1
|
Eltabey SM, Ibrahim AH, Zaky MM, Ibrahim AE, Alrashdi YBA, El Deeb S, Saleh MM. Targeting virulence of resistant Escherichia coli by the FDA-approved drugs sitagliptin and nitazoxanide as an alternative antimicrobial approach. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01215-7. [PMID: 39470968 DOI: 10.1007/s12223-024-01215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The spread of multidrug-resistant Escherichia coli in healthcare facilities is a global challenge. Hospital-acquired infections produced by Escherichia coli include gastrointestinal, blood-borne, urinary tract, surgical sites, and neonatal infections. Therefore, novel approaches are needed to deal with this pathogen and its rising resistance. The concept of attenuating virulence factors is an alternative strategy that might lead to low levels of resistance and combat this pathogen. A sub-inhibitory concentration (¼ MIC) of sitagliptin and nitazoxanide was used for phenotypic assessments of Escherichia coli virulence factors such as biofilm production, swimming motility, serum resistance, and protease production. Moreover, qRT-PCR was used to determine the impact of sub-MIC of the tested drugs on the relative expression levels of papC, fimH, fliC, kpsMTII, ompT_m, and stcE genes encoding virulence factors in Escherichia coli. Also, an in vivo model was conducted as a confirmatory test. Phenotypically, our findings demonstrated that the tested strains showed a significant decrease in all the tested virulence factors. Moreover, the genotypic results showed a significant downregulation in the relative expression levels of all the tested genes. Besides, the examined drugs were found to be effective in protecting mice against Escherichia coli pathogenesis. Sitagliptin and nitazoxanide exhibited strong anti-virulence activities against Escherichia coli. In addition, it is recommended that they might function as adjuvant in the management of Escherichia coli infections with either conventional antimicrobial agents or alone as alternative treatment measures.
Collapse
Affiliation(s)
- Sara M Eltabey
- Microbiology Program, Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ali H Ibrahim
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Mahmoud M Zaky
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman.
| | | | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, Brunswick, Germany.
| | - Moustafa M Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Faculty of Pharmacy, Ashour University, Baghdad, Iraq
| |
Collapse
|
2
|
Agbekudzi A, Arapov TD, Stock AM, Scharf BE. The dual role of a novel Sinorhizobium meliloti chemotaxis protein CheT in signal termination and adaptation. Mol Microbiol 2024; 122:429-446. [PMID: 39081077 DOI: 10.1111/mmi.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 10/17/2024]
Abstract
Sinorhizobium meliloti senses nutrients and compounds exuded from alfalfa host roots and coordinates an excitation, termination, and adaptation pathway during chemotaxis. We investigated the role of the novel S. meliloti chemotaxis protein CheT. While CheT and the Escherichia coli phosphatase CheZ share little sequence homology, CheT is predicted to possess an α-helix with a DXXXQ phosphatase motif. Phosphorylation assays demonstrated that CheT dephosphorylates the phosphate-sink response regulator, CheY1~P by enhancing its decay two-fold but does not affect the motor response regulator CheY2~P. Isothermal Titration Calorimetry (ITC) experiments revealed that CheT binds to a phosphomimic of CheY1~P with a KD of 2.9 μM, which is 25-fold stronger than its binding to CheY1. Dissimilar chemotaxis phenotypes of the ΔcheT mutant and cheT DXXXQ phosphatase mutants led to the hypothesis that CheT exerts additional function(s). A screen for potential binding partners of CheT revealed that it forms a complex with the methyltransferase CheR. ITC experiments confirmed CheT/CheR binding with a KD of 19 μM, and a SEC-MALS analysis determined a 1:1 and 2:1 CheT/CheR complex formation. Although they did not affect each other's enzymatic activity, CheT binding to CheY1~P and CheR may serve as a link between signal termination and sensory adaptation.
Collapse
Affiliation(s)
- Alfred Agbekudzi
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| | - Timofey D Arapov
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| | - Ann M Stock
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Melamed S, Zhang A, Jarnik M, Mills J, Silverman A, Zhang H, Storz G. σ 28-dependent small RNA regulation of flagella biosynthesis. eLife 2023; 12:RP87151. [PMID: 37843988 PMCID: PMC10578931 DOI: 10.7554/elife.87151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Flagella are important for bacterial motility as well as for pathogenesis. Synthesis of these structures is energy intensive and, while extensive transcriptional regulation has been described, little is known about the posttranscriptional regulation. Small RNAs (sRNAs) are widespread posttranscriptional regulators, most base pairing with mRNAs to affect their stability and/or translation. Here, we describe four UTR-derived sRNAs (UhpU, MotR, FliX and FlgO) whose expression is controlled by the flagella sigma factor σ28 (fliA) in Escherichia coli. Interestingly, the four sRNAs have varied effects on flagellin protein levels, flagella number and cell motility. UhpU, corresponding to the 3´ UTR of a metabolic gene, likely has hundreds of targets including a transcriptional regulator at the top flagella regulatory cascade connecting metabolism and flagella synthesis. Unlike most sRNAs, MotR and FliX base pair within the coding sequences of target mRNAs and act on ribosomal protein mRNAs connecting ribosome production and flagella synthesis. The study shows how sRNA-mediated regulation can overlay a complex network enabling nuanced control of flagella synthesis.
Collapse
Affiliation(s)
- Sahar Melamed
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Aixia Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Michal Jarnik
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Joshua Mills
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Aviezer Silverman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Hongen Zhang
- Bioinformatics and Scientific Computing Core, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| |
Collapse
|
4
|
Huang W, Chen W, Chen Y, Fang S, Huang T, Chang P, Chang Y. Salmonella YqiC exerts its function through an oligomeric state. Protein Sci 2023; 32:e4749. [PMID: 37555831 PMCID: PMC10503411 DOI: 10.1002/pro.4749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
Protein oligomerization occurs frequently both in vitro and in vivo, with specific functionalities associated with different oligomeric states. The YqiC protein from Salmonella Typhimurium forms a homotrimer through its C-terminal coiled-coil domain, and the protein is closely linked to the colonization and invasion of the bacteria to the host cells. To elucidate the importance of the oligomeric state of YqiC in vivo and its relation with bacterial infection, we mutated crucial residues in YqiC's coiled-coil region and confirmed the loss of trimer formation using chemical crosslinking and size exclusion chromatography coupled with multiple angle light scattering (SEC-MALS) techniques. The yqiC-knockout strain complemented with mutant YqiC showed significantly reduced colonization and invasion of Salmonella to host cells, demonstrating the critical role of YqiC oligomerization in bacterial pathogenesis. Furthermore, we conducted a protein-protein interaction study of YqiC using a pulled-down assay coupled with mass spectrometry analysis to investigate the protein's role in bacterial virulence. The results reveal that YqiC interacts with subunits of Complex II of the electron transport chain (SdhA and SdhB) and the β-subunit of F0 F1 -ATP synthase. These interactions suggest that YqiC may modulate the energy production of Salmonella and subsequently affect the assembly of crucial virulence factors, such as flagella. Overall, our findings provide new insights into the molecular mechanisms of YqiC's role in S. Typhimurium pathogenesis and suggest potential therapeutic targets for bacterial infections.
Collapse
Affiliation(s)
- Wei‐Chun Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Wai‐Ting Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yueh‐Chen Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Shiuh‐Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho HospitalTaipei Medical UniversityTaipeiTaiwan
- Department of Pediatrics, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Master Program for Clinical Genomics and Proteomics, College of PharmacyTaipei Medical UniversityTaipeiTaiwan
| | - Tzu‐Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Pei‐Ru Chang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho HospitalTaipei Medical UniversityTaipeiTaiwan
- Department of Pediatrics, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yu‐Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- International PhD Program in Cell Therapy and Regenerative Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
5
|
Poh WH, Ruhazat NS, Yang LK, Shivhare D, Lim PK, Kanagasundaram Y, Rice SA, Mutwil M. Transcriptomic and metabolomic characterization of antibacterial activity of Melastoma dodecandrum. FRONTIERS IN PLANT SCIENCE 2023; 14:1205725. [PMID: 37771487 PMCID: PMC10525717 DOI: 10.3389/fpls.2023.1205725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Antibacterial resistance poses a significant global threat, necessitating the discovery of new therapeutic agents. Plants are a valuable source of secondary metabolites with demonstrated anticancer and antibacterial properties. In this study, we reveal that Melastoma dodecandrum exhibits both bacteriostatic and bactericidal effects against Pseudomonas aeruginosa and Staphylococcus aureus. Treatment with plant extracts results in membrane damage and a reduction in P.aeruginosa swimming and swarming motility. A comparative analysis of bacterial transcriptomes exposed to M.dodecandrum extracts and four distinct antibiotics indicates that the extracts may trigger similar transcriptomic responses as triclosan, a fatty acid synthesis inhibitor. Activity-guided fractionation suggests that the antibacterial activity is not attributable to hydrolyzable tannins, but to unidentified minor compounds. Additionally, we identified 104 specialized metabolic pathways and demonstrated a high level of transcriptional coordination between these biosynthetic pathways and phytohormones, highlighting potential regulatory mechanisms of antibacterial metabolites in M.dodecandrum.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nur Syahirah Ruhazat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lay Kien Yang
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Devendra Shivhare
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- AAVACC PTE LTD, Singapore, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yoganathan Kanagasundaram
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Agriculture and Food, Microbiomes for One Systems Health, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Wortel IMN, Kim S, Liu AY, Ibarra EC, Miller MJ. Listeria motility increases the efficiency of epithelial invasion during intestinal infection. PLoS Pathog 2022; 18:e1011028. [PMID: 36584235 PMCID: PMC9836302 DOI: 10.1371/journal.ppat.1011028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/12/2023] [Accepted: 11/28/2022] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes (Lm) is a food-borne pathogen that causes severe bacterial gastroenteritis, with high rates of hospitalization and mortality. Lm is ubiquitous in soil, water and livestock, and can survive and proliferate at low temperatures. Following oral ingestion of contaminated food, Lm crosses the epithelium through intestinal goblet cells in a mechanism mediated by Lm InlA binding host E-cadherin. Importantly, human infections typically occur with Lm growing at or below room temperature, which is flagellated and motile. Even though many important human bacterial pathogens are flagellated, little is known regarding the effect of Lm motility on invasion and immune evasion. Here, we used complementary imaging and computer modeling approaches to test the hypothesis that bacterial motility helps Lm locate and engage target cells permissive for invasion. Imaging explanted mouse and human intestine, we showed that Lm grown at room temperature uses motility to scan the epithelial surface and preferentially attach to target cells. Furthermore, we integrated quantitative parameters from our imaging experiments to construct a versatile "layered" cellular Potts model (L-CPM) that simulates host-pathogen dynamics. Simulated data are consistent with the hypothesis that bacterial motility enhances invasion by allowing bacteria to search the epithelial surface for their preferred invasion targets. Indeed, our model consistently predicts that motile bacteria invade twice as efficiently over the first hour of infection. We also examined how bacterial motility affected interactions with host cellular immunity. In a mouse model of persistent infection, we found that neutrophils migrated to the apical surface of the epithelium 5 hours post infection and interacted with Lm. Yet in contrast to the view that neutrophils "hunt" for bacteria, we found that these interactions were driven by motility of Lm-which moved at least ~50x faster than neutrophils. Furthermore, our L-CPM predicts that motile bacteria maintain their invasion advantage even in the presence of host phagocytes, with the balance between invasion and phagocytosis governed almost entirely by bacterial motility. In conclusion, our simulations provide insight into host pathogen interaction dynamics at the intestinal epithelial barrier early during infection.
Collapse
Affiliation(s)
- Inge M. N. Wortel
- Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands
| | - Seonyoung Kim
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Annie Y. Liu
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Enid C. Ibarra
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mark J. Miller
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
7
|
Minamino T, Kinoshita M, Morimoto YV, Namba K. Activation mechanism of the bacterial flagellar dual-fuel protein export engine. Biophys Physicobiol 2022; 19:e190046. [PMID: 36567733 PMCID: PMC9751260 DOI: 10.2142/biophysico.bppb-v19.0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Bacteria employ the flagellar type III secretion system (fT3SS) to construct flagellum, which acts as a supramolecular motility machine. The fT3SS of Salmonella enterica serovar Typhimurium is composed of a transmembrane export gate complex and a cytoplasmic ATPase ring complex. The transmembrane export gate complex is fueled by proton motive force across the cytoplasmic membrane and is divided into four distinct functional parts: a dual-fuel export engine; a polypeptide channel; a membrane voltage sensor; and a docking platform. ATP hydrolysis by the cytoplasmic ATPase complex converts the export gate complex into a highly efficient proton (H+)/protein antiporter that couples inward-directed H+ flow with outward-directed protein export. When the ATPase ring complex does not work well in a given environment, the export gate complex will remain inactive. However, when the electric potential difference, which is defined as membrane voltage, rises above a certain threshold value, the export gate complex becomes an active H+/protein antiporter to a considerable degree, suggesting that the export gate complex has a voltage-gated activation mechanism. Furthermore, the export gate complex also has a sodium ion (Na+) channel to couple Na+ influx with flagellar protein export. In this article, we review our current understanding of the activation mechanism of the dual-fuel protein export engine of the fT3SS. This review article is an extended version of a Japanese article, Membrane voltage-dependent activation of the transmembrane export gate complex in the bacterial flagellar type III secretion system, published in SEIBUTSU BUTSURI Vol. 62, p165-169 (2022).
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miki Kinoshita
- Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke V. Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Namba
- Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan,RIKEN SPring-8 Center, Suita, Osaka 565-0871, Japan,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
The Global Regulator MftR Controls Virulence and Siderophore Production in Burkholderia thailandensis. J Bacteriol 2022; 204:e0023722. [PMID: 36286517 PMCID: PMC9664960 DOI: 10.1128/jb.00237-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens face iron limitation in a host environment. To overcome this challenge, they produce siderophores, small iron-chelating molecules.
Collapse
|
9
|
Wang W, Xie R, Cao Q, Ye H, Zhang C, Dong Z, Feng D, Zuo J. Effects of glucose oxidase on growth performance, clinical symptoms, serum parameters, and intestinal health in piglets challenged by enterotoxigenic Escherichia coli. Front Microbiol 2022; 13:994151. [PMID: 36267185 PMCID: PMC9578003 DOI: 10.3389/fmicb.2022.994151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Glucose oxidase (GOD) could benefit intestinal health and growth performance in animals. However, it is unknown whether GOD can protect piglets against bacterial challenge. This study aimed to evaluate the protective effects of GOD on growth performance, clinical symptoms, serum parameters, and intestinal health in piglets challenged by enterotoxigenic Escherichia coli (ETEC). A total of 44 male weaned piglets around 38 days old were divided into four groups (11 replicates/group): negative control (NC), positive control (PC), CS group (PC piglets +40 g/t colistin sulfate), and GOD group (PC piglets +200 g/t GOD). All piglets except those in NC were challenged with ETEC (E. coli K88) on the 11th day of the experiment. Parameter analysis was performed on the 21st day of the experiment. The results showed that the ETEC challenge elevated (p < 0.05) the rectal temperature and fecal score of piglets at certain time-points post-challenge, reduced (p < 0.05) serum glucose and IgG levels but increased (p < 0.05) serum alanine aminotransferase activity, as well as caused (p < 0.05) intestinal morphology impairment and inflammation. Supplemental GOD could replace CS to reverse (p < 0.05) the above changes and tended to increase (p = 0.099) average daily gain during the ETEC challenge. Besides, GOD addition reversed ETEC-induced losses (p < 0.05) in several beneficial bacteria (e.g., Lactobacillus salivarius) along with increases (p < 0.05) in certain harmful bacteria (e.g., Enterobacteriaceae and Escherichia/Shigella). Functional prediction of gut microbiota revealed that ETEC-induced upregulations (p < 0.05) of certain pathogenicity-related pathways (e.g., bacterial invasion of epithelial cells and shigellosis) were blocked by GOD addition, which also normalized the observed downregulations (p < 0.05) of bacterial pathways related to the metabolism of sugars, functional amino acids, nucleobases, and bile acids in challenged piglets. Collectively, GOD could be used as a potential antibiotic alternative to improve growth and serum parameters, as well as attenuate clinical symptoms and intestinal disruption in ETEC-challenged piglets, which could be associated with its ability to mitigate gut microbiota dysbiosis. Our findings provided evidence for the usage of GOD as an approach to restrict ETEC infection in pigs.
Collapse
|
10
|
Lin Q, Li M, Wang Y, Xu Z, Li L. Root exudates and chemotactic strains mediate bacterial community assembly in the rhizosphere soil of Casuarina equisetifolia L. FRONTIERS IN PLANT SCIENCE 2022; 13:988442. [PMID: 36212345 PMCID: PMC9534574 DOI: 10.3389/fpls.2022.988442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/02/2022] [Indexed: 05/31/2023]
Abstract
Rhizosphere bacterial diversity and community structure are important factors involving in plant growth. However, the exact process of how plant rhizosphere bacterial community structures is assembled remains unclear. To investigate the role of bacterial chemotaxis to rhizosphere secretions in the establishment of rhizosphere microbial community in Casuarina equisetifolia, we screened bacteria strains derived from the rhizosphere of Casuarina equisetifolia L. using top three chemicals of the plant root exudates (2,4-di-tert-butylphenol, methyl stearate, and arginine) as chemoattractant. Among 72 bacterial strains, five showed strong chemotaxis to 2,4-di-tert-butylphenol, six to methyl stearate, and eleven to arginine, with the highest bacterial chemotaxis occurring at a concentration of 60 μM. This indicates that arginine is a more important chemoattractant than 2,4-di-tert-butylphenol, methyl stearate in the establishment of rhizosphere microbial community in Casuarina equisetifolia. Bacterial community assembly analysis using different chemoattractants and chemoattractants-plus-bacteria combinations were then performed by burying laboratory prepared bags of sterlized soil into C. equisetifolia forest. Bacteria diversity and enrichment analyses using 16S rDNA sequencing at 7 and 14 days after burying showed that arginine-plus-Ochrobactrum sp. and Pantoea sp. treatment exhibited the greatest similarity to the natural forest bacterial community. Our date provides new insights into how chemoattractants and chemotactic bacteria strains shape the rhizosphere microbial community of C. equisetifolia, which constitutes foundational information for future management of these communities.
Collapse
|
11
|
Zhou JW, Ji PC, Jiang H, Tan XJ, Jia AQ. Quorum Sensing Inhibition and Metabolic Intervention of 4-Hydroxycinnamic Acid Against Agrobacterium tumefaciens. Front Microbiol 2022; 13:830632. [PMID: 35330766 PMCID: PMC8940537 DOI: 10.3389/fmicb.2022.830632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The natural product 4-hydroxycinnamic acid (HA) was firstly isolated from the metabolites of Phomopsis liquidambari, one endophytic fungus from Punica granatum leaves. The anti-QS potential of HA was evaluated by β-galactosidase assay and acylated homoserine lactones (AHL) analysis. The MIC of HA was > 1.20 mM. Exposure to HA at sub-MIC concentrations (0.30-0.60 mM) remarkably reduced the β-galactosidase activity and AHL secretion. Transcriptional analysis by qRT-PCR and docking simulation indicated that HA functions as an anti-QS agent by inhibiting the transcriptional levels of traI and traR rather than signal mimicry. The blocked QS lead to suppressed biofilm formation, motilities, and flagella formation after exposure to HA at concentrations ranging from 0.30 to 0.80 mM. The dysfunctional QS also resulted in repressed antioxidant enzymes and intensified oxidative stress. The intensified oxidative stress destroyed membrane integrity, induced energy supply deficiency, resulted in disorder of protein and nuclear acid metabolism, and ultimately weakened pathogenicity of A. tumefaciens. HA may have promising potential for controlling A. tumefaciens.
Collapse
Affiliation(s)
- Jin-Wei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Peng-Cheng Ji
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Huan Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiao-Juan Tan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, China
| | - Ai-Qun Jia
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
12
|
Akahoshi DT, Bevins CL. Flagella at the Host-Microbe Interface: Key Functions Intersect With Redundant Responses. Front Immunol 2022; 13:828758. [PMID: 35401545 PMCID: PMC8987104 DOI: 10.3389/fimmu.2022.828758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Many bacteria and other microbes achieve locomotion via flagella, which are organelles that function as a swimming motor. Depending on the environment, flagellar motility can serve a variety of beneficial functions and confer a fitness advantage. For example, within a mammalian host, flagellar motility can provide bacteria the ability to resist clearance by flow, facilitate access to host epithelial cells, and enable travel to nutrient niches. From the host’s perspective, the mobility that flagella impart to bacteria can be associated with harmful activities that can disrupt homeostasis, such as invasion of epithelial cells, translocation across epithelial barriers, and biofilm formation, which ultimately can decrease a host’s reproductive fitness from a perspective of natural selection. Thus, over an evolutionary timescale, the host developed a repertoire of innate and adaptive immune countermeasures that target and mitigate this microbial threat. These countermeasures are wide-ranging and include structural components of the mucosa that maintain spatial segregation of bacteria from the epithelium, mechanisms of molecular recognition and inducible responses to flagellin, and secreted effector molecules of the innate and adaptive immune systems that directly inhibit flagellar motility. While much of our understanding of the dynamics of host-microbe interaction regarding flagella is derived from studies of enteric bacterial pathogens where flagella are a recognized virulence factor, newer studies have delved into host interaction with flagellated members of the commensal microbiota during homeostasis. Even though many aspects of flagellar motility may seem innocuous, the host’s redundant efforts to stop bacteria in their tracks highlights the importance of this host-microbe interaction.
Collapse
|
13
|
Identification of Antimotilins, Novel Inhibitors of Helicobacter pylori Flagellar Motility That Inhibit Stomach Colonization in a Mouse Model. mBio 2022; 13:e0375521. [PMID: 35227071 PMCID: PMC8941896 DOI: 10.1128/mbio.03755-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
New treatment options against the widespread cancerogenic gastric pathogen Helicobacter pylori are urgently needed. We describe a novel screening procedure for inhibitors of H. pylori flagellar biosynthesis. The assay is based on a flaA flagellin gene-luciferase reporter fusion in H. pylori and was amenable to multi-well screening formats with an excellent Z factor. We screened various compound libraries to identify virulence blockers ("antimotilins") that inhibit H. pylori motility or the flagellar type III secretion apparatus. We identified compounds that either inhibit both motility and the bacterial viability, or the flagellar system only, without negatively affecting bacterial growth. Novel anti-virulence compounds which suppressed flagellar biosynthesis in H. pylori were active on pure H. pylori cultures in vitro and partially suppressed motility directly, reduced flagellin transcript and flagellin protein amounts. We performed a proof-of-principle treatment study in a mouse model of chronic H. pylori infection and demonstrated a significant effect on H. pylori colonization for one antimotilin termed Active2 even as a monotherapy. The diversity of the intestinal microbiota was not significantly affected by Active2. In conclusion, the novel antimotilins active against motility and flagellar assembly bear promise to complement commonly used antibiotic-based combination therapies for treating and eradicating H. pylori infections. IMPORTANCE Helicobacter pylori is one of the most prevalent bacterial pathogens, inflicting hundreds of thousands of peptic ulcers and gastric cancers to patients every year. Antibacterial treatment of H. pylori is complicated due to the need of combining multiple antibiotics, entailing serious side effects and increasing selection for antibiotic resistance. Here, we aimed to explore novel nonantibiotic approaches to H. pylori treatment. We selected an antimotility approach since flagellar motility is essential for H. pylori colonization. We developed a screening system for inhibitors of H. pylori motility and flagellar assembly, and identified numerous novel antibacterial and anti-motility compounds (antimotilins). Selected compounds were further characterized, and one was evaluated in a preclinical therapy study in mice. The antimotilin compound showed a good efficacy to reduce bacterial colonization in the model, such that the antimotilin approach bears promise to be further developed into a therapy against H. pylori infection in humans.
Collapse
|
14
|
Xu Y, Yang L, Wang Y, Zhu Z, Yan J, Qin S, Chen L. Prophage-encoded gene VpaChn25_0734 amplifies ecological persistence of Vibrio parahaemolyticus CHN25. Curr Genet 2022; 68:267-287. [PMID: 35064802 PMCID: PMC8783578 DOI: 10.1007/s00294-022-01229-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Vibrio parahaemolyticus is a waterborne pathogen that can cause acute gastroenteritis, wound infection, and septicemia in humans. The molecular basis of its pathogenicity is not yet fully understood. Phages are found most abundantly in aquatic environments and play a critical role in horizontal gene transfer. Nevertheless, current literature on biological roles of prophage-encoded genes remaining in V. parahaemolyticus is rare. In this study, we characterized one such gene VpaChn25_0734 (543-bp) in V. parahaemolyticus CHN25 genome. A deletion mutant ΔVpaChn25_0734 (543-bp) was obtained by homologous recombination, and a revertant ΔVpaChn25_0734-com (543-bp) was also constructed. The ΔVpaChn25_0734 (543-bp) mutant was defective in growth and swimming mobility particularly at lower temperatures and/or pH 7.0–8.5. Cell surface hydrophobicity and biofilm formation were significantly decreased in the ΔVpaChn25_0734 (543-bp) mutant (p < 0.05). Based on the in vitro Caco-2 cell model, the deletion of VpaChn25_0734 (543-bp) gene significantly reduced the cytotoxicity of V. parahaemolyticus CHN25 to human intestinal epithelial cells (p < 0.05). Comparative secretomic and transcriptomic analyses revealed a slightly increased extracellular proteins, and thirteen significantly changed metabolic pathways in the ΔVpaChn25_0734 (543-bp) mutant, showing down-regulated carbon source transport and utilization, biofilm formation, and type II secretion system (p < 0.05), consistent with the observed defective phenotypes. Taken, the prophage-encoded gene VpaChn25_0734 (543-bp) enhanced V. parahaemolyticus CHN25 fitness for survival in the environment and the host. The results in this study facilitate better understanding of pathogenesis and genome evolution of V. parahaemolyticus, the leading sea foodborne pathogen worldwide.
Collapse
Affiliation(s)
- Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA, USA
| | - Zhuoying Zhu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jizhou Yan
- College of Fishers and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Si Qin
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
15
|
Corral J, Pérez-Varela M, Sánchez-Osuna M, Cortés P, Barbé J, Aranda J. Importance of twitching and surface-associated motility in the virulence of Acinetobacter baumannii. Virulence 2021; 12:2201-2213. [PMID: 34515614 PMCID: PMC8451467 DOI: 10.1080/21505594.2021.1950268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter baumannii is a pathogen of increasing clinical importance worldwide, especially given its ability to readily acquire resistance determinants. Motile strains of this bacterium can move by either or both of two types of motility: (i) twitching, driven by type IV pili, and (ii) surface-associated motility, an appendage-independent form of movement. A. baumannii strain MAR002 possesses both twitching and surface-associated motility. In this study, we isolated spontaneous rifampin-resistant mutants of strain MAR002 in which point mutations in the rpoB gene were identified that resulted in an altered motility pattern. Transcriptomic analysis of mutants lacking twitching, surface-associated motility, or both led to the identification of deregulated genes within each motility phenotype, based on their level of expression and their biological function. Investigations of the corresponding knockout mutants revealed several genes involved in the motility of A. baumannii strain MAR002, including two involved in twitching (encoding a minor pilin subunit and an RND [resistance nodulation division] component), one in surface-associated motility (encoding an amino acid permease), and eight in both (encoding RND and ABC components, the energy transducer TonB, the porin OprD, the T6SS component TagF, an IclR transcriptional regulator, a PQQ-dependent sugar dehydrogenase, and a putative pectate lyase). Virulence assays showed the reduced pathogenicity of mutants with impairments in both types of motility or in surface-associated motility alone. By contrast, the virulence of twitching-affected mutants was not affected. These results shed light on the key role of surface-associated motility and the limited role of twitching in the pathogenicity of A. baumannii.
Collapse
Affiliation(s)
- Jordi Corral
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - María Pérez-Varela
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Miquel Sánchez-Osuna
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Pilar Cortés
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Jordi Barbé
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Jesús Aranda
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021; 49:1905-1926. [PMID: 34374408 DOI: 10.1042/bst20191088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.
Collapse
|
17
|
Gunardi WD, Timotius KH, Natasha A, Evriarti PR. Biofilm Targeting Strategy in the Eradication of Burkholderia Infections: A Mini-Review. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Burkholderia are intracellular pathogenic bacteria which can produce biofilm. This biofilm protects the intracellular pathogenic bacteria from antibiotic treatment and the immunological system of the host. Therefore, this review aims to describe the capacity of Burkholderia to form a biofilm, the regulation of its biofilm formation, the efficacy of antibiotics to eradicate biofilm, and the novel therapy which targets its biofilm. Burkholderia's biofilm is characterized by its lipopolysaccharides, exopolysaccharides (EPSs), biofilm-associated proteins, and eDNA. Its regulation is made by quorum sensing, c-di-AMP, sRNA, and two component systems. Many antibiotics have been used as sole or mixture agents; however, they are not always effective in eradicating the biofilm-forming Burkholderia. Inhibitors of quorum sensing and other non-conventional antibiotic approaches are promising to discover effective treatment of Burkholderia infections.
Collapse
|
18
|
Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol 2021; 61:366-379. [PMID: 33687766 DOI: 10.1002/jobm.202000661] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
19
|
Zeng F, Pang H, Chen Y, Zheng H, Li W, Ramanathan S, Hoare R, Monaghan SJ, Lin X, Jian J. First Succinylome Profiling of Vibrio alginolyticus Reveals Key Role of Lysine Succinylation in Cellular Metabolism and Virulence. Front Cell Infect Microbiol 2021; 10:626574. [PMID: 33614530 PMCID: PMC7892601 DOI: 10.3389/fcimb.2020.626574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that a key strategy of many pathogens is to use post-translational modification (PTMs) to modulate host factors critical for infection. Lysine succinylation (Ksuc) is a major PTM widespread in prokaryotic and eukaryotic cells, and is associated with the regulation of numerous important cellular processes. Vibrio alginolyticus is a common pathogen that causes serious disease problems in aquaculture. Here we used the affinity enrichment method with LC-MS/MS to report the first identification of 2082 lysine succinylation sites on 671 proteins in V. alginolyticus, and compared this with the lysine acetylation of V. alginolyticus in our previous work. The Ksuc modification of SodB and PEPCK proteins were further validated by Co-immunoprecipitation combined with Western blotting. Bioinformatics analysis showed that the identified lysine succinylated proteins are involved in various biological processes and central metabolism pathways. Moreover, a total of 1,005 (25.4%) succinyl sites on 502 (37.3%) proteins were also found to be acetylated, which indicated that an extensive crosstalk between acetylation and succinylation in V. alginolyticus occurs, especially in three central metabolic pathways: glycolysis/gluconeogenesis, TCA cycle, and pyruvate metabolism. Furthermore, we found at least 50 (7.45%) succinylated virulence factors, including LuxS, Tdh, SodB, PEPCK, ClpP, and the Sec system to play an important role in bacterial virulence. Taken together, this systematic analysis provides a basis for further study on the pathophysiological role of lysine succinylation in V. alginolyticus and provides targets for the development of attenuated vaccines.
Collapse
Affiliation(s)
- Fuyuan Zeng
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhan jiang), Zhanjiang, China
| | - Huanying Pang
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhan jiang), Zhanjiang, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhan jiang), Zhanjiang, China
| | - Hongwei Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhan jiang), Zhanjiang, China
| | - Wanxin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Srinivasan Ramanathan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Sean J. Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jichang Jian
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhan jiang), Zhanjiang, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Boone RL, Whitehead B, Avery TM, Lu J, Francis JD, Guevara MA, Moore RE, Chambers SA, Doster RS, Manning SD, Townsend SD, Dent L, Marshall D, Gaddy JA, Damo SM. Analysis of virulence phenotypes and antibiotic resistance in clinical strains of Acinetobacter baumannii isolated in Nashville, Tennessee. BMC Microbiol 2021; 21:21. [PMID: 33422000 PMCID: PMC7796680 DOI: 10.1186/s12866-020-02082-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is a gram-negative bacterium which causes opportunistic infections in immunocompromised hosts. Genome plasticity has given rise to a wide range of strain variation with respect to antimicrobial resistance profiles and expression of virulence factors which lead to altered phenotypes associated with pathogenesis. The purpose of this study was to analyze clinical strains of A. baumannii for phenotypic variation that might correlate with virulence phenotypes, antimicrobial resistance patterns, or strain isolation source. We hypothesized that individual strain virulence phenotypes might be associated with anatomical site of isolation or alterations in susceptibility to antimicrobial interventions. METHODOLOGY A cohort of 17 clinical isolates of A. baumannii isolated from diverse anatomical sites were evaluated to ascertain phenotypic patterns including biofilm formation, hemolysis, motility, and antimicrobial resistance. Antibiotic susceptibility/resistance to ampicillin-sulbactam, amikacin, ceftriaxone, ceftazidime, cefotaxime, ciprofloxacin, cefepime, gentamicin, levofloxacin, meropenem, piperacillin, trimethoprim-sulfamethoxazole, ticarcillin- K clavulanate, tetracyclin, and tobramycin was determined. RESULTS Antibiotic resistance was prevalent in many strains including resistance to ampicillin-sulbactam, amikacin, ceftriaxone, ceftazidime, cefotaxime, ciprofloxacin, cefepime, gentamicin, levofloxacin, meropenem, piperacillin, trimethoprim-sulfamethoxazole, ticarcillin- K clavulanate, tetracyclin, and tobramycin. All strains tested induced hemolysis on agar plate detection assays. Wound-isolated strains of A. baumannii exhibited higher motility than strains isolated from blood, urine or Foley catheter, or sputum/bronchial wash. A. baumannii strains isolated from patient blood samples formed significantly more biofilm than isolates from wounds, sputum or bronchial wash samples. An inverse relationship between motility and biofilm formation was observed in the cohort of 17 clinical isolates of A. baumannii tested in this study. Motility was also inversely correlated with induction of hemolysis. An inverse correlation was observed between hemolysis and resistance to ticarcillin-k clavulanate, meropenem, and piperacillin. An inverse correlation was also observed between motility and resistance to ampicillin-sulbactam, ceftriaxone, ceftoxamine, ceftazidime, ciprofloxacin, or levofloxacin. CONCLUSIONS Strain dependent variations in biofilm and motility are associated with anatomical site of isolation. Biofilm and hemolysis production both have an inverse association with motility in the cohort of strains utilized in this study, and motility and hemolysis were inversely correlated with resistance to numerous antibiotics.
Collapse
Affiliation(s)
- Ranashia L Boone
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, TN, 37208, USA
| | - Briana Whitehead
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, TN, 37208, USA
| | - Tyra M Avery
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, TN, 37208, USA
| | - Jacky Lu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jamisha D Francis
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Miriam A Guevara
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rebecca E Moore
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | | - Ryan S Doster
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, A2200 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Leon Dent
- Department of Pathology, Anatomy, and Physiology, Meharry Medical College, Nashville, TN, USA
- Trauma Services, Phoebe Putney Memorial Hospital, Albany, GA, USA
| | - Dana Marshall
- Department of Pathology, Anatomy, and Physiology, Meharry Medical College, Nashville, TN, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, A2200 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, TN, USA.
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, TN, 37208, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
21
|
Zhou JW, Jia AQ, Tan XJ, Chen H, Sun B, Huang TZ, He Y, Li PL, Liu EQ. 1-(4-Amino-2-Hydroxyphenyl)Ethenone Suppresses Agrobacterium tumefaciens Virulence and Metabolism. Front Microbiol 2020; 11:584767. [PMID: 33281779 PMCID: PMC7688917 DOI: 10.3389/fmicb.2020.584767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The impact of 1-(4-amino-2-hydroxyphenyl)ethanone (AHPE) from the metabolites of endophytic fungus Phomopsis liquidambari on quorum sensing (QS) of Agrobacterium tumefaciens was evaluated for the first time in this study. Exposure to AHPE at concentrations ranging from 12.5 to 50 μg/mL, the β-galactosidase activity, acyl-homoserine lactone level, swimming motility, chemotaxis, and flagella formation were significantly inhibited. qRT-PCR quantification combined with the docking analysis demonstrated that AHPE affected the QS system of A. tumefaciens by repressing the transcriptional levels of traI and traR rather than signal mimicry. 1H NMR-based metabolic analysis indicated that the metabolism of A. tumefaciens was notably disturbed with AHPE treatment. AHPE treatment also resulted in the enhanced oxidative stress in A. tumefaciens. The enhanced oxidative stress lead to the disorder of energy supply, protein synthesis, and nucleotide metabolism, and ultimately attenuated the pathogenicity of A. tumefaciens. Our study indicated that AHPE can serve as a potential pesticide to defend against A. tumefaciens.
Collapse
Affiliation(s)
- Jin-Wei Zhou
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiao-Juan Tan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Bing Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Tian-Zi Huang
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yu He
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Pei-Li Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - En-Qi Liu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
22
|
Liu J, Yin F, Liu T, Li S, Tan C, Li L, Zhou R, Huang Q. The Tat system and its dependent cell division proteins are critical for virulence of extra-intestinal pathogenic Escherichia coli. Virulence 2020; 11:1279-1292. [PMID: 32962530 PMCID: PMC7549933 DOI: 10.1080/21505594.2020.1817709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
The twin-arginine translocation (Tat) system is involved in a variety of important bacterial physiological processes. Conserved among bacteria and crucial for virulence, the Tat system is deemed as a promising anti-microbial drug target. However, the mechanism of how the Tat system functions in bacterial pathogenesis has not been fully understood. In this study, we showed that the Tat system was critical for the virulence of an extra-intestinal pathogenic E. coli (ExPEC) strain PCN033. A total of 20 Tat-related mutant strains were constructed, and competitive infection assays were performed to evaluate the relative virulence of these mutants. The results demonstrated that several Tat substrate mutants, including the ΔsufI, ΔamiAΔamiC double mutant as well as each single mutant, ΔyahJ, ΔcueO, and ΔnapG, were significantly outcompeted by the WT strain, among which the ΔsufI and ΔamiAΔamiC strains showed the lowest competitive index (CI) value. Results of individual mouse infection assay, in vitro cell adhesion assay, whole blood bactericidal assay, and serum bactericidal assay further confirmed the virulence attenuation phenotype of the ΔsufI and ΔamiAΔamiC strains. Moreover, the two mutants displayed chained morphology in the log phase resembling the Δtat and were defective in stress response. Our results suggest that the Tat system and its dependent cell division proteins SufI, AmiA, and AmiC play critical roles during ExPEC pathogenesis.
Collapse
Affiliation(s)
- Jinjin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Te Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| |
Collapse
|
23
|
Xu N, Wang M, Yang X, Xu Y, Guo M. In silico analysis of the chemotactic system of Agrobacterium tumefaciens. Microb Genom 2020; 6:mgen000460. [PMID: 33118922 PMCID: PMC7725337 DOI: 10.1099/mgen.0.000460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 01/23/2023] Open
Abstract
Agrobacterium tumefaciens is an efficient tool for creating transgenic host plants. The first step in the genetic transformation process involves A. tumefaciens chemotaxis, which is crucial to the survival of A. tumefaciens in changeable, harsh and even contaminated soil environments. However, a systematic study of its chemotactic signalling pathway is still lacking. In this study, the distribution and classification of chemotactic genes in the model A. tumefaciens C58 and 21 other strains were annotated. Local blast was used for comparative genomics, and hmmer was used for predicting protein domains. Chemotactic phenotypes for knockout mutants of ternary signalling complexes in A. tumefaciens C58 were evaluated using a swim agar plate. A major cluster, in which chemotaxis genes were consistently organized as MCP (methyl-accepting chemotaxis protein), CheS, CheY1, CheA, CheR, CheB, CheY2 and CheD, was found in A. tumefaciens, but two coupling CheW proteins were located outside the 'che' cluster. In the ternary signalling complexes, the absence of MCP atu0514 significantly impaired A. tumefaciens chemotaxis, and the absence of CheA (atu0517) or the deletion of both CheWs abolished chemotaxis. A total of 465 MCPs were found in the 22 strains, and the cytoplasmic domains of these MCPs were composed of 38 heptad repeats. A high homology was observed between the chemotactic systems of the 22 A. tumefaciens strains with individual differences in the gene and receptor protein distributions, possibly related to their ecological niches. This preliminary study demonstrates the chemotactic system of A. tumefaciens, and provides some reference for A. tumefaciens sensing and chemotaxis to exogenous signals.
Collapse
Affiliation(s)
- Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mingqi Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaojing Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yujuan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
24
|
Helper bacteria halt and disarm mushroom pathogens by linearizing structurally diverse cyclolipopeptides. Proc Natl Acad Sci U S A 2020; 117:23802-23806. [PMID: 32868430 PMCID: PMC7519232 DOI: 10.1073/pnas.2006109117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The bacterial pathogen Pseudomonas tolaasii severely damages white button mushrooms by secretion of the pore-forming toxin tolaasin, the main virulence factor of brown blotch disease. Yet, fungus-associated helper bacteria of the genus Mycetocola (Mycetocola tolaasinivorans and Mycetocola lacteus) may protect their host by an unknown detoxification mechanism. By a combination of metabolic profiling, imaging mass spectrometry, structure elucidation, and bioassays, we found that the helper bacteria inactivate tolaasin by linearizing the lipocyclopeptide. Furthermore, we found that Mycetocola spp. impair the dissemination of the pathogen by cleavage of the lactone ring of pseudodesmin. The role of pseudodesmin as a major swarming factor was corroborated by identification and inactivation of the corresponding biosynthetic gene cluster. Activity-guided fractionation of the Mycetocola proteome, matrix-assisted laser desorption/ionization (MALDI) analyses, and heterologous enzyme production identified the lactonase responsible for toxin cleavage. We revealed an antivirulence strategy in the context of a tripartite interaction that has high ecological and agricultural relevance.
Collapse
|
25
|
In vitro Edwardsiella piscicida CK108 Transcriptome Profiles with Subinhibitory Concentrations of Phenol and Formalin Reveal New Insights into Bacterial Pathogenesis Mechanisms. Microorganisms 2020; 8:microorganisms8071068. [PMID: 32709101 PMCID: PMC7409036 DOI: 10.3390/microorganisms8071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Phenol and formalin are major water pollutants that are frequently discharged into the aquatic milieu. These chemicals can affect broad domains of life, including microorganisms. Aquatic pollutants, unlike terrestrial pollutants, are easily diluted in water environments and exist at a sub-inhibitory concentration (sub-IC), thus not directly inhibiting bacterial growth. However, they can modulate gene expression profiles. The sub-IC values of phenol and formalin were measured by minimal inhibitory concentration (MIC) assay to be 0.146% (1.3 mM) and 0.0039% (0.38 mM), respectively, in Edwardsiella piscicida CK108, a Gram-negative fish pathogen. We investigated the differentially expressed genes (DEG) by RNA-seq when the cells were exposed to the sub-ICs of phenol and formalin. DEG analyses revealed that genes involved in major virulence factors (type I fimbriae, flagella, type III and type VI secretion system) and various cellular pathways (energy production, amino acid synthesis, carbohydrate metabolism and two-component regulatory systems) were up- or downregulated by both chemicals. The genome-wide gene expression data corresponded to the results of a quantitative reverse complementary-PCR and motility assay. This study not only provides insight into how a representative fish pathogen, E. piscicida CK108, responds to the sub-ICs of phenol and formalin but also shows the importance of controlling chemical pollutants in aquatic environments.
Collapse
|
26
|
Frutos-Grilo E, Marsal M, Irazoki O, Barbé J, Campoy S. The Interaction of RecA With Both CheA and CheW Is Required for Chemotaxis. Front Microbiol 2020; 11:583. [PMID: 32318049 PMCID: PMC7154110 DOI: 10.3389/fmicb.2020.00583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica is the most frequently reported cause of foodborne illness. As in other microorganisms, chemotaxis affords key physiological benefits, including enhanced access to growth substrates, but also plays an important role in infection and disease. Chemoreceptor signaling core complexes, consisting of CheA, CheW and methyl-accepting chemotaxis proteins (MCPs), modulate the switching of bacterial flagella rotation that drives cell motility. These complexes, through the formation of heterohexameric rings composed of CheA and CheW, form large clusters at the cell poles. RecA plays a key role in polar cluster formation, impairing the assembly when the SOS response is activated. In this study, we determined that RecA protein interacts with both CheW and CheA. The binding of these proteins to RecA is needed for wild-type polar cluster formation. In silico models showed that one RecA molecule, attached to one signaling unit, fits within a CheA-CheW ring without interfering with the complex formation or array assembly. Activation of the SOS response is followed by an increase in RecA, which rises up the number of signaling complexes associated with this protein. This suggests the presence of allosteric inhibition in the CheA-CheW interaction and thus of heterohexameric ring formation, impairing the array assembly. STED imaging demonstrated that all core unit components (CheA, CheW, and MPCs) have the same subcellular location as RecA. Activation of the SOS response promotes the RecA distribution along the cell instead of being at the cell poles. CheA- and CheW- RecA interactions are also crucial for chemotaxis, which is maintained when the SOS response is induced and the signaling units are dispersed. Our results provide new molecular-level insights into the function of RecA in chemoreceptor clustering and chemotaxis determining that the impaired chemoreceptor clustering not only inhibits swarming but also modulates chemotaxis in SOS-induced cells, thereby modifying bacterial motility in the presence of DNA-damaging compounds, such as antibiotics.
Collapse
Affiliation(s)
- Elisabet Frutos-Grilo
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Marsal
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oihane Irazoki
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Williams DA, Pradhan K, Paul A, Olin IR, Tuck OT, Moulton KD, Kulkarni SS, Dube DH. Metabolic inhibitors of bacterial glycan biosynthesis. Chem Sci 2020; 11:1761-1774. [PMID: 34123271 PMCID: PMC8148367 DOI: 10.1039/c9sc05955e] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bacterial cell wall is a quintessential drug target due to its critical role in colonization of the host, pathogen survival, and immune evasion. The dense cell wall glycocalyx contains distinctive monosaccharides that are absent from human cells, and proper assembly of monosaccharides into higher-order glycans is critical for bacterial fitness and pathogenesis. However, the systematic study and inhibition of bacterial glycosylation enzymes remains challenging. Bacteria produce glycans containing rare deoxy amino sugars refractory to traditional glycan analysis, complicating the study of bacterial glycans and the creation of glycosylation inhibitors. To ease the study of bacterial glycan function in the absence of detailed structural or enzyme information, we crafted metabolic inhibitors based on rare bacterial monosaccharide scaffolds. Metabolic inhibitors were assessed for their ability to interfere with glycan biosynthesis and fitness in pathogenic and symbiotic bacterial species. Three metabolic inhibitors led to dramatic structural and functional defects in Helicobacter pylori. Strikingly, these inhibitors acted in a bacteria-selective manner. These metabolic inhibitors will provide a platform for systematic study of bacterial glycosylation enzymes not currently possible with existing tools. Moreover, their selectivity will provide a pathway for the development of novel, narrow-spectrum antibiotics to treat infectious disease. Our inhibition approach is general and will expedite the identification of bacterial glycan biosynthesis inhibitors in a range of systems, expanding the glycochemistry toolkit.
Collapse
Affiliation(s)
- Daniel A Williams
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Kabita Pradhan
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Ilana R Olin
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Owen T Tuck
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Karen D Moulton
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| |
Collapse
|
28
|
Liu X, Zhang K, Liu Y, Xie Z, Zhang C. Oxalic Acid From Sesbania rostrata Seed Exudates Mediates the Chemotactic Response of Azorhizobium caulinodans ORS571 Using Multiple Strategies. Front Microbiol 2019; 10:2727. [PMID: 31849879 PMCID: PMC6901664 DOI: 10.3389/fmicb.2019.02727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotaxis toward seed exudates is important in the establishment of microbe-plant associations. The objective of this work was to explore whether organic acids from the seed exudates of Sesbania rostrata play a role in recruiting Azorhizobium caulinodans ORS571 in the plant rhizosphere. High-performance liquid chromatography (HPLC) was used to analyze the organic acid content in seed exudates of S. rostrata and to further determine their roles in A. caulinodans growth and chemotactic response. Succinic, acetic, citric, oxalic, and lactic acids were the most abundant, and, except for oxalic acid, they could support A. caulinodans growth as the sole carbon source. TlpA1, a transmembrane chemoreceptor, was found to be involved in the chemotactic response to these organic acids. Oxalic acid played a direct role in the chemotactic response, but it also played an indirect role by promoting or inhibiting the chemotactic response toward other chemoeffectors. Furthermore, the indirect role of oxalic acid on other chemoeffectors was concentration-dependent. The effect of oxalic acid at different concentrations on host root colonization was also determined. By using different strategies, oxalic acid appears to play a major role in the early steps of the association of A. caulinodans and its host plant.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiye Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Yanan Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhihong Xie
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
29
|
Chemoperception of Specific Amino Acids Controls Phytopathogenicity in Pseudomonas syringae pv. tomato. mBio 2019; 10:mBio.01868-19. [PMID: 31575767 PMCID: PMC6775455 DOI: 10.1128/mbio.01868-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There is substantive evidence that chemotaxis is a key requisite for efficient pathogenesis in plant pathogens. However, information regarding particular bacterial chemoreceptors and the specific plant signal that they sense is scarce. Our work shows that the phytopathogenic bacterium Pseudomonas syringae pv. tomato mediates not only chemotaxis but also the control of pathogenicity through the perception of the plant abundant amino acids Asp and Glu. We describe the specificity of the perception of l- and d-Asp and l-Glu by the PsPto-PscA chemoreceptor and the involvement of this perception in the regulation of pathogenicity-related traits. Moreover, a saturating concentration of d-Asp reduces bacterial virulence, and we therefore propose that ligand-mediated interference of key chemoreceptors may be an alternative strategy to control virulence. Chemotaxis has been associated with the pathogenicity of bacteria in plants and was found to facilitate bacterial entry through stomata and wounds. However, knowledge regarding the plant signals involved in this process is scarce. We have addressed this issue using Pseudomonas syringae pv. tomato, which is a foliar pathogen that causes bacterial speck in tomato. We show that the chemoreceptor P. syringae pv. tomato PscA (PsPto-PscA) recognizes specifically and with high affinity l-Asp, l-Glu, and d-Asp. The mutation of the chemoreceptor gene largely reduced chemotaxis to these ligands but also altered cyclic di-GMP (c-di-GMP) levels, biofilm formation, and motility, pointing to cross talk between different chemosensory pathways. Furthermore, the PsPto-PscA mutant strain showed reduced virulence in tomato. Asp and Glu are the most abundant amino acids in plants and in particular in tomato apoplasts, and we hypothesize that this receptor may have evolved to specifically recognize these compounds to facilitate bacterial entry into the plant. Infection assays with the wild-type strain showed that the presence of saturating concentrations of d-Asp also reduced bacterial virulence.
Collapse
|
30
|
Fu S, Zhuang F, Guo L, Qiu Y, Xiong J, Ye C, Liu Y, Wu Z, Hou Y, Hu CAA. Effect of Baicalin-Aluminum Complexes on Fecal Microbiome in Piglets. Int J Mol Sci 2019; 20:ijms20102390. [PMID: 31091773 PMCID: PMC6566245 DOI: 10.3390/ijms20102390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome has important effects on gastrointestinal diseases. Diarrhea attenuation functions of baicalin (BA) is not clear. Baicalin-aluminum complexes (BBA) were synthesized from BA, but the BBA's efficacy on the diarrhea of piglets and the gut microbiomes have not been explored and the mechanism remains unclear. This study has explored whether BBA could modulate the composition of the gut microbiomes of piglets during diarrhea. The results showed that the diarrhea rate reduced significantly after treatment with BBA. BBA altered the overall structure of the gut microbiomes. In addition, the Gene Ontology (GO) enrichment analysis indicated that the functional differentially expressed genes, which were involved in the top 30 GO enrichments, were associated with hydrogenase (acceptor) activity, nicotinamide-nucleotide adenylyltransferase activity, and isocitrate lyase activity, belong to the molecular function. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that flagellar assembly, bacterial chemotaxis, lipopolysaccharide biosynthesis, ATP-binding cassette transporters (ABC) transporters, biosynthesis of amino acids, and phosphotransferase system (PTS) were the most enriched during BBA treatment process. Taken together, our results first demonstrated that BBA treatment could modulate the gut microbiomes composition of piglets with diarrhea, which may provide new potential insights on the mechanisms of gut microbiomes associated underlying the antimicrobial efficacy of BBA.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Feng Zhuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Jianglin Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
31
|
Tovaglieri A, Sontheimer-Phelps A, Geirnaert A, Prantil-Baun R, Camacho DM, Chou DB, Jalili-Firoozinezhad S, de Wouters T, Kasendra M, Super M, Cartwright MJ, Richmond CA, Breault DT, Lacroix C, Ingber DE. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. MICROBIOME 2019; 7:43. [PMID: 30890187 PMCID: PMC6425591 DOI: 10.1186/s40168-019-0650-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/21/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic Escherichia coli (EHEC) infection, whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities. RESULTS We utilize organ-on-a-chip (Organ Chip) microfluidic culture technology to model damage of the human colonic epithelium induced by EHEC infection, and show that epithelial injury is greater when exposed to metabolites derived from the human gut microbiome compared to mouse. Using a multi-omics approach, we discovered four human microbiome metabolites-4-methyl benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid-that are sufficient to mediate this effect. The active human microbiome metabolites preferentially induce expression of flagellin, a bacterial protein associated with motility of EHEC and increased epithelial injury. Thus, the decreased tolerance to infection observed in humans versus other species may be due in part to the presence of compounds produced by the human intestinal microbiome that actively promote bacterial pathogenicity. CONCLUSION Organ-on-chip technology allowed the identification of specific human microbiome metabolites modulating EHEC pathogenesis. These identified metabolites are sufficient to increase susceptibility to EHEC in our human Colon Chip model and they contribute to species-specific tolerance. This work suggests that higher concentrations of these metabolites could be the reason for higher susceptibility to EHEC infection in certain human populations, such as children. Furthermore, this research lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.
Collapse
Affiliation(s)
- Alessio Tovaglieri
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Alexandra Sontheimer-Phelps
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Biology, University of Freiburg, 79085, Freiburg, Germany
| | - Annelies Geirnaert
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Diogo M Camacho
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David B Chou
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02115, USA
| | - Sasan Jalili-Firoozinezhad
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1649-004, Lisbon, Portugal
| | - Tomás de Wouters
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Magdalena Kasendra
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Present Address: Emulate Inc., 27 Drydock Avenue, Boston, MA, 02210, USA
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Mark J Cartwright
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Camilla A Richmond
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA, 02139, USA
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA, 02139, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Christophe Lacroix
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02139, USA.
| |
Collapse
|
32
|
High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa. mBio 2018; 9:mBio.01894-18. [PMID: 30425146 PMCID: PMC6234866 DOI: 10.1128/mbio.01894-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome analyses indicate that many bacteria possess an elevated number of chemoreceptors, suggesting that these species are able to perform chemotaxis to a wide variety of compounds. The scientific community is now only beginning to explore this diversity and to elucidate the corresponding physiological relevance. The discovery of histamine chemotaxis in the human pathogen Pseudomonas aeruginosa provides insight into tactic movements that occur within the host. Since histamine is released in response to bacterial pathogens, histamine chemotaxis may permit bacterial migration and accumulation at infection sites, potentially modulating, in turn, quorum-sensing-mediated processes and the expression of virulence genes. As a consequence, the modulation of histamine chemotaxis by signal analogues may result in alterations of the bacterial virulence. As the first report of bacterial histamine chemotaxis, this study lays the foundation for the exploration of the physiological relevance of histamine chemotaxis and its role in pathogenicity. Histamine is a key biological signaling molecule. It acts as a neurotransmitter in the central and peripheral nervous systems and coordinates local inflammatory responses by modulating the activity of different immune cells. During inflammatory processes, including bacterial infections, neutrophils stimulate the production and release of histamine. Here, we report that the opportunistic human pathogen Pseudomonas aeruginosa exhibits chemotaxis toward histamine. This chemotactic response is mediated by the concerted action of the TlpQ, PctA, and PctC chemoreceptors, which display differing sensitivities to histamine. Low concentrations of histamine were sufficient to activate TlpQ, which binds histamine with an affinity of 639 nM. To explore this binding, we resolved the high-resolution structure of the TlpQ ligand binding domain in complex with histamine. It has an unusually large dCACHE domain and binds histamine through a highly negatively charged pocket at its membrane distal module. Chemotaxis to histamine may play a role in the virulence of P. aeruginosa by recruiting cells at the infection site and consequently modulating the expression of quorum-sensing-dependent virulence genes. TlpQ is the first bacterial histamine receptor to be described and greatly differs from human histamine receptors, indicating that eukaryotes and bacteria have pursued different strategies for histamine recognition.
Collapse
|
33
|
Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically-relevant faecal environment, with implications for pathogenicity. Sci Rep 2018; 8:16691. [PMID: 30420658 PMCID: PMC6232153 DOI: 10.1038/s41598-018-35050-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility.
Collapse
|
34
|
Tawk C, Nigro G, Rodrigues Lopes I, Aguilar C, Lisowski C, Mano M, Sansonetti P, Vogel J, Eulalio A. Stress-induced host membrane remodeling protects from infection by non-motile bacterial pathogens. EMBO J 2018; 37:embj.201798529. [PMID: 30389666 PMCID: PMC6276891 DOI: 10.15252/embj.201798529] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023] Open
Abstract
While mucosal inflammation is a major source of stress during enteropathogen infection, it remains to be fully elucidated how the host benefits from this environment to clear the pathogen. Here, we show that host stress induced by different stimuli mimicking inflammatory conditions strongly reduces the binding of Shigella flexneri to epithelial cells. Mechanistically, stress activates acid sphingomyelinase leading to host membrane remodeling. Consequently, knockdown or pharmacological inhibition of the acid sphingomyelinase blunts the stress-dependent inhibition of Shigella binding to host cells. Interestingly, stress caused by intracellular Shigella replication also results in remodeling of the host cell membrane, in vitro and in vivo, which precludes re-infection by this and other non-motile pathogens. In contrast, Salmonella Typhimurium overcomes the shortage of permissive entry sites by gathering effectively at the remaining platforms through its flagellar motility. Overall, our findings reveal host membrane remodeling as a novel stress-responsive cell-autonomous defense mechanism that protects epithelial cells from infection by non-motile bacterial pathogens.
Collapse
Affiliation(s)
- Caroline Tawk
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Giulia Nigro
- Molecular Microbial Pathogenesis Laboratory, Institut Pasteur, Paris, France
| | - Ines Rodrigues Lopes
- Functional Genomics and RNA-based Therapeutics, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,RNA & Infection Group, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Clivia Lisowski
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Philippe Sansonetti
- Molecular Microbial Pathogenesis Laboratory, Institut Pasteur, Paris, France
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany .,RNA & Infection Group, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Delvaux NA, Thoden JB, Holden HM. Molecular architectures of Pen and Pal: Key enzymes required for CMP-pseudaminic acid biosynthesis in Bacillus thuringiensis. Protein Sci 2018; 27:738-749. [PMID: 29266550 DOI: 10.1002/pro.3368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/06/2022]
Abstract
Bacillus thuringiensis is a soil-dwelling Gram positive bacterium that has been utilized as a biopesticide for well over 60 years. It is known to contain flagella that are important for motility. One of the proteins found in flagella is flagellin, which is post-translationally modified by O-glycosylation with derivatives of pseudaminic acid. The biosynthetic pathway for the production of CMP-pseudaminic acid in B. thuringiensis, starting with UDP-N-acetyl-d-glucosamine (UDP-GlcNAc), requires seven enzymes. Here, we report the three-dimensional structures of Pen and Pal, which catalyze the first and second steps, respectively. Pen contains a tightly bound NADP(H) cofactor whereas Pal is isolated with bound NAD(H). For the X-ray analysis of Pen, the site-directed D128N/K129A mutant variant was prepared in order to trap its substrate, UDP-GlcNAc, into the active site. Pen adopts a hexameric quaternary structure with each subunit showing the bilobal architecture observed for members of the short-chain dehydrogenase/reductase superfamily. The hexameric quaternary structure is atypical for most members of the superfamily. The structure of Pal was determined in the presence of UDP. Pal adopts the more typical dimeric quaternary structure. Taken together, Pen and Pal catalyze the conversion of UDP-GlcNAc to UDP-4-keto-6-deoxy-l-N-acetylaltrosamine. Strikingly, in Gram negative bacteria such as Campylobacter jejuni and Helicobacter pylori, only a single enzyme (FlaA1) is required for the production of UDP-4-keto-6-deoxy-l-N-acetylaltrosamine. A comparison of Pen and Pal with FlaA1 reveals differences that may explain why FlaA1 is a bifunctional enzyme whereas Pen and Pal catalyze the individual steps leading to the formation of the UDP-sugar product. This investigation represents the first structural analysis of the enzymes in B. thuringiensis that are required for CMP-pseudaminic acid formation.
Collapse
Affiliation(s)
- Nathan A Delvaux
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
36
|
The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Sci Rep 2018; 8:2102. [PMID: 29391435 PMCID: PMC5795001 DOI: 10.1038/s41598-018-20283-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022] Open
Abstract
Chemotaxis toward organic acids has been associated with colonization fitness and virulence and the opportunistic pathogen Pseudomonas aeruginosa exhibits taxis toward several tricarboxylic acid intermediates. In this study, we used high-throughput ligand screening and isothermal titration calorimetry to demonstrate that the ligand binding domain (LBD) of the chemoreceptor PA2652 directly recognizes five C4-dicarboxylic acids with KD values ranging from 23 µM to 1.24 mM. In vivo experimentation showed that three of the identified ligands act as chemoattractants whereas two of them behave as antagonists by inhibiting the downstream chemotaxis signalling cascade. In vitro and in vivo competition assays showed that antagonists compete with chemoattractants for binding to PA2652-LBD, thereby decreasing the affinity for chemoattractants and the subsequent chemotactic response. Two chemosensory pathways encoded in the genome of P. aeruginosa, che and che2, have been associated to chemotaxis but we found that only the che pathway is involved in PA2652-mediated taxis. The receptor PA2652 is predicted to contain a sCACHE LBD and analytical ultracentrifugation analyses showed that PA2652-LBD is dimeric in the presence and the absence of ligands. Our results indicate the feasibility of using antagonists to interfere specifically with chemotaxis, which may be an alternative strategy to fight bacterial pathogens.
Collapse
|
37
|
Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:12809-12814. [PMID: 29133402 DOI: 10.1073/pnas.1708842114] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In contrast to Escherichia coli, a model organism for chemotaxis that has 5 chemoreceptors and a single chemosensory pathway, Pseudomonas aeruginosa PAO1 has a much more complex chemosensory network, which consists of 26 chemoreceptors feeding into four chemosensory pathways. While several chemoreceptors were rigorously linked to specific pathways in a series of experimental studies, for most of them this information is not available. Thus, we addressed the problem computationally. Protein-protein interaction network prediction, coexpression data mining, and phylogenetic profiling all produced incomplete and uncertain assignments of chemoreceptors to pathways. However, comparative sequence analysis specifically targeting chemoreceptor regions involved in pathway interactions revealed conserved sequence patterns that enabled us to unambiguously link all 26 chemoreceptors to four pathways. Placing computational evidence in the context of experimental data allowed us to conclude that three chemosensory pathways in P. aeruginosa utilize one chemoreceptor per pathway, whereas the fourth pathway, which is the main system controlling chemotaxis, utilizes the other 23 chemoreceptors. Our results show that while only a very few amino acid positions in receptors, kinases, and adaptors determine their pathway specificity, assigning receptors to pathways computationally is possible. This requires substantial knowledge about interacting partners on a molecular level and focusing comparative sequence analysis on the pathway-specific regions. This general principle should be applicable to resolving many other receptor-pathway interactions.
Collapse
|
38
|
Bardy SL, Briegel A, Rainville S, Krell T. Recent advances and future prospects in bacterial and archaeal locomotion and signal transduction. J Bacteriol 2017; 199:e00203-17. [PMID: 28484047 PMCID: PMC5573076 DOI: 10.1128/jb.00203-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Unraveling the structure and function of two-component and chemotactic signaling along with different aspects related to motility of bacteria and archaea are key research areas in modern microbiology. Escherichia coli is the traditional model organism to study chemotaxis signaling and motility. However, the recent study of a wide range of bacteria and even some archaea with different lifestyles has provided new insight into the eco-physiology of chemotaxis, which is essential for the host establishment of different pathogens or beneficial bacteria. The expanded range of model organisms has also permitted the study of chemosensory pathways unrelated to chemotaxis, multiple chemotaxis pathways within an organism, and new types of chemoreceptors. This research has greatly benefitted from technical advances in the field of cryo-microscopy that continues to reveal with increasing resolution the complexity and diversity of large protein complexes like the flagellar motor or chemoreceptor arrays. In addition, sensitive instruments now allow for an increasing number of experiments to be conducted at the single-cell level, thereby revealing information that is beginning to bridge the gap between individual cells and population behavior. Evidence has also accumulated showing that bacteria have evolved different mechanisms for surface sensing, which appears to be mediated by flagella and possibly type IV pili, and that the downstream signaling involves chemosensory pathways and two-component system based processes. Herein we summarize the recent advances and research tendencies in this field as presented at the latest Bacterial Locomotion and Signal Transduction (BLAST XIV) conference.
Collapse
Affiliation(s)
- Sonia L. Bardy
- University of Wisconsin—Milwaukee, Biological Sciences, Milwaukee, Wisconsin, USA
| | | | - Simon Rainville
- Laval University, Department of Physics, Engineering Physics and Optics, Quebec City, Québec, Canada
| | - Tino Krell
- Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
39
|
Kamal AAM, Maurer CK, Allegretta G, Haupenthal J, Empting M, Hartmann RW. Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Martín-Mora D, Ortega A, Reyes-Darias JA, García V, López-Farfán D, Matilla MA, Krell T. Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate. Front Microbiol 2016; 7:1937. [PMID: 27965656 PMCID: PMC5126104 DOI: 10.3389/fmicb.2016.01937] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous pathogen able to infect humans, animals, and plants. Chemotaxis was found to be associated with the virulence of this and other pathogens. Although established as a model for chemotaxis research, the majority of the 26 P. aeruginosa chemoreceptors remain functionally un-annotated. We report here the identification of PA5072 (named McpK) as chemoreceptor for α-ketoglutarate (αKG). High-throughput thermal shift assays and isothermal titration calorimetry studies (ITC) of the recombinant McpK ligand binding domain (LBD) showed that it recognizes exclusively α-ketoglutarate. The ITC analysis indicated that the ligand bound with positive cooperativity (Kd1 = 301 μM, Kd2 = 81 μM). McpK is predicted to possess a helical bimodular (HBM) type of LBD and this and other studies suggest that this domain type may be associated with the recognition of organic acids. Analytical ultracentrifugation (AUC) studies revealed that McpK-LBD is present in monomer-dimer equilibrium. Alpha-KG binding stabilized the dimer and dimer self-dissociation constants of 55 μM and 5.9 μM were derived for ligand-free and αKG-bound forms of McpK-LBD, respectively. Ligand-induced LBD dimer stabilization has been observed for other HBM domain containing receptors and may correspond to a general mechanism of this protein family. Quantitative capillary chemotaxis assays demonstrated that P. aeruginosa showed chemotaxis to a broad range of αKG concentrations with maximal responses at 500 μM. Deletion of the mcpK gene reduced chemotaxis over the entire concentration range to close to background levels and wild type like chemotaxis was recovered following complementation. Real-time PCR studies indicated that the presence of αKG does not modulate mcpK expression. Since αKG is present in plant root exudates it was investigated whether the deletion of mcpK altered maize root colonization. However, no significant changes with respect to the wild type strain were observed. The existence of a chemoreceptor specific for αKG may be due to its central metabolic role as well as to its function as signaling molecule. This work expands the range of known chemoreceptor types and underlines the important physiological role of chemotaxis toward tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Alvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - José A Reyes-Darias
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Vanina García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Diana López-Farfán
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
41
|
Genomic sequencing-based mutational enrichment analysis identifies motility genes in a genetically intractable gut microbe. Proc Natl Acad Sci U S A 2016; 113:14127-14132. [PMID: 27911803 DOI: 10.1073/pnas.1612753113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A major roadblock to understanding how microbes in the gastrointestinal tract colonize and influence the physiology of their hosts is our inability to genetically manipulate new bacterial species and experimentally assess the function of their genes. We describe the application of population-based genomic sequencing after chemical mutagenesis to map bacterial genes responsible for motility in Exiguobacterium acetylicum, a representative intestinal Firmicutes bacterium that is intractable to molecular genetic manipulation. We derived strong associations between mutations in 57 E. acetylicum genes and impaired motility. Surprisingly, less than half of these genes were annotated as motility-related based on sequence homologies. We confirmed the genetic link between individual mutations and loss of motility for several of these genes by performing a large-scale analysis of spontaneous suppressor mutations. In the process, we reannotated genes belonging to a broad family of diguanylate cyclases and phosphodiesterases to highlight their specific role in motility and assigned functions to uncharacterized genes. Furthermore, we generated isogenic strains that allowed us to establish that Exiguobacterium motility is important for the colonization of its vertebrate host. These results indicate that genetic dissection of a complex trait, functional annotation of new genes, and the generation of mutant strains to define the role of genes in complex environments can be accomplished in bacteria without the development of species-specific molecular genetic tools.
Collapse
|
42
|
Pompilio A, Crocetta V, Ghosh D, Chakrabarti M, Gherardi G, Vitali LA, Fiscarelli E, Di Bonaventura G. Stenotrophomonas maltophilia Phenotypic and Genotypic Diversity during a 10-year Colonization in the Lungs of a Cystic Fibrosis Patient. Front Microbiol 2016; 7:1551. [PMID: 27746770 PMCID: PMC5044509 DOI: 10.3389/fmicb.2016.01551] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/15/2016] [Indexed: 11/25/2022] Open
Abstract
The present study was carried out to understand the adaptive strategies developed by Stenotrophomonas maltophilia for chronic colonization of the cystic fibrosis (CF) lung. For this purpose, 13 temporally isolated strains from a single CF patient chronically infected over a 10-year period were systematically characterized for growth rate, biofilm formation, motility, mutation frequencies, antibiotic resistance, and pathogenicity. Pulsed-field gel electrophoresis (PFGE) showed over time the presence of two distinct groups, each consisting of two different pulsotypes. The pattern of evolution followed by S. maltophilia was dependent on pulsotype considered, with strains belonging to pulsotype 1.1 resulting to be the most adapted, being significantly changed in all traits considered. Generally, S. maltophilia adaptation to CF lung leads to increased growth rate and antibiotic resistance, whereas both in vivo and in vitro pathogenicity as well as biofilm formation were decreased. Overall, our results show for the first time that S. maltophilia can successfully adapt to a highly stressful environment such as CF lung by paying a “biological cost,” as suggested by the presence of relevant genotypic and phenotypic heterogeneity within bacterial population. S. maltophilia populations are, therefore, significantly complex and dynamic being able to fluctuate rapidly under changing selective pressures.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Valentina Crocetta
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Dipankar Ghosh
- Special Center for Molecular Medicine, Jawaharlal Nehru University New Delhi, India
| | - Malabika Chakrabarti
- Special Center for Molecular Medicine, Jawaharlal Nehru University New Delhi, India
| | | | | | | | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| |
Collapse
|
43
|
Exploitation of Fungal Biodiversity for Discovery of Novel Antibiotics. Curr Top Microbiol Immunol 2016; 398:303-338. [PMID: 27422786 DOI: 10.1007/82_2016_496] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fungi were among the first sources for antibiotics. The discovery and development of the penicillin-type and cephalosporin-type β-lactams and their synthetic versions were transformative in emergence of the modern pharmaceutical industry. They remain some of the most important antibiotics, even 70 years after their discovery. Meanwhile, thousands of fungal metabolites have been discovered, yet these metabolites have only contributed a few additional compounds that have entered clinical development. Substantial expansion in fungal biodiversity assessment along with the availability of modern "-OMICS" technology and revolutionary developments in fungal biotechnology have been made in the last 15 years subsequent to the exit of most of the big Pharma companies from the field of novel antibiotics discovery. Therefore, the timing seems opportune to revisit these fascinating chemically rich organisms as a reservoir of small-molecule templates for lead discovery. This review will describe ongoing interdisciplinary scenarios in which specialists in fungal biology collaborate with chemists, pharmacologists and biochemical and process engineers in order to reveal and make new antibiotics. The utility of a pre-selection process based on phylogenetic data and distribution of secondary metabolite encoding gene cluster will be highlighted. Examples of novel bioactive metabolites from fungi derived from special ecological groups and new phylogenetic lineages will also be discussed.
Collapse
|