20+) transgenic mice to continuously deplete hCD20+-expressing B cells following tMCAo. These mice experienced delayed motor recovery, impaired spatial memory, and increased anxiety through 8 wk poststroke compared to wild type (WT) littermates also receiving rituximab. B cell depletion reduced stroke-induced hippocampal neurogenesis and cell survival. Thus, B cell diapedesis occurred in areas remote to the infarct that mediated motor and cognitive recovery. Understanding the role of B cells in neuronal health and disease-based plasticity is critical for developing effective immune-based therapies for protection against diseases that involve recruitment of peripheral immune cells into the injured brain.
Collapse
|
12
|
Mitsuhashi T, Sugano H, Asano K, Nakajima T, Nakajima M, Okura H, Iimura Y, Suzuki H, Tange Y, Tanaka T, Aoki S, Arai H. Functional MRI and Structural Connectome Analysis of Language Networks in Japanese-English Bilinguals. Neuroscience 2020; 431:17-24. [PMID: 32027993 DOI: 10.1016/j.neuroscience.2020.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/23/2019] [Accepted: 01/19/2020] [Indexed: 12/19/2022]
Abstract
We aimed to clarify the mechanisms of neural plasticity involved in language. We hypothesized that alterations which occur in bilinguals could reflect the mechanisms of acquisition of a second language and simulate neural plasticity related to language. We compared spatial characteristics of story listening-related hemodynamic modulations and subcortical fiber networks between monolinguals and bilinguals. Participants were Japanese monolinguals and Japanese-English bilinguals whose first language was Japanese. We divided bilinguals into early and late bilinguals depending on whether the age of acquisition was before after 7 years of age. We applied intergroup analysis to investigate the following: (1) blood oxygen level-dependent response (BOLD) responses during story listening by block-based fMRI; (2) number of fibers (NOFs) between specific edges by DTI. Both bilingual samples showed larger BOLD responses (BRs) in the right putamen and bilateral superior temporal gyri compared to the Japanese monolinguals in fMRI. Late bilinguals demonstrated bigger BRs in the right anterior temporal lobe and left medial parietal lobe than early bilinguals. Early bilinguals showed a higher NOFs between the right putamen and precentral gyrus than monolinguals and late bilinguals in DTI. Late bilinguals showed a lower NOFs between the left superior temporal gyrus and supramarginal gyrus than monolinguals and early bilinguals. Early bilinguals reinforce the subcortical fiber network between the right putamen and precentral gyrus, and activate the right putamen to gain alternative language function. We conclude that these key cerebral regions and subcortical fiber networks could contribute to the neural plasticity of language.
Collapse
Affiliation(s)
- Takumi Mitsuhashi
- Department of Neurosurgery, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Keiko Asano
- Department of General Education, Juntendo University, 1-1-1, Hirakagakuendai, Inzai-shi, Chiba, Japan
| | - Takayuki Nakajima
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hidehiro Okura
- Department of Neurosurgery, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Iimura
- Department of Neurosurgery, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hiroharu Suzuki
- Department of Neurosurgery, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Tange
- Department of Neurosurgery, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Toshihisa Tanaka
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
13
|
Kim S, Jeon SG, Nam Y, Kim HS, Yoo DH, Moon M. Bilingualism for Dementia: Neurological Mechanisms Associated With Functional and Structural Changes in the Brain. Front Neurosci 2019; 13:1224. [PMID: 31798405 PMCID: PMC6868000 DOI: 10.3389/fnins.2019.01224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/29/2019] [Indexed: 01/17/2023] Open
Abstract
As the number of older adults increases, the prevalence of dementias, such as Alzheimer's dementia (AD), vascular dementia, dementia with Lewy bodies, and frontotemporal dementias, also increases. Despite research into pharmacological approaches for treating diverse diseases, there is still no cure. Recently, novel non-pharmacological interventions are attracting attention. Non-pharmacological approaches include cognitive stimulation, alterations in diet, physical activity, and social engagement. Cognitive stimulating activities protect against the negative effects of cognitive decline caused by age-related neurogenerative diseases. Bilingualism is one form of cognitive stimulation that requires multiple aspects of brain activity and has been shown to delay the onset of dementia symptoms in patients by approximately 4-5 years as compared with monolingual patients through cognitive reserve. The purpose of this review was to bilingualism protects against cognitive decline associated with AD and other dementias. We discuss potential underlying neurological mechanisms, including: (1) stimulating adult neurogenesis, (2) enhancing synaptogenesis, (3) strengthening functional connectivity that bilingualism may delay clinical AD symptoms, (4) protecting white matter integrity, and (5) preserving gray matter density.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Doo-Han Yoo
- Department of Occupational Therapy, Konyang University, Daejeon, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| |
Collapse
|
14
|
Abbott LC, Nigussie F. Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol 2019; 49:3-16. [PMID: 31568602 DOI: 10.1111/ahe.12496] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/03/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Earlier observations in neuroscience suggested that no new neurons form in the mature central nervous system. Evidence now indicates that new neurons do form in the adult mammalian brain. Two regions of the mature mammalian brain generate new neurons: (a) the border of the lateral ventricles of the brain (subventricular zone) and (b) the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. This review focuses only on new neuron formation in the dentate gyrus of the hippocampus. During normal prenatal and early postnatal development, neural stem cells (NSCs) give rise to differentiated neurons. NSCs persist in the dentate gyrus SGZ, undergoing cell division, with some daughter cells differentiating into functional neurons that participate in learning and memory and general cognition through integration into pre-existing neural networks. Axons, which emanate from neurons in the entorhinal cortex, synapse with dendrites of the granule cells (small neurons) of the dentate gyrus. Axons from granule cells synapse with pyramidal cells in the hippocampal CA3 region, which send axons to synapse with CA1 hippocampal pyramidal cells that send their axons out of the hippocampus proper. Adult neurogenesis includes proliferation, differentiation, migration, the death of some newly formed cells and final integration of surviving cells into neural networks. We summarise these processes in adult mammalian hippocampal neurogenesis and discuss the roles of major signalling molecules that influence neurogenesis, including neurotransmitters and some hormones. The recent controversy raised concerning whether or not adult neurogenesis occurs in humans also is discussed.
Collapse
Affiliation(s)
- Louise C Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Fikru Nigussie
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
15
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
16
|
Sobrino V, Annese V, Navarro-Guerrero E, Platero-Luengo A, Pardal R. The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system. Cell Mol Life Sci 2019; 76:1027-1039. [PMID: 30498994 PMCID: PMC11105339 DOI: 10.1007/s00018-018-2975-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Elena Navarro-Guerrero
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Aida Platero-Luengo
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain.
| |
Collapse
|
17
|
Fares J, Bou Diab Z, Nabha S, Fares Y. Neurogenesis in the adult hippocampus: history, regulation, and prospective roles. Int J Neurosci 2018; 129:598-611. [PMID: 30433866 DOI: 10.1080/00207454.2018.1545771] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The hippocampus is one of the sites in the mammalian brain that is capable of continuously generating controversy. Adult neurogenesis is a remarkable process, and yet an intensely debatable topic in contemporary neuroscience due to its distinctiveness and conceivable impact on neural activity. The belief that neurogenesis continues through adulthood has provoked remarkable efforts to describe how newborn neurons differentiate and incorporate into the adult brain. It has also encouraged studies that investigate the consequences of inadequate neurogenesis in neuropsychiatric and neurodegenerative diseases and explore the potential role of neural progenitor cells in brain repair. The adult nervous system is not static; it is subjected to morphological and physiological alterations at various levels. This plastic mechanism guarantees that the behavioral regulation of the adult nervous system is adaptable in response to varying environmental stimuli. Three regions of the adult brain, the olfactory bulb, the hypothalamus, and the hippocampal dentate gyrus, contain new-born neurons that exhibit an essential role in the natural functional circuitry of the adult brain. Purpose/Aim: This article explores current advancements in adult hippocampal neurogenesis by presenting its history and evolution and studying its association with neural plasticity. The article also discusses the prospective roles of adult hippocampal neurogenesis and describes the intracellular, extracellular, pathological, and environmental factors involved in its regulation. Abbreviations AHN Adult hippocampal neurogenesis AKT Protein kinase B BMP Bone Morphogenic Protein BrdU Bromodeoxyuridine CNS Central nervous system DG Dentate gyrus DISC1 Disrupted-in-schizophrenia 1 FGF-2 Fibroblast Growth Factor 2 GABA Gamma-aminobutyric acid Mbd1 Methyl-CpG-binding domain protein 1 Mecp2 Methyl-CpG-binding protein 2 mTOR Mammalian target of rapamycin NSCs Neural stem cells OB Olfactory bulb; P21: cyclin-dependent kinase inhibitor 1 RBPj Recombination Signal Binding protein for Immunoglobulin Kappa J Region RMS Rostral migratory Stream SGZ Subgranular zone Shh Sonic hedgehog SOX2 SRY (sex determining region Y)-box 2 SVZ Subventricular zone Wnt3 Wingless-type mouse mammary tumor virus.
Collapse
Affiliation(s)
- Jawad Fares
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon.,b Department of Neurological Surgery Feinberg School of Medicine , Northwestern University , Chicago , Illinois , USA
| | - Zeina Bou Diab
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon
| | - Sanaa Nabha
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon
| | - Youssef Fares
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon.,c Department of Neurosurgery Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon
| |
Collapse
|
18
|
Cameron HA, Schoenfeld TJ. Behavioral and structural adaptations to stress. Front Neuroendocrinol 2018; 49:106-113. [PMID: 29421158 PMCID: PMC5963997 DOI: 10.1016/j.yfrne.2018.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/20/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Unpredictable aversive experiences, or stressors, lead to changes in depression- and anxiety-related behavior and to changes in hippocampal structure including decreases in adult neurogenesis, granule cell and pyramidal cell dendritic morphology, and volume. Here we review the relationship between these behavioral and structural changes and discuss the possibility that these changes may be largely adaptive. Specifically, we suggest that new neurons in the dentate gyrus enhance behavioral adaptability to changes in the environment, biasing behavior in novel situations based on previous experience with stress. Conversely, atrophy-like changes in the hippocampus and decreased adult neurogenesis following chronic stress may serve to limit stress responses and stabilize behavior during chronic stress.
Collapse
Affiliation(s)
- Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Timothy J Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Cunha-Rodrigues MC, Balduci CTDN, Tenório F, Barradas PC. GABA function may be related to the impairment of learning and memory caused by systemic prenatal hypoxia-ischemia. Neurobiol Learn Mem 2018; 149:20-27. [PMID: 29408270 DOI: 10.1016/j.nlm.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/08/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Intrauterine adverse conditions may be responsible for long-lasting damages which impact health even during adult phase. Hypoxic-ischemic (HI) events are a relevant cause of newborn mortality and the principal factor leading to permanent brain lesions. Using a model in which the ovarian and uterine flux of a pregnant rat is obstructed for 45 min we have described oligodendrocyte death, astrogliosis and neuronal loss. In this work we investigated hippocampal neuronal population and performed a functional evaluation of memory and learning of young rats that had been affected by prenatal HI. Anesthetized Wistar rats on the 18th gestation day had the uterine horns exposed and the ovarian and uterine arteries clamped for 45 min (HI group). Sham-operated rats (SH group) had the horns exposed but no arteries were clamped. We measured the levels of different proteins related to excitatory/inhibitory transmission in the hippocampi of young pups (P45). Histological evaluation was also performed in order to characterize hippocampal neuronal population. Rats from both groups were tested through Novel Object Recognition Test (NORT) using two inter-trial intervals: 5 min and 8 h. Here we show a loss in the total number of hippocampal neurons although the immunostaining of parvalbumin and levels of GAD enzyme were increased in HI group. Functional assessment indicated a marked difference concerning HI learning and memory abilities. Our results reflect permanent damages concerning GABA function which may disturb neurotransmitter homeostasis leading to the observed deficits in learning and memory.
Collapse
Affiliation(s)
| | | | - Frank Tenório
- Depto. Farmacologia e Psicobiologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha Cristina Barradas
- Depto. Farmacologia e Psicobiologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Lynch KS. Region-specific neuron recruitment in the hippocampus of brown-headed cowbirds Molothrus ater (Passeriformes: Icteridae). THE EUROPEAN ZOOLOGICAL JOURNAL 2018. [DOI: 10.1080/24750263.2018.1435743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Kathleen S. Lynch
- Department of Biological Sciences, Hofstra University, Hempstead, NY, USA
| |
Collapse
|
21
|
Cho JH, Jung JY, Lee BJ, Lee K, Park JW, Bu Y. Epimedii Herba: A Promising Herbal Medicine for Neuroplasticity. Phytother Res 2017; 31:838-848. [PMID: 28382688 DOI: 10.1002/ptr.5807] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 01/21/2023]
Abstract
Epimedii Herba (EH) is an herbal medicine originating from several plants of the genus Epimedium. It is a major therapeutic option for kidney yang deficiency syndrome, which is closely related to androgen hormones and also has been used to treat hemiplegia following a stroke in traditional medicine of Korea and PR China. To date, many clinical and basic researches of EH have shown the activities on functional recovery from brain diseases. Recently, neuroplasticity, which is the spontaneous reaction of the brain in response to diseases, has been shown to accelerate functional recovery. In addition, androgen hormones including testosterone are known to be the representative of neuroplasticity factors in the brain recovery processes. In this review, we described the neuro-pharmacological activities of EH, focusing on neuroplasticity. Thirty-three kinds of papers from MEDLINE/PubMed, EMBASE, and CNKI were identified and analyzed. We categorized the results into five types based on neuroplasticity mechanisms and presented the definition of each category and briefly described the results of these papers. Altogether, we can suggest that neuroplasticity is a novel viewpoint for guiding future brain research of EH and provide the evidence for the development of new clinical applications using EH in the treatment of brain diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jae-Heung Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Young Jung
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Beom-Joon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Kyungjin Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Woo Park
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Youngmin Bu
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
22
|
Active Dentate Granule Cells Encode Experience to Promote the Addition of Adult-Born Hippocampal Neurons. J Neurosci 2017; 37:4661-4678. [PMID: 28373391 DOI: 10.1523/jneurosci.3417-16.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 01/09/2023] Open
Abstract
The continuous addition of new dentate granule cells (DGCs), which is regulated exquisitely by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to affect the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca2+ imaging to track the real-time activity of individual DGCs in freely behaving mice. For the first time, we found that active DGCs responded to a novel experience by increasing their Ca2+ event frequency preferentially. This elevated activity, which we found to be associated with object exploration, returned to baseline by 1 h in the same environment, but could be dishabituated via introduction to a novel environment. To transition seamlessly between environments, we next established a freely controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences increased the number of newborn neurons accumulatively compared with a single experience. Finally, optogenetic silencing of existing DGCs during novel environmental exploration perturbed experience-induced neuronal addition. Our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active DGCs.SIGNIFICANCE STATEMENT Adult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca2+ imaging of dentate granule neurons with a novel, unrestrained virtual reality system for rodents, we discovered that a new experience increased firing of active dentate granule neurons rapidly and robustly. Exploration in multiple novel virtual environments, compared with a single environment, promoted dentate activation and enhanced the addition of new hippocampal neurons accumulatively. Finally, silencing this activation optogenetically during novel experiences perturbed experience-induced neuronal addition.
Collapse
|
23
|
Dumitru I, Neitz A, Alfonso J, Monyer H. Diazepam Binding Inhibitor Promotes Stem Cell Expansion Controlling Environment-Dependent Neurogenesis. Neuron 2017; 94:125-137.e5. [PMID: 28343864 DOI: 10.1016/j.neuron.2017.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 12/31/2022]
Abstract
Plasticity of adult neurogenesis supports adaptation to environmental changes. The identification of molecular mediators that signal these changes to neural progenitors in the niche has remained elusive. Here we report that diazepam binding inhibitor (DBI) is crucial in supporting an adaptive mechanism in response to changes in the environment. We provide evidence that DBI is expressed in stem cells in all neurogenic niches of the postnatal brain. Focusing on the hippocampal subgranular zone (SGZ) and employing multiple genetic manipulations in vivo, we demonstrate that DBI regulates the balance between preserving the stem cell pool and neurogenesis. Specifically, DBI dampens GABA activity in stem cells, thereby sustaining the proproliferative effect of physical exercise and enriched environment. Our data lend credence to the notion that the modulatory effect of DBI constitutes a general mechanism that regulates postnatal neurogenesis.
Collapse
Affiliation(s)
- Ionut Dumitru
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Angela Neitz
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Hannah Monyer
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Ihunwo AO, Tembo LH, Dzamalala C. The dynamics of adult neurogenesis in human hippocampus. Neural Regen Res 2016; 11:1869-1883. [PMID: 28197172 PMCID: PMC5270414 DOI: 10.4103/1673-5374.195278] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2016] [Indexed: 02/06/2023] Open
Abstract
The phenomenon of adult neurogenesis is now an accepted occurrence in mammals and also in humans. At least two discrete places house stem cells for generation of neurons in adult brain. These are olfactory system and the hippocampus. In animals, newly generated neurons have been directly or indirectly demonstrated to generate a significant amount of new neurons to have a functional role. However, the data in humans on the extent of this process is still scanty and such as difficult to comprehend its functional role in humans. This paper explores the available data on as extent of adult hippocampal neurogenesis in humans and makes comparison to animal data.
Collapse
Affiliation(s)
- Amadi O. Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lackson H. Tembo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles Dzamalala
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Sakharkar AJ, Vetreno RP, Zhang H, Kokare DM, Crews FT, Pandey SC. A role for histone acetylation mechanisms in adolescent alcohol exposure-induced deficits in hippocampal brain-derived neurotrophic factor expression and neurogenesis markers in adulthood. Brain Struct Funct 2016; 221:4691-4703. [PMID: 26941165 PMCID: PMC5010799 DOI: 10.1007/s00429-016-1196-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/30/2016] [Indexed: 02/06/2023]
Abstract
Binge drinking during adolescence is a risk factor for neuropsychiatric disorders that can develop later in life. Histone acetylation is an important epigenetic mechanism that contributes to neurodevelopment. We investigated the effects of adolescent intermittent ethanol (AIE) exposure, as opposed to normal saline (AIS) exposure, on histone acetylation-mediated regulation of brain-derived neurotrophic factor (BDNF) expression and developmental stages of neurogenesis (proliferating and immature neurons) in the hippocampus in adulthood. AIE exposure increased whole hippocampal histone deacetylase (HDAC) activity and decreased binding protein of cyclic adenosine monophosphate response element binding protein (CBP) and histone H3-K9 acetylation levels in the CA1, CA2, and CA3 regions of the hippocampus. BDNF protein and exon IV mRNA levels in the CA1 and CA3 regions of the hippocampus of AIE-exposed adult rats were decreased as compared to AIS-exposed adult rats. AIE-induced anxiety-like behaviors and deficits in histone H3 acetylation at BDNF exon IV promoter in the hippocampus during adulthood, which were reversed by treatment with the HDAC inhibitor, trichostatin A (TSA). Similarly, neurogenesis was inhibited by AIE in adulthood as demonstrated by the decrease in Ki-67 and doublecortin (DCX)-positive cells in the dentate gyrus, which was normalized by TSA treatment. These results indicate that AIE exposure increases HDACs and decreases CBP levels that may be associated with a decrease in histone H3 acetylation in the hippocampus. These epigenetic changes potentially decrease BDNF expression and inhibit neurogenesis in the hippocampus that may be involved in AIE-induced behavioral abnormalities, including anxiety, in adulthood.
Collapse
Affiliation(s)
- Amul J Sakharkar
- Department of Psychiatry, Center for Alcohol Research in Epigenetics (CARE), University of Illinois at Chicago, 1601 West Taylor Street (m/c 912), Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huaibo Zhang
- Department of Psychiatry, Center for Alcohol Research in Epigenetics (CARE), University of Illinois at Chicago, 1601 West Taylor Street (m/c 912), Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Dadasaheb M Kokare
- Department of Psychiatry, Center for Alcohol Research in Epigenetics (CARE), University of Illinois at Chicago, 1601 West Taylor Street (m/c 912), Chicago, IL, 60612, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Subhash C Pandey
- Department of Psychiatry, Center for Alcohol Research in Epigenetics (CARE), University of Illinois at Chicago, 1601 West Taylor Street (m/c 912), Chicago, IL, 60612, USA.
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
26
|
A data science approach to candidate gene selection of pain regarded as a process of learning and neural plasticity. Pain 2016; 157:2747-2757. [DOI: 10.1097/j.pain.0000000000000694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Enge S, Fleischhauer M, Gärtner A, Reif A, Lesch KP, Kliegel M, Strobel A. Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training. Front Hum Neurosci 2016; 10:370. [PMID: 27524961 PMCID: PMC4966207 DOI: 10.3389/fnhum.2016.00370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/11/2016] [Indexed: 01/17/2023] Open
Abstract
Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements.
Collapse
Affiliation(s)
- Sören Enge
- Department of Psychology, Technische Universität DresdenDresden, Germany
| | - Monika Fleischhauer
- Department of Psychology, Technische Universität DresdenDresden, Germany
- Department of Psychology, PFH Private Hochschule GöttingenGöttingen, Germany
| | - Anne Gärtner
- Department of Psychology, Technische Universität DresdenDresden, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital FrankfurtFrankfurt am Main, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of WuerzburgWuerzburg, Germany
| | - Matthias Kliegel
- Department of Psychology, University of GenevaGeneva, Switzerland
| | - Alexander Strobel
- Department of Psychology, Technische Universität DresdenDresden, Germany
| |
Collapse
|
28
|
Hofstetter S, Friedmann N, Assaf Y. Rapid language-related plasticity: microstructural changes in the cortex after a short session of new word learning. Brain Struct Funct 2016; 222:1231-1241. [DOI: 10.1007/s00429-016-1273-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 07/13/2016] [Indexed: 11/29/2022]
|
29
|
Pardal R, López Barneo J. Mature neurons modulate neurogenesis through chemical signals acting on neural stem cells. Dev Growth Differ 2016; 58:456-62. [PMID: 27101323 DOI: 10.1111/dgd.12283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
The discovery of neural stem cells has revealed a much higher structural and functional plasticity in the adult nervous system than previously anticipated. Progenitor cells are able to give rise to new neurons and glial cells when needed, thanks to their surveillance of the environment from the germinal niches. Multiple different factors define neural stem cell niches, including cellular and non-cellular components. Innervation of neurogenic centers is crucial, as it allows the functional connection between stem cell behavior and surrounding neuronal activity. Although the association between organismal behavior and neurogenesis is well documented, much less is known about the cellular and molecular mechanisms by which neurons control stem cell activity. In this review we discuss the existing data on this type of regulation from the three best characterized germinal niches in the adult nervous system: the subventricular zone, the hippocampal subgranular zone, and the carotid body. In all cases, neuronal activity modulates stem cell behavior either by neurotransmitter spillover or by synaptic-like contacts. Currently, the molecular mechanisms underlying mature neuron-stem cell interaction are being clarified. Functional consequences and potential clinical relevance of these phenomena are also discussed.
Collapse
Affiliation(s)
- Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - José López Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
30
|
Valero J, Paris I, Sierra A. Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis. ACS Chem Neurosci 2016; 7:442-53. [PMID: 26971802 DOI: 10.1021/acschemneuro.6b00009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning. Importantly, adult hippocampal neurogenesis is well-known to be modulated by the demands of the environment and lifestyle factors. Diet, stress, and physical exercise directly act on neural stem cells and/or their progeny, but, in addition, they may also indirectly affect neurogenesis by acting on microglia. Microglia, the guardians of the brain, rapidly sense changes in the brain milieu, and it has been recently shown that their function is affected by lifestyle factors. However, few studies have analyzed the modulatory effect of microglia on adult neurogenesis in these conditions. Here, we review the current knowledge about the dialogue maintained between microglia and the hippocampal neurogenic cascade. Understanding how the communication between microglia and hippocampal neurogenesis is affected by lifestyle choices is crucial to maintain the brain cognitive reserve and prevent the maladaptive responses that emerge during disease or injury through adulthood and aging.
Collapse
Affiliation(s)
- Jorge Valero
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
- Ikerbasque Foundation, E-48013 Bilbao, Bizkaia Spain
| | - Iñaki Paris
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
- Ikerbasque Foundation, E-48013 Bilbao, Bizkaia Spain
- University of the Basque Country EHU/UPV, E-48940 Leioa, Bizkaia Spain
| |
Collapse
|
31
|
Bootsman F, Kemner SM, Hillegers MHJ, Brouwer RM, Vonk R, van der Schot AC, Hulshoff Pol HE, Nolen WA, Kahn RS, van Haren NEM. The association between hippocampal volume and life events in healthy twins. Hippocampus 2016; 26:1088-95. [DOI: 10.1002/hipo.22589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Florian Bootsman
- Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - Sanne M. Kemner
- Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - Manon H. J. Hillegers
- Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - Rachel M. Brouwer
- Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - Ronald Vonk
- Reinier Van Arkel's; Hertogenbosch The Netherlands
| | | | | | - Willem A. Nolen
- Department of Psychiatry; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - René S. Kahn
- Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | | |
Collapse
|
32
|
The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis. Neural Plast 2016; 2016:3276383. [PMID: 26881105 PMCID: PMC4737468 DOI: 10.1155/2016/3276383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/18/2015] [Accepted: 11/22/2015] [Indexed: 01/23/2023] Open
Abstract
The hypothalamus is a source of neural progenitor cells which give rise to different populations of specialized and differentiated cells during brain development. Newly formed neurons in the hypothalamus can synthesize and release various neuropeptides. Although term neuropeptide recently undergoes redefinition, small-size hypothalamic neuropeptides remain major signaling molecules mediating short- and long-term effects on brain development. They represent important factors in neurite growth and formation of neural circuits. There is evidence suggesting that the newly generated hypothalamic neurons may be involved in regulation of metabolism, energy balance, body weight, and social behavior as well. Here we review recent data on the role of hypothalamic neuropeptides in adult neurogenesis and neuritogenesis with special emphasis on the development of food intake and social behavior related brain circuits.
Collapse
|
33
|
Dines M, Lamprecht R. The Role of Ephs and Ephrins in Memory Formation. Int J Neuropsychopharmacol 2015; 19:pyv106. [PMID: 26371183 PMCID: PMC4851260 DOI: 10.1093/ijnp/pyv106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022] Open
Abstract
The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer's disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Israel.
| |
Collapse
|
34
|
Zhao J, Sui M, Lü X, Jin D, Zhuang Z, Yan T. Electroacupuncture promotes neural stem cell proliferation and neurogenesis in the dentate gyrus of rats following stroke via upregulation of Notch1 expression. Mol Med Rep 2015; 12:6911-7. [PMID: 26328605 DOI: 10.3892/mmr.2015.4279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/09/2015] [Indexed: 11/05/2022] Open
Abstract
Neural stem cells (NSCs) are important in rehabilitation following stroke. Electroacupuncture (EA) treatment has been observed to promote the recovery of neurological functions subsequent to stroke, however, the effects of EA on the proliferation and differentiation of NSCs and its potential mechanisms remain to be elucidated. In the present study, rats, in which a stroke was induced through middle cerebral artery occlusion (MCAO), were treated with EA or control manipulation for 21 days. The modified Neurological Severity score and Morris water maze tests were used to assess the neurological functions of the rats. Bromodeoxyuridine (BrdU)/glial fibrillary acidic protein (GFAP) or BrdU/neuronal marker (NeuN) double immunofluorescence staining were used to examine the proliferation and differentiation of the NSCs. Reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analyses were performed to detect the expression levels of Notch1 and Hes1 in the dentate gyrus (DG) of the hippocampus of rats following MCAO. The results demonstrated that EA treatment significantly improved the neurological functional recovery of rats following stroke. A significant increase was observed in the number of BrdU+/GAFP+ and BrdU+/NeuN+ cells in the DG area in the EA‑treated rats compared with that of the control group. RT‑qPCR analysis revealed that EA treatment significantly increased the expression levels of Notch1 and Hes1, which may account for the enhanced proliferation and differentiation of NSCs. In conclusion, to the best of our knowledge, the present study was the first to demonstrate that EA treatment promoted NSC proliferation and neurogenesis in the DG area through the upregulation of Notch signaling following a stroke; therefore, EA may be a useful novel therapeutic strategy in future stroke treatment.
Collapse
Affiliation(s)
- Junhong Zhao
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Minghong Sui
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiao Lü
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Dongmei Jin
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhiqiang Zhuang
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Tiebin Yan
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
35
|
Malta A, de Moura EG, Ribeiro TA, Tófolo LP, Abdennebi-Najar L, Vieau D, Barella LF, de Freitas Mathias PC, Lisboa PC, de Oliveira JC. Protein-energy malnutrition at mid-adulthood does not imprint long-term metabolic consequences in male rats. Eur J Nutr 2015; 55:1423-33. [PMID: 26133298 DOI: 10.1007/s00394-015-0960-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 06/10/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE The long-term effects of the development of chronic metabolic diseases such as type 2 diabetes and obesity have been associated with nutritional insults in critical life stages. In this study, we evaluated the effect of a low-protein diet on metabolism in mid-adulthood male rats. METHODS At 90 days of age, Wistar male rats were fed a low-protein diet (4.0 %, LP group) for 30 days, whereas control rats were fed a normal-protein diet (20.5 %, NP group) throughout their lifetimes. To allow for dietary rehabilitation, from 120 to 180 days of age, the LP rats were fed a normal-protein diet. Then, we measured body composition, fat stores, glucose-insulin homeostasis and pancreatic islet function. RESULTS At 120 days of age, just after low-protein diet treatment, the LP rats displayed a strong lean phenotype, hypoinsulinemia, as assessed under fasting and glucose tolerance test conditions, as well as weak pancreatic islet insulinotropic response to glucose and acetylcholine (p < 0.01). At 180 days of age, after poor-protein diet rehabilitation, the LP rats displayed a slight lean phenotype (p < 0.05), which was associated with a high body weight gain (p < 0.001). Additionally, fat pad accumulation, glycemia and insulinemia, as well as the pancreatic islet insulinotropic response, were not significantly different between the LP and NP rats (p > 0.05). CONCLUSIONS Taken together, the present data suggest that the effects of dietary restriction as a stressor in adulthood are reversible with dietary rehabilitation, indicating that adulthood is not a sensitive or critical time window for metabolic programming.
Collapse
Affiliation(s)
- Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | - Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | | | - Didier Vieau
- Maternal Perinatal Undernutrition Team, Perinatal Environment and Growth Laboratory, Lille-North of France University, University of Sciences and Technologies of Lille, Villeneuve d'Ascq Cedex, France
| | - Luiz Felipe Barella
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Júlio Cezar de Oliveira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil.
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
- Health Sciences Institute, Federal University of Mato Grosso, Sinop, MT, Brazil.
| |
Collapse
|
36
|
Lunghi C, Emir UE, Morrone MC, Bridge H. Short-term monocular deprivation alters GABA in the adult human visual cortex. Curr Biol 2015; 25:1496-501. [PMID: 26004760 DOI: 10.1016/j.cub.2015.04.021] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 02/24/2015] [Accepted: 04/13/2015] [Indexed: 11/19/2022]
Abstract
Neuroplasticity is a fundamental property of the nervous system that is maximal early in life, within the critical period [1-3]. Resting GABAergic inhibition is necessary to trigger ocular dominance plasticity and to modulate the onset and offset of the critical period [4, 5]. GABAergic inhibition also plays a crucial role in neuroplasticity of adult animals: the balance between excitation and inhibition in the primary visual cortex (V1), measured at rest, modulates the susceptibility of ocular dominance to deprivation [6-10]. In adult humans, short-term monocular deprivation strongly modifies ocular balance, unexpectedly boosting the deprived eye, reflecting homeostatic plasticity [11, 12]. There is no direct evidence, however, to support resting GABAergic inhibition in homeostatic plasticity induced by visual deprivation. Here, we tested the hypothesis that GABAergic inhibition, measured at rest, is reduced by deprivation, as demonstrated by animal studies. GABA concentration in V1 of adult humans was measured using ultra-high-field 7T magnetic resonance spectroscopy before and after short-term monocular deprivation. After monocular deprivation, resting GABA concentration decreased in V1 but was unaltered in a control parietal area. Importantly, across participants, the decrease in GABA strongly correlated with the deprived eye perceptual boost measured by binocular rivalry. Furthermore, after deprivation, GABA concentration measured during monocular stimulation correlated with the deprived eye dominance. We suggest that reduction in resting GABAergic inhibition triggers homeostatic plasticity in adult human V1 after a brief period of abnormal visual experience. These results are potentially useful for developing new therapeutic strategies that could exploit the intrinsic residual plasticity of the adult human visual cortex.
Collapse
Affiliation(s)
- Claudia Lunghi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; Institute of Neuroscience, CNR, 56124 Pisa, Italy
| | - Uzay E Emir
- FMRIB, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; Scientific Institute Stella Maris (IRCSS), Calambrone, 56018 Pisa, Italy.
| | - Holly Bridge
- FMRIB, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| |
Collapse
|
37
|
Li XL, Yuan YG, Xu H, Wu D, Gong WG, Geng LY, Wu FF, Tang H, Xu L, Zhang ZJ. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats. Int J Neuropsychopharmacol 2015; 18:pyv046. [PMID: 25899067 PMCID: PMC4648155 DOI: 10.1093/ijnp/pyv046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. METHODS Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray's Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats' depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. RESULTS The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. CONCLUSION These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats' depressive behaviors, suggesting a therapeutic target for further exploration.
Collapse
Affiliation(s)
- Xiao-Li Li
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Yong-Gui Yuan
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Hua Xu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Di Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Wei-Gang Gong
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Lei-Yu Geng
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Fang-Fang Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Hao Tang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Lin Xu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work.
| |
Collapse
|
38
|
Huang TT, Leu D, Zou Y. Oxidative stress and redox regulation on hippocampal-dependent cognitive functions. Arch Biochem Biophys 2015; 576:2-7. [PMID: 25797440 DOI: 10.1016/j.abb.2015.03.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/17/2022]
Abstract
Hippocampal-dependent cognitive functions rely on production of new neurons and maintenance of dendritic structures to provide the synaptic plasticity needed for learning and formation of new memories. Hippocampal formation is exquisitely sensitive to patho-physiological changes, and reduced antioxidant capacity and exposure to low dose irradiation can significantly impede hippocampal-dependent functions of learning and memory by reducing the production of new neurons and alter dendritic structures in the hippocampus. Although the mechanism leading to impaired cognitive functions is complex, persistent oxidative stress likely plays an important role in the SOD-deficient and radiation-exposed hippocampal environment. Aging is associated with increased production of pro-oxidants and accumulation of oxidative end products. Similar to the hippocampal defects observed in SOD-deficient mice and mice exposed to low dose irradiation, reduced capacity in learning and memory, diminishing hippocampal neurogenesis, and altered dendritic network are universal in the aging brains. Given the similarities in cellular and structural changes in the aged, SOD-deficient, and radiation-exposed hippocampal environment and the corresponding changes in cognitive decline, understanding the shared underlying mechanism will provide more flexible and efficient use of SOD deficiency or irradiation to model age-related changes in cognitive functions and identify potential therapeutic or intervention methods.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - David Leu
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yani Zou
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
39
|
Ikeno T, Nelson RJ. Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters. Hippocampus 2014; 25:142-8. [PMID: 25160468 DOI: 10.1002/hipo.22358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/29/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
Abstract
In the hippocampus of Siberian hamsters, dendritic length and dendritic complexity increase in the CA1 region whereas dendritic spine density decreases in the dentate gyrus region at night. However, the underlying mechanism of the diurnal rhythmicity in hippocampal neuronal remodeling is unknown. In mammals, most daily rhythms in physiology and behaviors are regulated by a network of circadian clocks. The central clock, located in the hypothalamus, controls melatonin secretion at night and melatonin modifies peripheral clocks by altering expression of circadian clock genes. In this study, we examined the effects of acute melatonin treatment on the circadian clock system as well as on morphological changes of hippocampal neurons. Male Siberian hamsters were injected with melatonin in the afternoon; 4 h later, mRNA levels of hypothalamic and hippocampal circadian clock genes and hippocampal neuron dendritic morphology were assessed. In the hypothalamus, melatonin treatment did not alter Period1 and Bmal1 expression. However, melatonin treatment increased both Period1 and Bmal1 expression in the hippocampus, suggesting that melatonin affected molecular oscillations in the hippocampus. Melatonin treatment also induced rapid remodeling of hippocampal neurons; melatonin increased apical dendritic length and dendritic complexity in the CA1 region and reduced the dendritic spine density in the dentate gyrus region. These data suggest that structural changes in hippocampal neurons are regulated by a circadian clock and that melatonin functions as a nighttime signal to coordinate the diurnal rhythm in neuronal remodeling.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | |
Collapse
|
40
|
Shi J, Longo FM, Massa SM. A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury. Stem Cells 2014; 31:2561-74. [PMID: 23940017 DOI: 10.1002/stem.1516] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/15/2013] [Indexed: 01/24/2023]
Abstract
The p75 neurotrophin receptor (p75(NTR)) influences the proliferation, survival, and differentiation of neuronal precursors and its expression is induced in injured brain, where it regulates cell survival. Here, we test the hypotheses that pharmacologic modulation of p75(NTR) signaling will promote neural progenitor survival and proliferation, and improve outcomes of traumatic brain injury (TBI). LM11A-31, an orally available, blood-brain barrier-permeant small-molecule p75(NTR) signaling modulator, significantly increased proliferation and survival, and decreased JNK phosphorylation, in hippocampal neural stem/progenitor cells in culture expressing wild-type p75(NTR), but had no effect on cells expressing a mutant neurotrophin-unresponsive form of the receptor. The compound also enhanced the production of mature neurons from adult hippocampal neural progenitors in vitro. In vivo, intranasal administration of LM11A-31 decreased postinjury hippocampal and cortical neuronal death, neural progenitor cell death, gliogenesis, and microglial activation, and enhanced long-term hippocampal neurogenesis and reversed spatial memory impairments. LM11A-31 diminished the postinjury increase of SOX2-expressing early progenitor cells, but protected and increased the proliferation of endogenous polysialylated-neural cell adhesion molecule positive intermediate progenitors, and restored the long-term production of mature granule neurons. These findings suggest that modulation of p75(NTR) actions using small molecules such as LM11A-31 may constitute a potent therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, Department of Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, California, USA
| | | | | |
Collapse
|
41
|
von Trotha JW, Vernier P, Bally-Cuif L. Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish. Eur J Neurosci 2014; 40:3302-15. [PMID: 25145867 PMCID: PMC4278443 DOI: 10.1111/ejn.12692] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 01/23/2023]
Abstract
The brain reward circuitry plays a key role in emotional and motivational behaviors, and its dysfunction underlies neuropsychiatric disorders such as schizophrenia, depression and drug addiction. Here, we characterized the neuronal activity pattern induced by acute amphetamine administration and during drug-seeking behavior in the zebrafish, and demonstrate the existence of conserved underlying brain circuitry. Combining quantitative analyses of cfos expression with neuronal subtype-specific markers at single-cell resolution, we show that acute d-amphetamine administration leads to both increased neuronal activation and the recruitment of neurons in the medial (Dm) and the lateral (Dl) domains of the adult zebrafish pallium, which contain homologous structures to the mammalian amygdala and hippocampus, respectively. Calbindin-positive and glutamatergic neurons are recruited in Dm, and glutamatergic and γ-aminobutyric acid (GABAergic) neurons in Dl. The drug-activated neurons in Dm and Dl are born at juvenile stage rather than in the embryo or during adulthood. Furthermore, the same territory in Dm is activated during both drug-seeking approach and light avoidance behavior, while these behaviors do not elicit activation in Dl. These data identify the pallial territories involved in acute psychostimulant response and reward formation in the adult zebrafish. They further suggest an evolutionarily conserved function of amygdala-like structures in positive emotions and motivated behavior in zebrafish and mammals.
Collapse
Affiliation(s)
- Jakob William von Trotha
- Institute of Neurobiology A. Fessard, Laboratory of Neurobiology and Development, CNRS UPR3294, Team Zebrafish Neurogenetics, Avenue de la Terrasse, bldg 5, F-91198, Gif-sur-Yvette, France
| | | | | |
Collapse
|
42
|
Pallotto M, Deprez F. Regulation of adult neurogenesis by GABAergic transmission: signaling beyond GABAA-receptors. Front Cell Neurosci 2014; 8:166. [PMID: 24999317 PMCID: PMC4064292 DOI: 10.3389/fncel.2014.00166] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/02/2014] [Indexed: 01/09/2023] Open
Abstract
In the adult mammalian brain, neurogenesis occurs in the olfactory bulb (OB) and in the dentate gyrus (DG) of the hippocampus. Several studies have shown that multiple stages of neurogenesis are regulated by GABAergic transmission with precise spatio-temporal selectivity, and involving mechanisms common to both systems or specific only to one. In the subgranular zone (SGZ) of the DG, GABA neurotransmitter, released by a specific population of interneurons, regulates stem cell quiescence and neuronal cell fate decisions. Similarly, in the subventricular zone (SVZ), OB neuroblast production is modulated by ambient GABA. Ambient GABA, acting on extrasynaptic GABAA receptors (GABAAR), is also crucial for proper adult-born granule cell (GC) maturation and synaptic integration in the OB as well as in the DG. Throughout adult-born neuron development, various GABA receptors and receptor subunits play specific roles. Previous work has demonstrated that adult-born GCs in both the OB and the DG show a time window of increased plasticity in which adult-born cells are more prone to modification by external stimuli. One mechanism that controls this "critical period" is GABAergic modulation. Indeed, depleting the main phasic GABAergic inputs in adult-born neurons results in dramatic effects, such as reduction of spine density and dendritic branching in adult-born OB GCs. In this review, we systematically compare the role of GABAergic transmission in the regulation of adult neurogenesis between the OB and the hippocampus, focusing on the role of GABA in modulating plasticity and critical periods of adult-born neuron development. Finally, we discuss signaling pathways that might mediate some of the deficits observed upon targeted deletion of postsynaptic GABAARs in adult-born neurons.
Collapse
Affiliation(s)
- Marta Pallotto
- Circuit Dynamics and Connectivity Unit, National Institute Neurological Disorders and Stroke, National Institute of Health Bethesda, MD, USA
| | - Francine Deprez
- Neuroscience Center Zurich, Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
43
|
Schnell A, Chappuis S, Schmutz I, Brai E, Ripperger JA, Schaad O, Welzl H, Descombes P, Alberi L, Albrecht U. The nuclear receptor REV-ERBα regulates Fabp7 and modulates adult hippocampal neurogenesis. PLoS One 2014; 9:e99883. [PMID: 24932636 PMCID: PMC4059695 DOI: 10.1371/journal.pone.0099883] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/19/2014] [Indexed: 01/09/2023] Open
Abstract
The function of the nuclear receptor Rev-erbα (Nr1d1) in the brain is, apart from its role in the circadian clock mechanism, unknown. Therefore, we compared gene expression profiles in the brain between wild-type and Rev-erbα knock-out (KO) animals. We identified fatty acid binding protein 7 (Fabp7, Blbp) as a direct target of repression by REV-ERBα. Loss of Rev-erbα manifested in memory and mood related behavioral phenotypes and led to overexpression of Fabp7 in various brain areas including the subgranular zone (SGZ) of the hippocampus, where neuronal progenitor cells (NPCs) can initiate adult neurogenesis. We found increased proliferation of hippocampal neurons and loss of its diurnal pattern in Rev-erbα KO mice. In vitro, proliferation and migration of glioblastoma cells were affected by manipulating either Fabp7 expression or REV-ERBα activity. These results suggest an important role of Rev-erbα and Fabp7 in adult neurogenesis, which may open new avenues for treatment of gliomas as well as neurological diseases such as depression and Alzheimer.
Collapse
MESH Headings
- Affect/physiology
- Aging/metabolism
- Animals
- Behavior, Animal
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Circadian Rhythm
- Cognition
- Dentate Gyrus/metabolism
- Fatty Acid-Binding Protein 7
- Gene Expression Profiling
- Gene Expression Regulation
- Genome
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Hippocampus/growth & development
- Hippocampus/metabolism
- Humans
- Immunohistochemistry
- Mice, Knockout
- Neurogenesis
- Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Anna Schnell
- Dept. of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Sylvie Chappuis
- Dept. of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Isabelle Schmutz
- Dept. of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Emanuele Brai
- Dept. of Medicine, Unit of Anatomy, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A. Ripperger
- Dept. of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Olivier Schaad
- NCCR frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | - Hans Welzl
- Dept. of Anatomy, University of Zürich, Zürich, Switzerland
| | - Patrick Descombes
- NCCR frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | - Lavinia Alberi
- Dept. of Medicine, Unit of Anatomy, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Dept. of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|