1
|
Fitzgerald LR, Gannon BM, Walther D, Landavazo A, Hiranita T, Blough BE, Baumann MH, Fantegrossi WE. Structure-activity relationships for locomotor stimulant effects and monoamine transporter interactions of substituted amphetamines and cathinones. Neuropharmacology 2024; 245:109827. [PMID: 38154512 PMCID: PMC10842458 DOI: 10.1016/j.neuropharm.2023.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Substitutions to the phenethylamine structure give rise to numerous amphetamines and cathinones, contributing to an ever-growing number of abused novel psychoactive substances. Understanding how various substitutions affect the pharmacology of phenethylamines may help lawmakers and scientists predict the effects of newly emerging drugs. Here, we established structure-activity relationships for locomotor stimulant and monoamine transporter effects of 12 phenethylamines with combinations of para-chloro, β-keto, N-methyl, or N-ethyl additions. Automated photobeam analysis was used to evaluate effects of drugs on ambulatory activity in mice, whereas in vitro assays were used to determine activities at transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT) in rat brain synaptosomes. In mouse studies, all compounds stimulated locomotion, except for 4-chloro-N-ethylcathinone. Amphetamines were more potent stimulants than their β-keto counterparts, while para-chloro amphetamines tended to be more efficacious than unsubstituted amphetamines. Para-chloro compounds also produced lethality at doses on the ascending limbs of their locomotor dose-effect functions. The in vitro assays showed that all compounds inhibited uptake at DAT, NET, and SERT, with most compounds also acting as substrates (i.e., releasers) at these sites. Unsubstituted compounds displayed better potency at DAT and NET relative to SERT. Para-chloro substitution or increased N-alkyl chain length augmented relative potency at SERT, while combined para-chloro and N-ethyl substitutions reduced releasing effects at NET and DAT. These results demonstrate orderly SAR for locomotor stimulant effects, monoamine transporter activities, and lethality induced by phenethylamines. Importantly, 4-chloro compounds produce toxicity in mice that suggests serious risk to humans using these drugs in recreational contexts.
Collapse
Affiliation(s)
- Lauren R Fitzgerald
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Brenda M Gannon
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Donna Walther
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Antonio Landavazo
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, 27709, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, 27709, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Angoa-Perez M, Kuhn DM. The pharmacology and neurotoxicology of synthetic cathinones. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:61-82. [PMID: 38467489 DOI: 10.1016/bs.apha.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The synthetic cathinones are man-made compounds derived from the naturally occurring drug cathinone, which is found in the khat plant. The drugs in this pharmacological class that will be the focus of this chapter include mephedrone, MDPV, methcathinone and methylone. These drugs are colloquially known as "bath salts". This misnomer suggests that these drugs are used for health improvement or that they have legitimate medical uses. The synthetic cathinones are dangerous drugs with powerful pharmacological effects that include high abuse potential, hyperthermia and hyperlocomotion. These drugs also share many of the pharmacological effects of the amphetamine class of drugs including methamphetamine, amphetamine and MDMA and therefore have high potential to cause damage to the central nervous system. The synthetic cathinones are frequently taken in combination with other psychoactive drugs such as alcohol, marijuana and the amphetamine-like stimulants, creating a situation where heightened pharmacological and neurotoxicological effects are likely to occur. Despite the structural features shared by the synthetic cathinones and amphetamine-like stimulants, including their actions at monoamine transporters and receptors, the effects of the synthetic cathinones do not always match those of the amphetamines. In particular, the synthetic cathinones are far less neurotoxic than their amphetamine counterparts, they produce a weaker hyperthermia, and they cause less glial activation. This chapter will briefly review the pharmacology and neurotoxicology of selected synthetic cathinones with the aim of delineating key areas of agreement and disagreement in the literature particularly as it relates to neurotoxicological outcomes.
Collapse
Affiliation(s)
- Mariana Angoa-Perez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
3
|
Pinterova‐Leca N, Horsley RR, Danda H, Žídková M, Lhotková E, Šíchová K, Štefková K, Balíková M, Kuchař M, Páleníček T. Naphyrone (naphthylpyrovalerone): Pharmacokinetics, behavioural effects and thermoregulation in Wistar rats. Addict Biol 2021; 26:e12906. [PMID: 32378298 DOI: 10.1111/adb.12906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Naphthylpyrovalerone (naphyrone) is a pyrovalerone cathinone that potently inhibits monoamine transporters and provides stimulatory-entactogenic effects. Little is known about the safety of naphyrone or its effects in vivo, and more research is needed to acquire knowledge about its fundamental effects on physiology and behaviour. Our objective was to investigate naphyrone's pharmacokinetics, acute toxicity, hyperthermic potential and stimulatory and psychotomimetic properties in vivo in male Wistar rats. Pharmacokinetics after 1 mg/kg subcutaneous (sc.) naphyrone were measured over 6 h in serum, the brain, liver and lungs. Rectal temperature (degree Celsius) was measured over 10 h in group-versus individually housed rats after 20 mg/kg sc. In the behavioural experiments, 5, 10 or 20 mg/kg of naphyrone was administered 15 or 60 min prior to testing. Stimulation was assessed in the open field, and sensorimotor processing in a prepulse inhibition (PPI) task. Peak concentrations of naphyrone in serum and tissue were reached at 30 min, with a long-lasting elevation in the brain/serum ratio, consistent with observations of lasting hyperlocomotion in the open field and modest increases in body temperature. Administration of 20 mg/kg transiently enhanced PPI. Naphyrone crosses the blood-brain barrier rapidly and is eliminated slowly, and its long-lasting effects correspond to its pharmacokinetics. No specific signs of acute toxicity were observed; therefore, clinical care and harm-reduction guidance should be in line with that available for other stimulants and cathinones.
Collapse
Affiliation(s)
- Nikola Pinterova‐Leca
- Department of Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
- Third Faculty of Medicine Charles University in Prague Prague Czech Republic
| | - Rachel R. Horsley
- Department of Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
| | - Hynek Danda
- Department of Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
- Third Faculty of Medicine Charles University in Prague Prague Czech Republic
| | - Monika Žídková
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine Charles University and General University Hospital in Prague Prague Czech Republic
| | - Eva Lhotková
- Department of Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
| | - Klára Šíchová
- Department of Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
| | - Kristýna Štefková
- Department of Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
| | - Marie Balíková
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine Charles University and General University Hospital in Prague Prague Czech Republic
| | - Martin Kuchař
- Department of Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds University of Chemistry and Technology in Prague Prague Czech Republic
| | - Tomáš Páleníček
- Department of Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
- Third Faculty of Medicine Charles University in Prague Prague Czech Republic
| |
Collapse
|
4
|
Assessment of aversive effects of methylone in male and female Sprague-Dawley rats: Conditioned taste avoidance, body temperature and activity/stereotypies. Neurotoxicol Teratol 2021; 86:106977. [PMID: 33831534 PMCID: PMC9924097 DOI: 10.1016/j.ntt.2021.106977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 11/20/2022]
Abstract
Methylone's rewarding effects have been well characterized; however, little is known about its aversive effects and how such effects may be impacted by sex. In this context, the present study investigated the aversive effects of methylone (vehicle, 5.6, 10 or 18 mg/kg, IP) in 35 male and 31 female Sprague-Dawley rats assessed by conditioned taste avoidance and changes in body temperature and activity/stereotypies. Methylone induced significant taste avoidance, changes in temperature and increased activity and stereotypies in both males and females. Similar to work with other synthetic cathinones, methylone has aversive effects as indexed by significant taste avoidance and changes in temperature and activity (two characteristics of methylone overdose in humans). The only endpoint for which there were significant sex differences was in general activity with males displaying a faster onset and females displaying a longer duration. Although sex was not a factor with taste avoidance and temperature, separate analyses for males and females revealed different patterns, e.g., males displayed a more rapid acquisition of taste avoidance and females displayed changes in temperature at lower doses. Males displayed a faster onset and females displayed a longer duration of activity (consistent with the analyses considering sex as a factor), while time- and dose-dependent stereotypies did not show consistent pattern differences. Although sex differences were relatively limited when sex was specifically assessed as a factor (or only evident when sex comparisons were made in the patterns of effects), sex as a biological variable in the study of drugs should be made to determine if differences exist and, if evident, the basis for these differences.
Collapse
|
5
|
Cajanding RJM. MDMA-Associated Liver Toxicity: Pathophysiology, Management, and Current State of Knowledge. AACN Adv Crit Care 2020; 30:232-248. [PMID: 31462520 DOI: 10.4037/aacnacc2019852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) has become a popular recreational drug of abuse among young adults, partly because of the belief that it is relatively safe compared with other drugs with the same stimulant and hallucinogenic effects. However, MDMA use has been associated with a wide spectrum of organ toxicities, with the liver being severely affected by its deleterious effects. This article discusses the essential pharmacology of MDMA and describes the effects MDMA has on various organ systems of the body, with particular focus on the liver. The putative mechanisms by which MDMA can cause liver damage are explored, with emphasis on patient-related factors that explain why some individuals are more susceptible than others to damage from MDMA. The incidence of hepatotoxicity related to MDMA use is presented, and the nursing management of patients who develop acute liver failure due to MDMA overuse is explored in light of current evidence.
Collapse
Affiliation(s)
- Ruff Joseph Macale Cajanding
- Ruff Joseph Macale Cajanding is Charge Nurse, Adult Critical Care Unit, 6th Floor, King George V Building, St. Bartholomew's Hospital, Barts Health NHS Trust, 2 King Edward Street, London EC1A 1HQ, United Kingdom
| |
Collapse
|
6
|
Mintzopoulos D, Ratai EM, He J, Gonzalez RG, Kaufman MJ. Simian immunodeficiency virus transiently increases brain temperature in rhesus monkeys: detection with magnetic resonance spectroscopy thermometry. Magn Reson Med 2019; 81:2896-2904. [PMID: 30652349 DOI: 10.1002/mrm.27635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE To evaluate brain temperature effects of early simian immunodeficiency virus (SIV) infection in rhesus macaques using proton magnetic resonance spectroscopy (MRS) thermometry (MRSt) and to determine whether temperature correlates with brain choline or myo-inositol levels. METHODS Brain temperature was retrospectively determined in serial MRS scans that had been acquired at baseline and at 2 and 4 weeks post-SIV infection (wpi) in 16 monkeys by calculating the chemical shift difference between N-acetylaspartate (NAA) and water peaks in sequentially acquired water-suppressed and unsuppressed point-resolved spectroscopy (PRESS) spectra. Frontal and parietal cortex, basal ganglia, and white matter spectra were analyzed. RESULTS At 2 wpi, brain and rectal temperatures increased relative to baseline and normalized at 4 wpi. Brain temperatures correlated with choline levels in several brain areas, but not with myo-inositol levels. CONCLUSION These data indicate that SIV transiently increases brain temperature soon after infection and that temperature is correlated with transient changes in choline levels. Given that choline levels are associated with brain inflammation in SIV-infected monkeys, our findings suggest that the SIV-induced temperature increase reflects brain inflammation. We conclude that MRSt may be informative in human immunodeficiency virus models and may be useful for assessing effects of treatments that reduce inflammation. This study also illustrates that existing MRS data sets containing unsuppressed water spectra can be used to measure tissue temperature, an important physiological parameter.
Collapse
Affiliation(s)
- Dionyssios Mintzopoulos
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Eva-Maria Ratai
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Julian He
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Ramon Gilberto Gonzalez
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Marc J Kaufman
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Drug detection dogs at Australian outdoor music festivals: Deterrent, detection and iatrogenic effects. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2018; 60:89-95. [DOI: 10.1016/j.drugpo.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 07/11/2018] [Accepted: 08/09/2018] [Indexed: 01/18/2023]
|
8
|
Horsley RR, Lhotkova E, Hajkova K, Feriancikova B, Himl M, Kuchar M, Páleníček T. Behavioural, Pharmacokinetic, Metabolic, and Hyperthermic Profile of 3,4-Methylenedioxypyrovalerone (MDPV) in the Wistar Rat. Front Psychiatry 2018; 9:144. [PMID: 29740356 PMCID: PMC5928397 DOI: 10.3389/fpsyt.2018.00144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/03/2018] [Indexed: 01/24/2023] Open
Abstract
3,4-methylenedioxypyrovalerone (MDPV) is a potent pyrovalerone cathinone that is substituted for amphetamines by recreational users. We report a comprehensive and detailed description of the effects of subcutaneous MDPV (1-4 mg/kg) on pharmacokinetics, biodistribution and metabolism, acute effects on thermoregulation under isolated and aggregated conditions, locomotion (open field) and sensory gating (prepulse inhibition, PPI). All studies used male Wistar rats. Pharmacokinetics after single dose of 2 mg/kg MDPV was measured over 6 h in serum, brain and lungs. The biotransformation study recorded 24 h urinary levels of MDPV and its metabolites after 4 mg/kg. The effect of 2 mg/kg and 4 mg/kg on body temperature (°C) was measured over 12 h in group- vs. individually-housed rats. In the open field, locomotion (cm) and its spatial distribution were assessed. In PPI, acoustic startle response (ASR), habituation, and PPI were measured (AVG amplitudes). In behavioural experiments, 1, 2, or 4 mg/kg MDPV was administered 15 or 60 min prior to testing. Thermoregulation and behavioural data were analysed using factorial analysis of variance (ANOVA). Peak concentrations of MDPV in sera, lung and brain tissue were reached in under 30 min. While negligible levels of metabolites were detected in tissues, the major metabolites in urine were demethylenyl-MDPV and demethylenyl-methyl-MDPV at levels three-four times higher than the parent drug. We also established a MDPV brain/serum ratio ~2 lasting for ~120 min, consistent with our behavioural observations of locomotor activation and disrupted spatial distribution of behaviour as well as moderate increases in body temperature (exacerbated in group-housed animals). Finally, 4 mg/kg induced stereotypy in the open field and transiently disrupted PPI. Our findings, along with previous research suggest that MDPV is rapidly absorbed, readily crosses the blood-brain barrier and is excreted primarily as metabolites. MDPV acts as a typical stimulant with modest hyperthermic and psychomimetic properties, consistent with a primarily dopaminergic mechanism of action. Since no specific signs of acute toxicity were observed, even at the highest doses used, clinical care and harm-reduction guidance should be in line with that available for other stimulants and cathinones.
Collapse
Affiliation(s)
- Rachel R Horsley
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Eva Lhotkova
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Katerina Hajkova
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia.,Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Barbara Feriancikova
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Michal Himl
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Martin Kuchar
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Tomas Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|