1
|
Zucca S, La Rosa C, Fellin T, Peretto P, Bovetti S. Developmental encoding of natural sounds in the mouse auditory cortex. Cereb Cortex 2024; 34:bhae438. [PMID: 39503245 PMCID: PMC11538960 DOI: 10.1093/cercor/bhae438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
Mice communicate through high-frequency ultrasonic vocalizations, which are crucial for social interactions such as courtship and aggression. Although ultrasonic vocalization representation has been found in adult brain areas along the auditory pathway, including the auditory cortex, no evidence is available on the neuronal representation of ultrasonic vocalizations early in life. Using in vivo two-photon calcium imaging, we analyzed auditory cortex layer 2/3 neuronal responses to USVs, pure tones (4 to 90 kHz), and high-frequency modulated sweeps from postnatal day 12 (P12) to P21. We found that ACx neurons are tuned to respond to ultrasonic vocalization syllables as early as P12 to P13, with an increasing number of responsive cells as the mouse age. By P14, while pure tone responses showed a frequency preference, no syllable preference was observed. Additionally, at P14, USVs, pure tones, and modulated sweeps activate clusters of largely nonoverlapping responsive neurons. Finally, we show that while cell correlation decreases with increasing processing of peripheral auditory stimuli, neurons responding to the same stimulus maintain highly correlated spontaneous activity after circuits have attained mature organization, forming neuronal subnetworks sharing similar functional properties.
Collapse
Affiliation(s)
- Stefano Zucca
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Chiara La Rosa
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| |
Collapse
|
2
|
Liu Q, Radchenko M, Špinka M. Disentangling developmental effects of play aspects in rat rough-and-tumble play. Biol Lett 2024; 20:20240037. [PMID: 38808945 PMCID: PMC11285777 DOI: 10.1098/rsbl.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Animal play encompasses a variety of aspects, with kinematic and social aspects being particularly prevalent in mammalian play behaviour. While the developmental effects of play have been increasingly documented in recent decades, understanding the specific contributions of different play aspects remains crucial to understand the function and evolutionary benefit of animal play. In our study, developing male rats were exposed to rough-and-tumble play selectively reduced in either the kinematic or the social aspect. We then assessed the developmental effects of reduced play on their appraisal of standardized human-rat play ('tickling') by examining their emission of 50 kHz ultrasonic vocalizations (USVs). Using a deep learning framework, we efficiently classified five subtypes of these USVs across six behavioural states. Our results revealed that rats lacking the kinematic aspect in play emitted fewer USVs during tactile contacts by human and generally produced fewer USVs of positive valence compared with control rats. Rats lacking the social aspect did not differ from the control and the kinematically reduced group. These results indicate aspects of play have different developmental effects, underscoring the need for researchers to further disentangle how each aspect affects animals.
Collapse
Affiliation(s)
- Quanxiao Liu
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Mariia Radchenko
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Marek Špinka
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
3
|
Liu Q, Ilčíková T, Radchenko M, Junková M, Špinka M. Effects of reduced kinematic and social play experience on affective appraisal of human-rat play in rats. Front Zool 2023; 20:34. [PMID: 37821980 PMCID: PMC10568924 DOI: 10.1186/s12983-023-00512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Play is a common and developmentally important behaviour in young mammals. Specifically in Norway rats (Rattus norvegicus), reduced opportunity to engage in rough-and-tumble (RT) play has been associated with impaired development in social competence. However, RT play is a complex behaviour having both a kinematic aspect (i.e., performing complex 3D manoeuvres during play fights) and a social aspect (interacting with a playful partner). There has been little research so far on disentangling the two aspects in RT play, especially on how these two aspects affect the affective appraisal of the intense physical contact during play. RESULTS To examine the developmental effects of kinematic and social play reduction on affective appraisal in rats, we subjected male Long-Evans rats from 21 days old to RT play experience that was reduced either kinematically (through playing in a low ceiling environment) or socially (through playing with a less playful Fischer-344 rat). Starting at 35 days, we measured their production of positively (50-kHz) and negatively (22-kHz) valenced ultrasonic vocalisations (USVs) in a 2-min standardised human-rat play procedure that mimicked the playful sequences of nape contact, pinning, and belly stimulation ('tickling') for ten days. We hypothesised that the rats with kinematically or socially reduced play would perceive the 'tickling' less positively and thus emit positive ultrasonic vocalisations at lower rates compared to control rats with non-reduced play experience. Our results confirmed that each of the treatments reduced play differently: while the kinematic reduction abolished playful pinnings entirely, the social reduction decreased the pinnings and made play highly asymmetric. During the tickling procedure, rats mostly produced 50 kHz USV, indicating that they appraised the procedure as positive. There was a wide inter individual variance and high individual consistency in rats' USV responses to 'tickling'. Crucially, neither the kinematically nor the socially reduced play experience affected either type of USV production when rats were 'tickled'. CONCLUSIONS This finding indicates that the ability to appraise play-like interactions as positive remains unaffected even when the kinematic or the social aspect of play experience was substantially curtailed.
Collapse
Affiliation(s)
- Quanxiao Liu
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia.
| | - Tereza Ilčíková
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Mariia Radchenko
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Markéta Junková
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Marek Špinka
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
4
|
Bonauto SM, Greuel OM, Honeycutt JA. Playback of rat 22-kHz ultrasonic vocalizations as a translational assay of negative affective states: An analysis of evoked behavior and brain activity. Neurosci Biobehav Rev 2023; 153:105396. [PMID: 37739328 PMCID: PMC10591797 DOI: 10.1016/j.neubiorev.2023.105396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
The subjective nature of human emotions makes them uniquely challenging to investigate in preclinical models. While behavioral assays in rodents aim to evaluate affect (i.e., anxiety, hypervigilance), they often lack ethological validity. Playback of negatively valenced 22-kHz ultrasonic vocalizations (USVs) in rats shows promise as a translational tool to investigate affective processing. Much like how human facial expressions can communicate internal states, rats emit 22-kHz USVs that similarly convey negative affective states to conspecifics indicating possible threat. 22-kHz USV playback elicits avoidance and hypervigilant behaviors, and recruit brain regions comparable to those seen in human brains evoked by viewing fearful faces. Indeed, 22-kHz playback alters neural activity in brain regions associated with negative valence systems (i.e., amygdala, bed nucleus of the stria terminalis, periaqueductal gray) alongside increases in behaviors typically associated with anxiety. Here, we present evidence from the literature that supports leveraging 22-kHz USV playback in rat preclinical models to obtain clinically relevant and translational findings to identify the neural underpinnings of affective processing and neuropathological dysfunction.
Collapse
Affiliation(s)
- Sydney M Bonauto
- Program in Neuroscience, Bowdoin College, Brunswick, ME 04011, United States
| | - Olivia M Greuel
- Program in Neuroscience, Bowdoin College, Brunswick, ME 04011, United States
| | - Jennifer A Honeycutt
- Program in Neuroscience, Bowdoin College, Brunswick, ME 04011, United States; Department of Psychology, Bowdoin College, Brunswick, ME 04011, United States.
| |
Collapse
|
5
|
Schwarting RKW. Behavioral analysis in laboratory rats: Challenges and usefulness of 50-kHz ultrasonic vocalizations. Neurosci Biobehav Rev 2023; 152:105260. [PMID: 37268181 DOI: 10.1016/j.neubiorev.2023.105260] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Many rodent species emit and detect vocalizations in the ultrasonic range. Rats use three classes of ultrasonic vocalizations depending on developmental stage, experience and the behavioral situation. Calls from one class emitted by juvenile and adult rats, the so-called 50-kHz calls, are typical for appetitive and social situations. This review provides a brief historical account on the introduction of 50-kHz calls in behavioral research followed by a survey of their scientific applications focusing on the last five years, where 50-kHz publications reached a climax. Then, specific methodological challenges will be addressed, like how to measure and report 50-kHz USV, the problem of assignment of acoustic signals to a specific sender in a social situation, and individual variability in call propensity. Finally, the intricacy of interpreting 50-kHz results will be discussed focusing on the most prevalent ones, namely as communicative signals and/or readouts of the sender's emotional status.
Collapse
Affiliation(s)
- Rainer K W Schwarting
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstrasse 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| |
Collapse
|
6
|
Bigelow LJ, Pope EK, MacDonald DS, Rock JE, Bernard PB. Getting a handle on rat familiarization: The impact of handling protocols on classic tests of stress in Rattus norvegicus. Lab Anim 2023; 57:259-269. [PMID: 36604974 PMCID: PMC10288167 DOI: 10.1177/00236772221142687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Experimenter familiarization with laboratory rodents through handling prior to experimentation is an important practice in neurobehavioral research and is implicated in stress, study variability, and replicability. Unfortunately, different handling protocols have not been thoroughly examined. Determining optimal experimenter familiarization protocols is expected to reduce animal stress and thus improve welfare and data consistency. The impact of different handling protocols was determined through behavioral assessments (i.e. elevated plus maze, light/dark box, open field) as well as via analysis of fecal boli counts, ultrasonic vocalizations, and blood corticosterone. Male and female Sprague Dawley rats were distributed among three groups: never handled, picked-up, and handled for 5 min once daily over five days. Handled and picked-up rats spent more time in open arms and less time in closed arms of the elevated plus maze and more time in the center and less time at the perimeter of the open field compared to rats that were never handled, indicating that handled and picked-up rats were less anxious than those that were never handled. Male rats consistently defecated more frequently throughout the handling process and throughout behavioral testing, whereas females showed greater concentrations of blood corticosterone. Female rats were found to emit more 50-kHz calls and fewer 22-kHz calls compared to males. The results observed suggest that picking animals up may suffice as a handling method compared to time-intensive handling procedures, and that there are significant sex differences in response to handling.
Collapse
Affiliation(s)
| | | | - Debra S MacDonald
- Department of Biomedical Sciences, University of Prince Edward Island, Canada
| | - Jessica E Rock
- Department of Biomedical Sciences, University of Prince Edward Island, Canada
| | - Paul B Bernard
- Department of Biomedical Sciences, University of Prince Edward Island, Canada
| |
Collapse
|
7
|
Burke CJ, Pellis SM, Achterberg EJM. Who's laughing? Play, tickling and ultrasonic vocalizations in rats. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210184. [PMID: 36126668 PMCID: PMC9489288 DOI: 10.1098/rstb.2021.0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
Social play in rats is a highly rewarding, energetic form of social interaction and important for development of the brain and social skills. The 50 kHz ultrasonic vocalizations (USV) emitted during social play are thought to be an expression of a positive affective state (laughter), which in some situations may also function as communication signals. Heterospecific play, 'tickling' by an experimenter, is thought to simulate conspecific play, and has been used to improve welfare and to study the neurobiology of positive affect. Given that tickling evokes substantial amounts of USV, we investigated whether heterospecific play is simulating conspecific play by comparing USV-behaviour associations in both contexts. If the 50 kHz calls are merely an expression of 'laughter' then the pattern and type of emission in both contexts should be similar. By contrast, as playing with a conspecific involves a two-way exchange of signalling, the additional demands on communication should lead to a different pattern of calling. While calling was prevalent in both types of play, how the different types of 50 kHz calls are used in the two contexts differed markedly. The findings suggest that while conspecific and heterospecific play are positive experiences, tickling is not the equivalent of conspecific play. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- C. J. Burke
- Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1 K 3M4
| | - S. M. Pellis
- Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1 K 3M4
| | - E. J. M. Achterberg
- Behavioural Neuroscience Division, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Pellis SM, Pellis VC, Ham JR, Achterberg EJM. The rough-and-tumble play of rats as a natural behavior suitable for studying the social brain. Front Behav Neurosci 2022; 16:1033999. [PMID: 36330048 PMCID: PMC9623181 DOI: 10.3389/fnbeh.2022.1033999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Sergio M. Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- *Correspondence: Sergio M. Pellis
| | - Vivien C. Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jackson R. Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - E. J. M. Achterberg
- Division of Behavioural Neuroscience, Unit Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Tivey EKL, Martin JE, Brown SM, Bombail V, Lawrence AB, Meddle SL. Sex differences in 50 kHz call subtypes emitted during tickling-induced playful behaviour in rats. Sci Rep 2022; 12:15323. [PMID: 36097035 PMCID: PMC9468157 DOI: 10.1038/s41598-022-19362-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
'Tickling' induces positive affective states in laboratory rats as evidenced by the production of 50-kHz ultrasonic vocalisations (USVs), although this has mostly been investigated in males. Juvenile rats emit distinctive 50-kHz USV subtypes. Frequency-modulated (FM) 50-kHz USVs are thought to be associated with positive affect and flat 50-kHz USVs with social communication. FM and flat USVs are produced by both sexes during tickling, but it is unclear whether these calls are produced in relation to particular play-related behaviours, and whether USV subtypes are used in a sexually dimorphic manner during tickling. We tested the hypotheses that FM USVs are associated with tickle-induced play behaviours in a sex-specific way, and that flat USVs are associated with non-play activities. Rats were allocated to one of two treatment groups: tickling (tickled, n = 16/sex) or no hand contact (control, n = 16/sex). Play behaviours (hopping, darting and hand approaches) and FM and flat USVs emitted during the testing session were quantified for each rat, with the frequency of FM and flat USVs made in anticipation of, and during, each behaviour analysed. In females, play behaviours were associated with more flat USVs than in males (before and during; p < 0.001), irrespective of treatment. FM USVs were paired with hopping and darting (before and during; p < 0.001), and in anticipation of hand approaches (p < 0.001) in both tickled females and males compared to controls (both sexes) suggesting that FM USVs are linked with play behaviour. The higher call rate of flat USVs paired with play behaviour in females suggests that there may be sex differences in the role of flat USVs during play. This result is evidence of sex differences in tickle-induced behaviours and has implications for our understanding of the function of different USVs in juvenile female and male rats.
Collapse
Affiliation(s)
- Emma K L Tivey
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK.
| | - Jessica E Martin
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Sarah M Brown
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Vincent Bombail
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Alistair B Lawrence
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Pellis SM, Pellis VC, Burke CJ, Stark RA, Ham JR, Euston DR, Achterberg EJM. Measuring Play Fighting in Rats: A Multilayered Approach. Curr Protoc 2022; 2:e337. [PMID: 35030300 DOI: 10.1002/cpz1.337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rough-and-tumble play or play fighting is an important experience in the juvenile period of many species of mammals, as it facilitates the development of social skills, and for some species, play fighting is retained into adulthood as a tool for assessing and managing social relationships. Laboratory rats have been a model species for studying the neurobiology of play fighting and its key developmental and social functions. However, play fighting interactions are complex, involving competition and cooperation; therefore, no single measure to quantify this behavior is able to capture all its facets. Therefore, in this paper, we present a multilayered framework for scoring all the relevant facets of play that can be affected by experimental manipulations and the logic of how to match what is measured with the question being asked. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- S M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - V C Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - C J Burke
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - R A Stark
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - J R Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - D R Euston
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - E J M Achterberg
- Division Behavioural Neuroscience, Unit Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the Ube3a Deletion Rat Model of Angelman Syndrome. J Neurosci 2021; 41:8801-8814. [PMID: 34475199 PMCID: PMC8528495 DOI: 10.1523/jneurosci.0925-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3a mat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3a mat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.
Collapse
|
12
|
Bombail V, Brown SM, Hammond TJ, Meddle SL, Nielsen BL, Tivey EKL, Lawrence AB. Crying With Laughter: Adapting the Tickling Protocol to Address Individual Differences Among Rats in Their Response to Playful Handling. Front Vet Sci 2021; 8:677872. [PMID: 34250064 PMCID: PMC8264139 DOI: 10.3389/fvets.2021.677872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Vincent Bombail
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), INRAE, Université Paris-Saclay, Paris, France
| | - Sarah M Brown
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tayla J Hammond
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Birte L Nielsen
- Modélisation Systémique Appliquée aux Ruminants (MoSAR), INRAE, Université Paris-Saclay, Paris, France.,Universities Federation for Animal Welfare (UFAW), Wheathampstead, United Kingdom
| | - Emma K L Tivey
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alistair B Lawrence
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
13
|
Wöhr M, Kisko TM, Schwarting RK. Social Behavior and Ultrasonic Vocalizations in a Genetic Rat Model Haploinsufficient for the Cross-Disorder Risk Gene Cacna1c. Brain Sci 2021; 11:brainsci11060724. [PMID: 34072335 PMCID: PMC8229447 DOI: 10.3390/brainsci11060724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023] Open
Abstract
The top-ranked cross-disorder risk gene CACNA1C is strongly associated with multiple neuropsychiatric dysfunctions. In a recent series of studies, we applied a genomically informed approach and contributed extensively to the behavioral characterization of a genetic rat model haploinsufficient for the cross-disorder risk gene Cacna1c. Because deficits in processing social signals are associated with reduced social functioning as commonly seen in neuropsychiatric disorders, we focused on socio-affective communication through 22-kHz and 50-kHz ultrasonic vocalizations (USV). Specifically, we applied a reciprocal approach for studying socio-affective communication in sender and receiver by including rough-and-tumble play and playback of 22-kHz and 50-kHz USV. Here, we review the findings obtained in this recent series of studies and link them to the key features of 50-kHz USV emission during rough-and-tumble play and social approach behavior evoked by playback of 22-kHz and 50-kHz USV. We conclude that Cacna1c haploinsufficiency in rats leads to robust deficits in socio-affective communication through 22-kHz and 50-kHz USV and associated alterations in social behavior, such as rough-and-tumble play behavior.
Collapse
Affiliation(s)
- Markus Wöhr
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000 Leuven, Belgium
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
- Correspondence: ; Tel.: +32-16-19-45-57
| | - Theresa M. Kisko
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| | - Rainer K.W. Schwarting
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| |
Collapse
|
14
|
Brudzynski SM. Biological Functions of Rat Ultrasonic Vocalizations, Arousal Mechanisms, and Call Initiation. Brain Sci 2021; 11:brainsci11050605. [PMID: 34065107 PMCID: PMC8150717 DOI: 10.3390/brainsci11050605] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
This review summarizes all reported and suspected functions of ultrasonic vocalizations in infant and adult rats. The review leads to the conclusion that all types of ultrasonic vocalizations subserving all functions are vocal expressions of emotional arousal initiated by the activity of the reticular core of the brainstem. The emotional arousal is dichotomic in nature and is initiated by two opposite-in-function ascending reticular systems that are separate from the cognitive reticular activating system. The mesolimbic cholinergic system initiates the aversive state of anxiety with concomitant emission of 22 kHz calls, while the mesolimbic dopaminergic system initiates the appetitive state of hedonia with concomitant emission of 50 kHz vocalizations. These two mutually exclusive arousal systems prepare the animal for two different behavioral outcomes. The transition from broadband infant isolation calls to the well-structured adult types of vocalizations is explained, and the social importance of adult rat vocal communication is emphasized. The association of 22 kHz and 50 kHz vocalizations with aversive and appetitive states, respectively, was utilized in numerous quantitatively measured preclinical models of physiological, psychological, neurological, neuropsychiatric, and neurodevelopmental investigations. The present review should help in understanding and the interpretation of these models in biomedical research.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
15
|
Berz A, Pasquini de Souza C, Wöhr M, Schwarting RKW. Limited generalizability, pharmacological modulation, and state-dependency of habituation towards pro-social 50-kHz calls in rats. iScience 2021; 24:102426. [PMID: 33997703 PMCID: PMC8102916 DOI: 10.1016/j.isci.2021.102426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Communication constitutes a fundamental component of mammalian social behavior. Rats are highly social animals and emit 50-kHz ultrasonic vocalizations (USV), which function as social contact calls. Playback of 50-kHz USV leads to strong and immediate social approach responses in receiver rats, but this response is weak or even absent during repeated 50-kHz USV playback. Given the important role of 50-kHz USV in initiating social contact and coordinating social interactions, the occurrence of habituation is highly unexpected. It is not clear why a social signal characterized by significant incentive salience loses its power to change the behavior of the receiver so rapidly. Here, we show that the habituation phenomenon displayed by rats in response to repeated playback of 50-kHz USV (1) is characterized by limited generalizability because it is present in Wistar but not Sprague-Dawley rats, (2) can be overcome by amphetamine treatment, and (3) depends on the subject’s internal state. Rats display social approach in response to playback of pro-social 50-kHz calls Repeated playback leads to habituation with limited generalizability Habituation can be overcome by amphetamine treatment Habituation depends on the subject’s internal state
Collapse
Affiliation(s)
- Annuska Berz
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Gutenberg-Straße 18, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Camila Pasquini de Souza
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 81530-000 Curitiba, PR, Brazil
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Gutenberg-Straße 18, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany.,KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Tiensestraat 102, 3000 Leuven, Belgium.,KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Gutenberg-Straße 18, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| |
Collapse
|
16
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
17
|
Helmy M, Zhang J, Wang H. Neurobiology and Neural Circuits of Aggression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:9-22. [DOI: 10.1007/978-981-15-7086-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Burgos-Robles A, Gothard KM, Monfils MH, Morozov A, Vicentic A. Conserved features of anterior cingulate networks support observational learning across species. Neurosci Biobehav Rev 2019; 107:215-228. [PMID: 31509768 PMCID: PMC6875610 DOI: 10.1016/j.neubiorev.2019.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
The ability to observe, interpret, and learn behaviors and emotions from conspecifics is crucial for survival, as it bypasses direct experience to avoid potential dangers and maximize rewards and benefits. The anterior cingulate cortex (ACC) and its extended neural connections are emerging as important networks for the detection, encoding, and interpretation of social signals during observational learning. Evidence from rodents and primates (including humans) suggests that the social interactions that occur while individuals are exposed to important information in their environment lead to transfer of information across individuals that promotes adaptive behaviors in the form of either social affiliation, alertness, or avoidance. In this review, we first showcase anatomical and functional connections of the ACC in primates and rodents that contribute to the perception of social signals. We then discuss species-specific cognitive and social functions of the ACC and differentiate between neural activity related to 'self' and 'other', extending into the difference between social signals received and processed by the self, versus observing social interactions among others. We next describe behavioral and neural events that contribute to social learning via observation. Finally, we discuss some of the neural mechanisms underlying observational learning within the ACC and its extended network.
Collapse
Affiliation(s)
- Anthony Burgos-Robles
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX 78249, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Katalin M Gothard
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Marie H Monfils
- Department of Psychology, Institute for Mental Health Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Alexei Morozov
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, Rockville, MD 20852, USA.
| |
Collapse
|
19
|
Schönfeld LM, Zech MP, Schäble S, Wöhr M, Kalenscher T. Lesions of the rat basolateral amygdala reduce the behavioral response to ultrasonic vocalizations. Behav Brain Res 2019; 378:112274. [PMID: 31589896 DOI: 10.1016/j.bbr.2019.112274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 01/28/2023]
Abstract
Rats emit vocalizations in the ultrasonic range (ultrasonic vocalizations; USVs), of which 50-kHz USVs could communicate positive affective states and induce approach behavior in conspecifics, whereas 22-kHz USVs might signal negative affective states and potential threats. Listening to 50-kHz USVs can be rewarding, but it is unknown which brain mechanisms are responsible for the assignment of reinforcing value to 50-kHz USVs . The behavioral responses induced by listening to 22-kHz USVs are heterogeneous and need further characterization. The amygdala is a region relevant for social perception, behavior and reward. Here, we tested the hypothesis that the basolateral amygdala (BLA) plays a causal role in motivating behavioral responses to 50-kHz and 22-kHz USVs. Rats with lesions of the BLA or sham lesions were repeatedly exposed to playback of either 50-kHz or 22-kHz USVs in a radial maze. Compared to sham rats, BLA-lesioned rats spent less time in the arms close to the USV speaker during playback of both 50-kHz or 22-kHz USVs. This difference in behavior was not due to impaired motor or general auditory abilities, indicating that BLA lesions selectively reduced the responsiveness to stimuli with social significance. This finding provides further support for the hypothesis that the BLA plays an important role in motivating approach behavior to social reinforcers.
Collapse
Affiliation(s)
- Lisa-Maria Schönfeld
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maurice-Philipp Zech
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sandra Schäble
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
20
|
Kisko TM, Braun MD, Michels S, Witt SH, Rietschel M, Culmsee C, Schwarting RKW, Wöhr M. Sex‐dependent effects of
Cacna1c
haploinsufficiency on juvenile social play behavior and pro‐social 50‐kHz ultrasonic communication in rats. GENES BRAIN AND BEHAVIOR 2019; 19:e12552. [DOI: 10.1111/gbb.12552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Theresa M. Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Moria D. Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
21
|
22 kHz and 55 kHz ultrasonic vocalizations differentially influence neural and behavioral outcomes: Implications for modeling anxiety via auditory stimuli in the rat. Behav Brain Res 2018; 360:134-145. [PMID: 30521931 DOI: 10.1016/j.bbr.2018.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 11/20/2022]
Abstract
The communicative role of ultrasonic vocalizations (USVs) in rats is well established, with distinct USVs indicative of different affective states. USVs in the 22 kHz range are typically emitted by adult rats when in anxiety- or fear-provoking situations (e.g. predator odor, social defeat), while 55 kHz range USVs are typically emitted in appetitive situations (e.g., play, anticipation of reward). Previous work indicates that USVs (real-time and playback) can effectively communicate these affective states and influence changes in behavior and neural activity of the receiver. Changes in cFos activation following 22 kHz USVs have been seen in cortical and limbic regions involved in anxiety, including the basolateral amygdala (BLA). However, it is unclear how USV playback influences cFos activity within the bed nucleus of the stria terminalis (BNST), a region also thought to be critical in processing anxiety-related information, and the nucleus accumbens, a region associated with reward. The present work sought to characterize distinct behavioral, physiological, and neural responses in rats presented with aversive (22 kHz) compared to appetitive (55 kHz) USVs or silence. Our findings show that rats exposed to 22 kHz USVs: 1) engage in anxiety-like behaviors in the elevated zero maze, and 2) show distinct patterns of cFos activation within the BLA and BNST that contrast those seen in 55 kHz playback and silence. Specifically, 22 kHz USVs increased cFos density in the anterodorsal nuclei, while 55 kHz playback increased cFos in the oval nucleus of the BNST, without significant changes within the nucleus accumbens. These results provide important groundwork for leveraging ethologically-relevant stimuli in the rat to improve our understanding of anxiety-related responses in both typical and pathological populations.
Collapse
|
22
|
Potasiewicz A, Holuj M, Piotrowska D, Zajda K, Wojcik M, Popik P, Nikiforuk A. Evaluation of ultrasonic vocalizations in a neurodevelopmental model of schizophrenia during the early life stages of rats. Neuropharmacology 2018; 146:28-38. [PMID: 30448422 DOI: 10.1016/j.neuropharm.2018.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/09/2023]
Abstract
In an animal neurodevelopmental model of schizophrenia, we investigated ultrasonic communication and social behavior in male and female rats. Pregnant dams were treated with methylazoxymethanol acetate (MAM; 22 mg/kg) at 17 days of gestation. First, we examined the ultrasonic vocalizations (USVs) emitted by 8-day-old pups isolated from their mothers and placed in a familiar or an unfamiliar environment. Second, we assessed tickling-induced USVs, social play (SP) behavior and accompanying USVs in 30-day-old juveniles. Independent of the prenatal treatment, sex differences were noted at both ages. In the pups isolated from their mothers, compared to the females, the males produced flatter calls with a lower frequency. Compared to the females, the tickling-induced male USVs were characterized by a higher frequency, and the male SP-induced USVs showed a broader bandwidth and more modulated structure. Additionally, the numbers of both SP-induced USVs and SP episodes in the males were higher than those in the females. In contrast, the MAM exposure reduced the ultrasonic communication and social behavior independent of age almost equally in the male and female rats. The MAM-exposed isolated pups and juveniles experiencing tickling and social interaction displayed lower USV bandwidths, suggesting that the complexity of their ultrasonic communication was reduced. In addition, the MAM-exposed juveniles demonstrated a lower number of 50-kHz "happy calls" and decreased SP duration, which is suggestive of social withdrawal or negative-like symptoms. These data demonstrate that young MAM-exposed rats display an atypical repertoire of USVs and reduced play behavior suggestive of communication deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Potasiewicz
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Malgorzata Holuj
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Diana Piotrowska
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Zajda
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Michal Wojcik
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Piotr Popik
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
23
|
Mulvihill KG, Brudzynski SM. Non-pharmacological induction of rat 50 kHz ultrasonic vocalization: Social and non-social contexts differentially induce 50 kHz call subtypes. Physiol Behav 2018; 196:200-207. [DOI: 10.1016/j.physbeh.2018.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 11/29/2022]
|
24
|
Simola N, Brudzynski SM. Rat 50-kHz ultrasonic vocalizations as a tool in studying neurochemical mechanisms that regulate positive emotional states. J Neurosci Methods 2018; 310:33-44. [PMID: 29959002 DOI: 10.1016/j.jneumeth.2018.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Adolescent and adult rats emit 50-kHz ultrasonic vocalizations (USVs) to communicate the appetitive arousal and the presence of positive emotional states to conspecifics. NEW METHOD Based on its communicative function, emission of 50-kHz USVs is increasingly being evaluated in preclinical studies of affective behavior, motivation and social behavior. RESULTS Emission of 50-kHz USVs is initiated by the activation of dopamine receptors in the shell subregion of the nucleus accumbens. However, several lines of evidence show that non-dopaminergic receptors may influence the numbers of 50-kHz USVs that are emitted, as well as the acoustic parameters of calls. COMPARISON WITH EXISTING METHODS Emission of 50-kHz USVs is a non-invasive method that may be used to study reward and motivation without the need for extensive training and complex animal manipulations. Moreover, emission of 50-kHz USVs can be used alone or combined with other well-standardized behavioral paradigms (e.g., conditioned place preference, self-administration). CONCLUSIONS This review summarizes the current evidence concerning molecular mechanisms that regulate the emission of 50-kHz USVs. Moreover, the review discusses the usefulness of 50-kHz USVs as an experimental tool to investigate how different neurotransmitter systems regulate the manifestations of positive emotional states, and also use of this tool in preclinical modeling of psychiatric diseases.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Neuropsychopharmacology Division, University of Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| | - Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON, L3 3A1 Canada
| |
Collapse
|
25
|
Burke CJ, Kisko TM, Euston DR, Pellis SM. Do juvenile rats use specific ultrasonic calls to coordinate their social play? Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Pellis SM, Burke CJ, Kisko TM, Euston DR. 50-kHz Vocalizations, Play and the Development of Social Competence. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00011-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
27
|
The Concept of Ethotransmission: Rapid Emotional Communication. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-12-809600-0.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Ultrasonic communication in rats: appetitive 50-kHz ultrasonic vocalizations as social contact calls. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2427-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Burke CJ, Kisko TM, Pellis SM, Euston DR. Avoiding escalation from play to aggression in adult male rats: The role of ultrasonic calls. Behav Processes 2017; 144:72-81. [PMID: 28941795 DOI: 10.1016/j.beproc.2017.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 11/30/2022]
Abstract
Play fighting is most commonly associated with juvenile animals, but in some species, including rats, it can continue into adulthood. Post-pubertal engagement in play fighting is often rougher and has an increased chance of escalation to aggression, making the use of play signals to regulate the encounter more critical. During play, both juvenile and adult rats emit many 50-kHz calls and some of these may function as play facilitating signals. In the present study, unfamiliar adult male rats were introduced in a neutral enclosure and their social interactions were recorded. While all pairs escalated their playful encounters to become rougher, only the pairs in which one member was devocalized escalated to serious biting. A Monte Carlo shuffling technique was used for the analysis of the correlations between the overt playful and aggressive actions performed and the types and frequencies of various 50-kHz calls that were emitted. The analysis revealed that lower frequency (20-30kHz) calls with a flat component maybe particularly critical for de-escalating encounters and so allowing play to continue. Moreover, coordinating calls reciprocally, with either the same call mimicked in close, temporal association or with complementary calls emitted by participants as they engage in complementary actions (e.g., attacking the nape, being attacked on the nape), appeared to be ways with which calls could be potentially used to avoid escalation to aggression and so sustain playful interactions.
Collapse
Affiliation(s)
- Candace J Burke
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Theresa M Kisko
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Sergio M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - David R Euston
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
30
|
Why Do the Children (Pretend) Play? Trends Cogn Sci 2017; 21:826-834. [PMID: 28864312 DOI: 10.1016/j.tics.2017.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 11/24/2022]
Abstract
Pretend play appears to be an evolved behavior because it is universal and appears on a set schedule. However, no specific functions have been determined for pretend play and empirical tests for its functions in humans are elusive. Yet animal play fighting can serve as an analog, as both activities involve as-if, metacommunicative signaling and symbolism. In the rat and some other animals, adaptive functions of play fighting include assisting social behavior and emotion regulation. Research is presented suggesting that pretend play might serve similar functions for humans.
Collapse
|
31
|
Lampe JF, Burman O, Würbel H, Melotti L. Context-dependent individual differences in playfulness in male rats. Dev Psychobiol 2017; 59:460-472. [PMID: 28247407 DOI: 10.1002/dev.21509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 11/11/2022]
Abstract
Play has been proposed as an indicator of positive emotions and welfare in higher vertebrates. This study investigated playfulness in male rats by exploring its consistency across motivational states (with/without prior short social isolation) and two age points at early and late adolescence. Twenty-four male Lister Hooded rats housed in cages of four underwent two play tests: conspecific Play-in-Pairs and Tickling by the experimenter, which were compared with play in the home cage and basal anxiety levels. Play-in-Pairs measures were consistent across age and motivational states, and were independent from anxiety. Positively valenced vocalizations in the Tickling test were also consistent across age, yet were negatively related to anxiety. Play-in-Pairs and Tickling play contexts, as well as social and solitary play types, were unrelated. Therefore, this study supports the existence of consistent individual differences in playfulness in rats, and suggests that different play contexts and types represent motivationally distinct systems.
Collapse
Affiliation(s)
- Jessica F Lampe
- Division of Animal Welfare, University of Bern, Bern, Switzerland
| | - Oliver Burman
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln, UK
| | - Hanno Würbel
- Division of Animal Welfare, University of Bern, Bern, Switzerland
| | - Luca Melotti
- Division of Animal Welfare, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Lukas M, de Jong TR. Conspecific Interactions in Adult Laboratory Rodents: Friends or Foes? Curr Top Behav Neurosci 2015; 30:3-24. [PMID: 27240675 DOI: 10.1007/7854_2015_428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interactions between adult conspecifics, including sexual behaviors, affiliation, and aggression are crucial for the well-being, survival, and reproduction of mammals. This holds true for any mammalian species, but certainly for humans: An inability to optimally navigate the social system can have a strong negative impact on physical and mental health. Translational rodent models have been used for decades to unravel the neural pathways and substrates involved in normal and abnormal conspecific interactions. Researchers in the field of translational social neuroscience face a double challenge: Not only do they need to pay considerable attention to the behavioral ecology of their model species or their ancestors, they also have to expect a relatively large variability in behavior and adjust their experimental design accordingly. In this chapter, we will lay out traditional and novel rodent models and paradigms to study sexual, affiliative, and aggressive interactions among adult conspecifics. We will discuss the merits and main findings and briefly consider the most promising novel directions. Finally, we review the modulatory involvement of two major players in mammal social interaction: the central oxytocin and vasopressin system.
Collapse
Affiliation(s)
- Michael Lukas
- Molecular and Behavioral Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Trynke R de Jong
- Molecular and Behavioral Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|