1
|
Longhitano C, Finlay S, Peachey I, Swift JL, Fayet-Moore F, Bartle T, Vos G, Rudd D, Shareef O, Gordon S, Azghadi MR, Campbell I, Sethi S, Palmer C, Sarnyai Z. The effects of ketogenic metabolic therapy on mental health and metabolic outcomes in schizophrenia and bipolar disorder: a randomized controlled clinical trial protocol. Front Nutr 2024; 11:1444483. [PMID: 39234289 PMCID: PMC11371693 DOI: 10.3389/fnut.2024.1444483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Background Schizophrenia, schizoaffective disorder, and bipolar affective disorder are debilitating psychiatric conditions characterized by a chronic pattern of emotional, behavioral, and cognitive disturbances. Shared psychopathology includes the pre-eminence of altered affective states, disorders of thoughts, and behavioral control. Additionally, those conditions share epidemiological traits, including significant cardiovascular, metabolic, infectious, and respiratory co-morbidities, resulting in reduced life expectancy of up to 25 years. Nutritional ketosis has been successfully used to treat a range of neurological disorders and preclinical data have convincingly shown potential for its use in animal models of psychotic disorders. More recent data from open clinical trials have pointed toward a dramatic reduction in psychotic, affective, and metabolic symptoms in both schizophrenia and bipolar affective disorder. Objectives to investigate the effects of nutritional ketosis via a modified ketogenic diet (MKD) over 14 weeks in stable community patients with bipolar disorder, schizoaffective disorder, or schizophrenia. Design A randomized placebo-controlled clinical trial of 100 non-hospitalized adult participants with a diagnosis of bipolar disorder, schizoaffective disorder, or schizophrenia who are capable of consenting and willing to change their diets. Intervention Dietitian-led and medically supervised ketogenic diet compared to a diet following the Australian Guide to Healthy Eating for 14 weeks. Outcomes The primary outcomes include psychiatric and cognitive measures, reported as symptom improvement and functional changes in the Positive and Negative Symptoms Scale (PANSS), Young Mania Rating Scale (YMS), Beck Depression Inventory (BDI), WHO Disability Schedule, Affect Lability Scale and the Cambridge Cognitive Battery. The secondary metabolic outcomes include changes in body weight, blood pressure, liver and kidney function tests, lipid profiles, and markers of insulin resistance. Ketone and glucose levels will be used to study the correlation between primary and secondary outcomes. Optional hair cortisol analysis will assess long-term stress and variations in fecal microbiome composition. Autonomic nervous system activity will be measured via wearable devices (OURA ring and EMBRACE wristband) in the form of skin conductance, oximetry, continuous pulse monitoring, respiratory rate, movement tracking, and sleep quality. Based on the encouraging results from established preclinical research, clinical data from other neurodevelopment disorders, and open trials in bipolar disorder and schizophrenia, we predict that the ketogenic metabolic therapy will be well tolerated and result in improved psychiatric and metabolic outcomes as well as global measures of social and community functioning. We additionally predict that a correlation may exist between the level of ketosis achieved and the metabolic, cognitive, and psychiatric outcomes in the intervention group.
Collapse
Affiliation(s)
- Calogero Longhitano
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Sabine Finlay
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Isabella Peachey
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Jaymee-Leigh Swift
- Mater Hospital, Aurora Healthcare and James Cook University, Townsville, QLD, Australia
| | - Flavia Fayet-Moore
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- FoodiQ Global, Sydney, NSW, Australia
| | - Toby Bartle
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Gideon Vos
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- Electrical and Electronics Engineering, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Donna Rudd
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Omer Shareef
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| | - Shaileigh Gordon
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| | - Mostafa Rahimi Azghadi
- Electrical and Electronics Engineering, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Iain Campbell
- Centre for Clinical Brain Sciences, Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Zoltan Sarnyai
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
2
|
Freyberg Z, Andreazza AC, McClung CA, Phillips ML. Linking Mitochondrial Dysfunction, Neurotransmitter, and Neural Network Abnormalities and Mania: Elucidating Neurobiological Mechanisms of the Therapeutic Effect of the Ketogenic Diet in Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00199-X. [PMID: 39053576 DOI: 10.1016/j.bpsc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
There is growing interest in the ketogenic diet as a treatment for bipolar disorder (BD), and there are promising anecdotal and small case study reports of efficacy. However, the neurobiological mechanisms by which diet-induced ketosis might ameliorate BD symptoms remain to be determined, particularly in manic and hypomanic states-defining features of BD. Identifying these mechanisms will provide new markers to guide personalized interventions and provide targets for novel treatment developments for individuals with BD. In this critical review, we describe recent findings highlighting 2 types of neurobiological abnormalities in BD: 1) mitochondrial dysfunction and 2) neurotransmitter and neural network functional abnormalities. We link these abnormalities to mania/hypomania and depression in BD and then describe the biological underpinnings by which the ketogenic diet may have a beneficial effect in individuals with BD. We end the review by describing approaches that can be employed in future studies to elucidate the neurobiology that underlies the therapeutic effect of the ketogenic diet in BD. Doing this may provide marker predictors to identify individuals who will respond well to the ketogenic diet, as well as offer neural targets for novel treatment developments for BD.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Cordeiro RC, Lima CNC, Fries GR, Zunta-Soares G, Soares JC, Quevedo J, Scaini G. Mitochondrial health index correlates with plasma circulating cell-free mitochondrial DNA in bipolar disorder. Mol Psychiatry 2023; 28:4622-4631. [PMID: 37723283 DOI: 10.1038/s41380-023-02249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
Although mitochondrial dysfunction is known to play an essential role in the pathophysiology of bipolar disorder (BD), there is a glaring gap in our understanding of how mitochondrial dysfunction can modulate clinical phenotypes. An emerging paradigm suggests mitochondria play an important non-energetic role in adaptation to stress, impacting cellular resilience and acting as a source of systemic allostatic load. Known as mitochondrial allostatic load, this (phenomenon) occurs when mitochondria are unable to recalibrate and maintain cell homeostasis. This study aimed to evaluate the composite mitochondrial health index (MHI) in BD subjects and non-psychiatry controls. We will also explore whether lower MIH will be related to higher cell-free mtDNA (ccf-mtDNA) levels and poor clinical outcomes. In this study, 14 BD-I patients and 16 age- and sex-matched non-psychiatry controls were enrolled. Peripheral blood mononuclear cells (PBMCs) were used to measure the enzymatic activities of citrate synthase and complexes I, II, and IV and mtDNA copy number. Ccf-mtDNA was evaluated by qPCR in plasma. Mitochondrial quality control (MQC) proteins were evaluated by western blotting. After adjusting for confounding variables, such as age, sex, body mass index (BMI), and smoking status, patients with BD presented lower MHI compared to non-psychiatry controls, as well as higher ccf-mtDNA levels that negatively correlated with MHI. Because the MQC network is essential to maintain mitochondrial health, MHI and ccf-mtDNA were also examined in relation to several MQC-related proteins, such as Fis-1, Opa-1, and LC3. Our results showed that MHI correlated negatively with Fis-1 and positively with Opa-1 and LC3. Accordingly, ccf-mtDNA had a positive correlation with Fis-1 and a negative correlation with Opa-1 and LC3. Furthermore, we found a noteworthy inverse correlation between illness severity and MHI, with lower MHI and higher ccf-mtDNA levels in subjects with a longer illness duration, worse functional status, and higher depressive symptoms. Our findings indicate that mitochondrial allostatic load contributes to BD, suggesting mitochondria represent a potential biological intersection point that could contribute to impaired cellular resilience and increased vulnerability to stress and mood episodes. Ultimately, by linking mitochondrial dysfunction to disease progression and poor outcomes, we might be able to build a predictive marker that explains how mitochondrial function and its regulation contribute to BD development and that may eventually serve as a treatment guide for both old and new therapeutic targets.
Collapse
Affiliation(s)
- Rafaela C Cordeiro
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Camila N C Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giovana Zunta-Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
4
|
Scaini G, Cordeiro R, Lima CC, Fries G, Zunta-Soares G, Soares JC, de Quevedo J. Mitochondrial Health Index Correlates with Plasma Circulating Cell-Free Mitochondrial DNA in Bipolar Disorder. RESEARCH SQUARE 2023:rs.3.rs-2821492. [PMID: 37162936 PMCID: PMC10168451 DOI: 10.21203/rs.3.rs-2821492/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background: Although mitochondria dysfunction is known to play an essential role in the pathophysiology of bipolar disorder (BD), there is a glaring gap in our understanding of how mitochondrial dysfunction can modulate clinical phenotypes. This study aimed to evaluate the composite mitochondrial health index (MHI) in BD subjects and non-psychiatry controls (Non-psychiatry controls). We will also explore whether lower MIH will be related to higher cell-free mtDNA (ccf-mtDNA) levels and poor clinical outcomes. Methods: Fourteen BD-I patients and 16 age- and sex-matched non-psychiatry controls were enrolled for this study. Peripheral blood mononuclear cells (PBMCs) were used to measure the enzymatic activities of citrate synthase and complexes I, II, and IV and mtDNA copy number. ccf-mtDNA was evaluated by qPCR in plasma. Mitochondrial quality control (MQC) proteins were evaluated by western blotting. Results: One-Way ANCOVA after controlling for age, sex, body mass index (BMI), and smoking status showed that patients with BD present a decrease in the MHI compared to non-psychiatry controls, and higher ccf-mtDNA levels, which was negatively correlated with MHI. Because the MQC network is essential to maintain mitochondrial health, we also evaluated the relationship between MQC-related proteins with MHI and ccf-mtDNA. Our results showed that MHI negatively correlated with Fis-1 and positively with Opa-1 and LC3. Moreover, we found a negative correlation between ccf-mtDNA, Opa-1, and LC3 and a positive correlation between cff-mtDNA and Fis-1. Finally, we found that subjects with longer illness duration, higher depressive symptom scores, and worse functional status had lower MHI and higher ccf-mtDNA. Conclusion: In summary, the present findings corroborate previous studies and provide strong support for the hypothesis that mitochondrial regulation and function are integral parts of the pathogenesis of BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Faillace Department of Psychiatry and Behavioral Sciences
| | | | | | - Gabriel Fries
- University of Texas Health Science Center at Houston
| | | | - Jair C Soares
- The University of Texas Health Science Center at Houston
| | | |
Collapse
|
5
|
Gardea-Resendez M, Coombes BJ, Veldic M, Tye SJ, Romo-Nava F, Ozerdem A, Prieto ML, Cuellar-Barboza A, Nunez NA, Singh B, Pendegraft RS, Miola A, McElroy SL, Biernacka JM, Morava E, Kozicz T, Frye MA. Antidepressants that increase mitochondrial energetics may elevate risk of treatment-emergent mania. Mol Psychiatry 2023; 28:1020-1026. [PMID: 36513812 PMCID: PMC10005962 DOI: 10.1038/s41380-022-01888-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
Preclinical evidence suggests that antidepressants (ADs) may differentially influence mitochondrial energetics. This study was conducted to investigate the relationship between mitochondrial function and illness vulnerability in bipolar disorder (BD), specifically risk of treatment-emergent mania (TEM). Participants with BD already clinically phenotyped as TEM+ (n = 176) or TEM- (n = 516) were further classified whether the TEM associated AD, based on preclinical studies, increased (Mito+, n = 600) or decreased (Mito-, n = 289) mitochondrial electron transport chain (ETC) activity. Comparison of TEM+ rates between Mito+ and Mito- ADs was performed using generalized estimating equations to account for participants exposed to multiple ADs while adjusting for sex, age at time of enrollment into the biobank and BD type (BD-I/schizoaffective vs. BD-II). A total of 692 subjects (62.7% female, 91.4% White, mean age 43.0 ± 14.0 years) including 176 cases (25.3%) of TEM+ and 516 cases (74.7%) of TEM- with previous exposure to Mito+ and/or Mito- antidepressants were identified. Adjusting for age, sex and BD subtype, TEM+ was more frequent with antidepressants that increased (24.7%), versus decreased (13.5%) mitochondrial energetics (OR = 2.21; p = 0.000009). Our preliminary retrospective data suggests there may be merit in reconceptualizing AD classification, not solely based on monoaminergic conventional drug mechanism of action, but additionally based on mitochondrial energetics. Future prospective clinical studies on specific antidepressants and mitochondrial activity are encouraged. Recognizing pharmacogenomic investigation of drug response may extend or overlap to genomics of disease risk, future studies should investigate potential interactions between mitochondrial mechanisms of disease risk and drug response.
Collapse
Affiliation(s)
- Manuel Gardea-Resendez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Marin Veldic
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Susannah J Tye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Francisco Romo-Nava
- Lindner Center of HOPE /Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati College of Medicine, Mason, OH, USA
| | - Aysegul Ozerdem
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Miguel L Prieto
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Department of Psychiatry, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Mental Health Service, Clínica Universidad de los Andes, Santiago, Chile
| | | | - Nicolas A Nunez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Balwinder Singh
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Alessandro Miola
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Susan L McElroy
- Lindner Center of HOPE /Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati College of Medicine, Mason, OH, USA
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Anatomy, University of Pecs, Medical School, Pecs, Hungary
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Anatomy, University of Pecs, Medical School, Pecs, Hungary.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Matutino Santos P, Pereira Campos G, Nascimento C. Endo-Lysosomal and Autophagy Pathway and Ubiquitin-Proteasome System in Mood Disorders: A Review Article. Neuropsychiatr Dis Treat 2023; 19:133-151. [PMID: 36684613 PMCID: PMC9849791 DOI: 10.2147/ndt.s376380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Abstract
Mood disorders are disabling conditions that cause significant functional impairment. Due to the clinical heterogeneity and complex nature of these disorders, diagnostic and treatment strategies face challenges. The etiology of mood disorders is multifactorial, involving genetic and environmental aspects that are associated with specific biological pathways including inflammation, oxidative stress, and neuroprotection. Alterations in these pathways may reduce the cell's ability to recover from stress conditions occurring during mood episodes. The endo-lysosomal and autophagy pathway (ELAP) and the ubiquitin-proteasome system (UPS) play critical roles in protein homeostasis, impacting neuroplasticity and neurodevelopment. Thus, emerging evidence has suggested a role for these pathways in mental disorders. In the case of neurodegenerative diseases (NDDs), a deeper understanding in the role of ELAP and UPS has been critical to discover new treatment targets. Since it is suggested that NDDs and mood disorders share clinical symptomatology and risk factors, it has been hypothesized that there might be common underlying molecular pathways. Here, we review the importance of the ELAP and UPS for the central nervous system and for mood disorders. Finally, we discuss potential translational strategies for the diagnosis and treatment of major depressive disorder and bipolar disorder associated with these pathways.
Collapse
Affiliation(s)
- Petala Matutino Santos
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC (UFABC), São Paulo, Brazil
| | - Giovanna Pereira Campos
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC (UFABC), São Paulo, Brazil
| | - Camila Nascimento
- Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
7
|
Zhang H, Chen Y, Zhang J, Li C, Zhang Z, Pan C, Cheng S, Yang X, Meng P, Jia Y, Wen Y, Liu H, Zhang F. Assessing the joint effects of mitochondrial function and human behavior on the risks of anxiety and depression. J Affect Disord 2023; 320:561-567. [PMID: 36206883 DOI: 10.1016/j.jad.2022.09.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Psychiatric disorders have great health hazards and the exact pathogeny remains elusive now. We aim to explore the potential interaction effects of mitochondrial function and human behavior on the risks of anxiety and depression. METHODS The genome-wide association study (GWAS) data of mitochondrial function (N = 383,476-982,072) were obtained from published studies. Individual level genotype and phenotype data of anxiety, depression and behavioral factors (including drinking, smoking and physical activity) were all from the UK Biobank (N = 84,805-85,164). We first calculated the polygenic risk scores (PRS) of mitochondrial function as the instrumental variables, and then constructed linear regression analyses to systematically explore the potential interaction effects of mitochondrial function and human behavior on anxiety and depression. RESULTS In total samples, we observed mitochondrial heteroplasmy (MtHz) vs. Drinking (PGAD-7 = 6.49 × 10-3; PPHQ-9 = 1.89 × 10-3) was positively associated with both anxiety and depression. In males, MtHz vs. Drinking (PMale = 3.46 × 10-5) was positively correlated with depression. In females, blood mitochondrial DNA copy number (mtDNA-CN) vs. Drinking (PFemale = 8.63 × 10-3) was negatively related to anxiety. Furthermore, we identified additional 6 suggestive interaction effects (P < 0.05) for anxiety and depression. LIMITATIONS Considering all subjects were from UK Biobank, it should be careful to extrapolate our findings to other populations with different genetic background. CONCLUSIONS Our results suggest the significant impacts of mitochondrial function and human behavior interactions on the development of anxiety and depression, providing new clues for clarifying the pathogenesis of anxiety and depression.
Collapse
Affiliation(s)
- Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061 Xi'an, People's Republic of China.
| |
Collapse
|
8
|
Associations between levels of oxidative nucleoside damage and cardiovascular risk in patients newly diagnosed with bipolar disorder and their unaffected relatives. Transl Psychiatry 2022; 12:327. [PMID: 35948543 PMCID: PMC9365845 DOI: 10.1038/s41398-022-02095-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Enhanced oxidative stress-generated nucleoside damage may contribute to the increased cardiovascular disease mortality in patients with bipolar disorder (BD) but the association has never been investigated. We investigated the associations between oxidative stress-generated damage to DNA (8-oxodG) and RNA (8-oxoGuo), respectively, and three measures reflecting cardiovascular risk; namely, the Framingham 30-year risk score of cardiovascular diseases, the metabolic syndrome, and the insulin resistance index in 360 patients newly diagnosed with BD, 102 of their unaffected relatives (UR) and 197 healthy control individuals (HC). In sex- and age-adjusted models, the 30-year cardiovascular risk score increased by 20.8% (CI = 7.4-35.9%, p = 0.002) for every one nM/mM creatinine increase in 8-oxoGuo and by 15.6% (95% CI = 5.8-26.4%, p = 0.001) for every one nM/mM creatinine increase in 8-oxodG, respectively. Further, insulin resistance index increased by 24.1% (95% CI = 6.7-43%, p = 0.005) when 8-oxoGuo increased one nM/mM creatinine. The associations between cardiovascular measures and oxidative nucleoside damage were more pronounced in patients with BD compared with UR, and HC. Metabolic syndrome was not associated with nucleoside damage. Overall, higher oxidative stress-generated nucleoside damage was associated with a higher cardiovascular risk score and a higher degree of insulin resistance index, and having BD impacted the associations. Further, within patients, treatment with psychotropics seemed to enhance the associations between 30-year CVD risk score and insulin resistance index, respectively, and oxidatively stress-generated nucleoside damage. Our findings support enhanced oxidative stress-generated nucleoside damage as a putative pathophysiological mechanism that may mediate the higher cardiovascular risk observed in patients with BD already at the time of diagnosis.
Collapse
|
9
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
10
|
Madireddy S, Madireddy S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder. Int J Mol Sci 2022; 23:ijms23031844. [PMID: 35163764 PMCID: PMC8836876 DOI: 10.3390/ijms23031844] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Bipolar disorder (BD) is characterized by mood changes, including recurrent manic, hypomanic, and depressive episodes, which may involve mixed symptoms. Despite the progress in neurobiological research, the pathophysiology of BD has not been extensively described to date. Progress in the understanding of the neurobiology driving BD could help facilitate the discovery of therapeutic targets and biomarkers for its early detection. Oxidative stress (OS), which damages biomolecules and causes mitochondrial and dopamine system dysfunctions, is a persistent finding in patients with BD. Inflammation and immune dysfunction might also play a role in BD pathophysiology. Specific nutrient supplements (nutraceuticals) may target neurobiological pathways suggested to be perturbed in BD, such as inflammation, mitochondrial dysfunction, and OS. Consequently, nutraceuticals may be used in the adjunctive treatment of BD. This paper summarizes the possible roles of OS, mitochondrial dysfunction, and immune system dysregulation in the onset of BD. It then discusses OS-mitigating strategies that may serve as therapeutic interventions for BD. It also analyzes the relationship between diet and BD as well as the use of nutritional interventions in the treatment of BD. In addition, it addresses the use of lithium therapy; novel antipsychotic agents, including clozapine, olanzapine, risperidone, cariprazine, and quetiapine; and anti-inflammatory agents to treat BD. Furthermore, it reviews the efficacy of the most used therapies for BD, such as cognitive–behavioral therapy, bright light therapy, imagery-focused cognitive therapy, and electroconvulsive therapy. A better understanding of the roles of OS, mitochondrial dysfunction, and inflammation in the pathogenesis of bipolar disorder, along with a stronger elucidation of the therapeutic functions of antioxidants, antipsychotics, anti-inflammatory agents, lithium therapy, and light therapies, may lead to improved strategies for the treatment and prevention of bipolar disorder.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence:
| | | |
Collapse
|
11
|
Maiti R, Mishra A, Mishra BR, Jena M. Comparative efficacy of mitochondrial agents for bipolar disorder during depressive episodes: a network meta-analysis using frequentist and Bayesian approaches. Psychopharmacology (Berl) 2021; 238:3347-3356. [PMID: 34751803 DOI: 10.1007/s00213-021-06019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE Mitochondrial dysfunctions have emerged as new biological hypothesis and therapeutic target for bipolar disorder. This network meta-analysis has been done to evaluate the comparative efficacy of mitochondrial agents in bipolar depression. METHODS After a comprehensive literature search on PubMed/MEDLINE, Cochrane databases, and International Trials Registry Platform, efficacy data were extracted from 15 randomized controlled trials. Random-effects meta-analysis was done following both frequentist and Bayesian approaches to pool the effects across the interventions. A network graph was built, relative effects of interventions in respect to one another and placebo were calculated, and treatments were ranked as per P- and SUCRA scores. Change in depression rating score was the primary outcome. Data was entered in contrast level and arm level for frequentist and Bayesian approaches, respectively. RESULTS Amongst mitochondrial agents, N-acetylcysteine (NAC) was shown to have the highest probability of being the best treatment, followed by coenzyme Q10 and combination therapy of alpha-lipoic acid (ALA) and acetyl-L-carnitine (ALCAR) as depicted by P- and SUCRA scores. In the Bayesian approach, none of the treatments had better efficacy than placebo, but in the frequentist approach, NAC (effect estimate: - 1.18 (95% CI: - 2.05; - 0.31)) was significantly better than placebo. CONCLUSION Methodically, there may be a difference of magnitude in frequentist and Bayesian approaches, but the direction of effect and ranking probabilities do not differ. We conclude that none of the existing mitochondrial agents showed better efficacy than placebo in bipolar depression regarding depression rating scores.
Collapse
Affiliation(s)
- Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| | - Archana Mishra
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Biswa Ranjan Mishra
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Monalisa Jena
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
12
|
Reddy AP, Sawant N, Morton H, Kshirsagar S, Bunquin LE, Yin X, Reddy PH. Selective serotonin reuptake inhibitor citalopram ameliorates cognitive decline and protects against amyloid beta-induced mitochondrial dynamics, biogenesis, autophagy, mitophagy and synaptic toxicities in a mouse model of Alzheimer's disease. Hum Mol Genet 2021; 30:789-810. [PMID: 33791799 PMCID: PMC8161521 DOI: 10.1093/hmg/ddab091] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
In the current study, we investigated the protective role of citalopram against cognitive decline, impaired mitochondrial dynamics, defective mitochondrial biogenesis, defective autophagy, mitophagy and synaptic dysfunction in APP transgenic mouse model of Alzheimer's disease (ad). We treated 12-month-old wild-type (WT) and age-matched transgenic APP mice with citalopram for 2 months. Using Morris Water Maze and rotarod tests, quantitative RT-PCR, immunoblotting, biochemical methods and transmission electron microscopy methods, we assessed cognitive behavior, RNA and protein levels of mitochondrial dynamics, biogenesis, autophagy, mitophagy, synaptic, ad-related and neurogenesis genes in wild-type and APP mice treated and untreated with citalopram. Citalopram-treated APP mice relative to citalopram-untreated APP mice exhibited improved cognitive behavior. Increased levels of mRNA associated with mitochondrial fission and ad-related genes; decreased levels of fusion, biogenesis, autophagy, mitophagy, synaptic and neurogenesis genes were found in APP mice relative to WT mice. However, APP mice treated with citalopram compared to citalopram-untreated APP mice revealed reduced levels of the mitochondrial fission and ad-related genes and increased fusion, biogenesis, autophagy, mitophagy, synaptic and neurogenesis genes. Our protein data agree with the mRNA levels. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in APP mice; these were reversed in citalopram-treated APP mice. Further, Golgi-cox staining analysis revealed reduced dendritic spines in APP mice relative to WT mice. However, citalopram-treated APP mice showed significantly increased dendritic spines, indicating that citalopram enhances spine density, synaptic activity and improved cognitive function in APP mice. These findings suggest that citalopram reduces cognitive decline, Aβ levels and mitochondrial and synaptic toxicities and may have a strong protective role against mutant APP and Aβ-induced injuries in patients with depression, anxiety and ad.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX 79409-1270, USA
| | - Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Hallie Morton
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Lloyd E Bunquin
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX 79409-1270, USA
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4 Street, Lubbock, TX 79430, USA
- Neurology Department, Texas Tech University Health Sciences Center, 3601 4 Street, Lubbock, TX 79430, USA
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4 Street, Lubbock, TX 79430, USA
- Public Health Department, Texas Tech University Health Sciences Center, 3601 4 Street, Lubbock, TX 79430, USA
| |
Collapse
|