1
|
Vucetic A, Lafleur A, Côté M, Kobasa D, Chan M, Alvarez F, Piccirillo C, Dong G, Olivier M. Extracellular vesicle storm during the course of Ebola virus infection in primates. Front Cell Infect Microbiol 2023; 13:1275277. [PMID: 38035334 PMCID: PMC10684970 DOI: 10.3389/fcimb.2023.1275277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.
Collapse
Affiliation(s)
- Andrea Vucetic
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Darwyn Kobasa
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mable Chan
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - George Dong
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
2
|
Sundaram M, Schmidt JP, Han BA, Drake JM, Stephens PR. Traits, phylogeny and host cell receptors predict Ebolavirus host status among African mammals. PLoS Negl Trop Dis 2022; 16:e0010993. [PMID: 36542657 PMCID: PMC9815631 DOI: 10.1371/journal.pntd.0010993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/05/2023] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
We explore how animal host traits, phylogenetic identity and cell receptor sequences relate to infection status and mortality from ebolaviruses. We gathered exhaustive databases of mortality from Ebolavirus after exposure and infection status based on PCR and antibody tests. We performed ridge regressions predicting mortality and infection as a function of traits, phylogenetic eigenvectors and separately host receptor sequences. We found that mortality from Ebolavirus had a strong association to life history characteristics and phylogeny. In contrast, infection status related not just to life history and phylogeny, but also to fruit consumption which suggests that geographic overlap of frugivorous mammals can lead to spread of virus in the wild. Niemann Pick C1 (NPC1) receptor sequences predicted infection statuses of bats included in our study with very high accuracy, suggesting that characterizing NPC1 in additional species is a promising avenue for future work. We combine the predictions from our mortality and infection status models to differentiate between species that are infected and also die from Ebolavirus versus species that are infected but tolerate the virus (possible reservoirs of Ebolavirus). We therefore present the first comprehensive estimates of Ebolavirus reservoir statuses for all known terrestrial mammals in Africa.
Collapse
Affiliation(s)
- Mekala Sundaram
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - John Paul Schmidt
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Barbara A. Han
- Cary Institute of Ecosystems Studies, Millbrook, New York, United States of America
| | - John M. Drake
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Patrick R. Stephens
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
3
|
Alfson KJ, Goez-Gazi Y, Gazi M, Chou YL, Niemuth NA, Mattix ME, Staples HM, Klaffke B, Rodriguez GF, Bartley C, Ticer A, Clemmons EA, Dutton JW, Griffiths A, Meister GT, Sanford DC, Cirimotich CM, Carrion R. Development of a Well-Characterized Cynomolgus Macaque Model of Marburg Virus Disease for Support of Vaccine and Therapy Development. Vaccines (Basel) 2022; 10:1314. [PMID: 36016203 PMCID: PMC9414819 DOI: 10.3390/vaccines10081314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Marburg virus (MARV) is a filovirus that can infect humans and nonhuman primates (NHPs), causing severe disease and death. Of the filoviruses, Ebola virus (EBOV) has been the primary target for vaccine and therapeutic development. However, MARV has an average case fatality rate of approximately 50%, the infectious dose is low, and there are currently no approved vaccines or therapies targeted at infection with MARV. The purpose of this study was to characterize disease course in cynomolgus macaques intramuscularly exposed to MARV Angola variant. There were several biomarkers that reliably correlated with MARV-induced disease, including: viral load; elevated total clinical scores; temperature changes; elevated ALT, ALP, BA, TBIL, CRP and decreased ALB values; decreased lymphocytes and platelets; and prolonged PTT. A scheduled euthanasia component also provided the opportunity to study the earliest stages of the disease. This study provides evidence for the application of this model to evaluate potential vaccines and therapies against MARV and will be valuable in improving existing models.
Collapse
Affiliation(s)
- Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Yenny Goez-Gazi
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Michal Gazi
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Ying-Liang Chou
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Nancy A. Niemuth
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Marc E. Mattix
- Nonclinical Pathology Services, LLC, 5920 Clubhouse Pointe Dr., Medina, OH 44256, USA
| | - Hilary M. Staples
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Benjamin Klaffke
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Gloria F. Rodriguez
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Carmen Bartley
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Anysha Ticer
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Elizabeth A. Clemmons
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - John W. Dutton
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Anthony Griffiths
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Gabe T. Meister
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Daniel C. Sanford
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Chris M. Cirimotich
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| |
Collapse
|
4
|
Johnston SC, Wilhelmsen CL, Shamblin J, Kimmel A, Zelko J, Wollen S, Goff AJ. Delayed Disease in Cynomolgus Macaques Exposed to Ebola Virus by an Intranasal Route. Front Immunol 2021; 12:709772. [PMID: 34484210 PMCID: PMC8415412 DOI: 10.3389/fimmu.2021.709772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Ebola virus remains a significant public health concern due to high morbidity and mortality rates during recurrent outbreaks in endemic areas. Therefore, the development of countermeasures against Ebola virus remains a high priority, and requires the availability of appropriate animal models for efficacy evaluations. The most commonly used nonhuman primate models for efficacy evaluations against Ebola virus utilize the intramuscular or aerosol route of exposure. Although clinical disease signs are similar to human cases, disease progression in these models is much more rapid, and this can pose significant hurdles for countermeasure evaluations. The objective of the present study was to evaluate the Ebola virus disease course that arises after cynomolgus macaques are exposed to Ebola virus by a mucosal route (the intranasal route). Two different doses (10 pfu and 100 pfu) and delivery methodologies (drop-wise and mucosal atomization device) were evaluated on this study. Differences in clinical disease between dose and delivery groups were not noted. However, a delayed disease course was identified for approximately half of the animals on study, and this delayed disease was dose and administration method independent. Therefore, it appears that mucosal exposure with Ebola virus results in a disease course in cynomolgus macaques that more accurately replicates that which is documented for human cases. In summary, the data presented support the need for further development of this model as a possible alternative to parenteral and small-particle aerosol models for the study of human Ebola virus disease and for countermeasure evaluations.
Collapse
Affiliation(s)
- Sara C Johnston
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Catherine L Wilhelmsen
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Joshua Shamblin
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Adrienne Kimmel
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Justine Zelko
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Suzanne Wollen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Arthur J Goff
- Research Program Office, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| |
Collapse
|
5
|
Pinski AN, Maroney KJ, Marzi A, Messaoudi I. Distinct transcriptional responses to fatal Ebola virus infection in cynomolgus and rhesus macaques suggest species-specific immune responses. Emerg Microbes Infect 2021; 10:1320-1330. [PMID: 34112056 PMCID: PMC8253202 DOI: 10.1080/22221751.2021.1942229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ebola virus (EBOV) is a negative single-stranded RNA virus within the Filoviridae family and the causative agent of Ebola virus disease (EVD). Nonhuman primates (NHPs), including cynomolgus and rhesus macaques, are considered the gold standard animal model to interrogate mechanisms of EBOV pathogenesis. However, despite significant genetic similarity (>90%), NHP species display different clinical presentation following EBOV infection, notably a ∼1-2 days delay in disease progression. Consequently, evaluation of therapeutics is generally conducted in rhesus macaques, whereas cynomolgus macaques are utilized to determine efficacy of preventative treatments, notably vaccines. This observation is in line with reported differences in disease severity and host responses between these two NHP following infection with simian varicella virus, influenza A and SARS-CoV-2. However, the molecular underpinnings of these differential outcomes following viral infections remain poorly defined. In this study, we compared published transcriptional profiles obtained from cynomolgus and rhesus macaques infected with the EBOV-Makona Guinea C07 using bivariate and regression analyses to elucidate differences in host responses. We report the presence of a shared core of differentially expressed genes (DEGs) reflecting EVD pathology, including aberrant inflammation, lymphopenia, and coagulopathy. However, the magnitudes of change differed between the two macaque species. These findings suggest that the differential clinical presentation of EVD in these two species is mediated by altered transcriptional responses.
Collapse
Affiliation(s)
- Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine CA, USA
| | - Kevin J Maroney
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine CA, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine CA, USA.,Center for Virus Research, University of California Irvine, Irvine, CA, USA.,Institute for Immunology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Liu DX, Perry DL, Cooper TK, Huzella LM, Hart RJ, Hischak AMW, Bernbaum JG, Hensley LE, Bennett RS. Peripheral Neuronopathy Associated With Ebola Virus Infection in Rhesus Macaques: A Possible Cause of Neurological Signs and Symptoms in Human Ebola Patients. J Infect Dis 2021; 222:1745-1755. [PMID: 32498080 DOI: 10.1093/infdis/jiaa304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2020] [Indexed: 01/26/2023] Open
Abstract
Neurological signs and symptoms are the most common complications of Ebola virus disease. However, the mechanisms underlying the neurologic manifestations in Ebola patients are not known. In this study, peripheral ganglia were collected from 12 rhesus macaques that succumbed to Ebola virus (EBOV) disease from 5 to 8 days post exposure. Ganglionitis, characterized by neuronal degeneration, necrosis, and mononuclear leukocyte infiltrates, was observed in the dorsal root, autonomic, and enteric ganglia. By immunohistochemistry, RNAscope in situ hybridization, transmission electron microscopy, and confocal microscopy, we confirmed that CD68+ macrophages are the target cells for EBOV in affected ganglia. Further, we demonstrated that EBOV can induce satellite cell and neuronal apoptosis and microglial activation in infected ganglia. Our results demonstrate that EBOV can infect peripheral ganglia and results in ganglionopathy in rhesus macaques, which may contribute to the neurological signs and symptoms observed in acute and convalescent Ebola virus disease in human patients.
Collapse
Affiliation(s)
- David X Liu
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Donna L Perry
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Timothy K Cooper
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Louis M Huzella
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Randy J Hart
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Amanda M W Hischak
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - John G Bernbaum
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
7
|
Brasel T, Comer JE, Massey S, Smith J, Smith J, Hyde M, Kocsis A, Gainey M, Niemuth N, Triplett C, Rudge T. Mucosal Challenge Ferret Models of Ebola Virus Disease. Pathogens 2021; 10:pathogens10030292. [PMID: 33806375 PMCID: PMC8001755 DOI: 10.3390/pathogens10030292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/03/2023] Open
Abstract
Recent studies have shown the domestic ferret (Mustela putorius furo) to be a promising small animal model for the study of Ebola virus (EBOV) disease and medical countermeasure evaluation. To date, most studies have focused on traditional challenge routes, predominantly intramuscular and intranasal administration. Here, we present results from a non-clinical pathogenicity study examining oronasal, oral, and ocular mucosal challenge routes in ferrets. Animals were challenged with 1, 10, or 100 plaque forming units EBOV followed by monitoring of disease progression and biosampling. Ferrets administered virus via oronasal and oral routes met euthanasia criteria due to advanced disease 5–10 days post-challenge. Conversely, all ferrets dosed via the ocular route survived until the scheduled study termination 28-day post-challenge. In animals that succumbed to disease, a dose/route response was not observed; increases in disease severity, febrile responses, serum and tissue viral load, alterations in clinical pathology, and gross/histopathology findings were similar between subjects. Disease progression in ferrets challenged via ocular administration was unremarkable throughout the study period. Results from this study further support the ferret as a model for EBOV disease following oral and nasal mucosa exposure.
Collapse
Affiliation(s)
- Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (J.E.C.); (S.M.); (J.S.)
- Correspondence: ; Tel.: +1-409-266-6907
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (J.E.C.); (S.M.); (J.S.)
| | - Shane Massey
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (J.E.C.); (S.M.); (J.S.)
| | - Jeanon Smith
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (J.E.C.); (S.M.); (J.S.)
| | - Jennifer Smith
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA;
| | - Matthew Hyde
- Animal Resources Center, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (M.H.); (A.K.)
| | - Andrew Kocsis
- Animal Resources Center, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (M.H.); (A.K.)
| | - Melicia Gainey
- Battelle, 1425 Plain City-Georgesville Road, NE, West Jefferson, OH 43162, USA; (M.G.); (N.N.); (C.T.); (T.R.J.)
| | - Nancy Niemuth
- Battelle, 1425 Plain City-Georgesville Road, NE, West Jefferson, OH 43162, USA; (M.G.); (N.N.); (C.T.); (T.R.J.)
| | - Cheryl Triplett
- Battelle, 1425 Plain City-Georgesville Road, NE, West Jefferson, OH 43162, USA; (M.G.); (N.N.); (C.T.); (T.R.J.)
| | - Thomas Rudge
- Battelle, 1425 Plain City-Georgesville Road, NE, West Jefferson, OH 43162, USA; (M.G.); (N.N.); (C.T.); (T.R.J.)
| |
Collapse
|
8
|
Pathogen Dose in Animal Models of Hemorrhagic Fever Virus Infections and the Potential Impact on Studies of the Immune Response. Pathogens 2021; 10:pathogens10030275. [PMID: 33804381 PMCID: PMC7999429 DOI: 10.3390/pathogens10030275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Viral hemorrhagic fever viruses come from a wide range of virus families and are a significant cause of morbidity and mortality worldwide each year. Animal models of infection with a number of these viruses have contributed to our knowledge of their pathogenesis and have been crucial for the development of therapeutics and vaccines that have been approved for human use. Most of these models use artificially high doses of virus, ensuring lethality in pre-clinical drug development studies. However, this can have a significant effect on the immune response generated. Here I discuss how the dose of antigen or pathogen is a critical determinant of immune responses and suggest that the current study of viruses in animal models should take this into account when developing and studying animal models of disease. This can have implications for determination of immune correlates of protection against disease as well as informing relevant vaccination and therapeutic strategies.
Collapse
|
9
|
Kotliar D, Lin AE, Logue J, Hughes TK, Khoury NM, Raju SS, Wadsworth MH, Chen H, Kurtz JR, Dighero-Kemp B, Bjornson ZB, Mukherjee N, Sellers BA, Tran N, Bauer MR, Adams GC, Adams R, Rinn JL, Melé M, Schaffner SF, Nolan GP, Barnes KG, Hensley LE, McIlwain DR, Shalek AK, Sabeti PC, Bennett RS. Single-Cell Profiling of Ebola Virus Disease In Vivo Reveals Viral and Host Dynamics. Cell 2020; 183:1383-1401.e19. [PMID: 33159858 PMCID: PMC7707107 DOI: 10.1016/j.cell.2020.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.
Collapse
Affiliation(s)
- Dylan Kotliar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Aaron E Lin
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| | - James Logue
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Travis K Hughes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Nadine M Khoury
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Siddharth S Raju
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marc H Wadsworth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Han Chen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan R Kurtz
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Bonnie Dighero-Kemp
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Zach B Bjornson
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Brian A Sellers
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20814, USA
| | - Nancy Tran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Matthew R Bauer
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gordon C Adams
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ricky Adams
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - John L Rinn
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Marta Melé
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia 08034, Spain
| | - Stephen F Schaffner
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kayla G Barnes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - David R McIlwain
- Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
10
|
Solomon J, Aiosa N, Bradley D, Castro MA, Reza S, Bartos C, Sayre P, Lee JH, Sword J, Holbrook MR, Bennett RS, Hammoud DA, Johnson RF, Feuerstein I. Atlas-based liver segmentation for nonhuman primate research. Int J Comput Assist Radiol Surg 2020; 15:1631-1638. [PMID: 32648161 PMCID: PMC7502527 DOI: 10.1007/s11548-020-02225-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Certain viral infectious diseases cause systemic damage and the liver is an important organ affected directly by the virus and/or the hosts' response to the virus. Medical imaging indicates that the liver damage is heterogenous, and therefore, quantification of these changes requires analysis of the entire organ. Delineating the liver in preclinical imaging studies is a time-consuming and difficult task that would benefit from automated liver segmentation. METHODS A nonhuman primate atlas-based liver segmentation method was developed to support quantitative image analysis of preclinical research. A set of 82 computed tomography (CT) scans of nonhuman primates with associated manual contours delineating the liver was generated from normal and abnormal livers. The proposed technique uses rigid and deformable registrations, a majority vote algorithm, and image post-processing operations to automate the liver segmentation process. This technique was evaluated using Dice similarity, Hausdorff distance measures, and Bland-Altman plots. RESULTS Automated segmentation results compare favorably with manual contouring, achieving a median Dice score of 0.91. Limits of agreement from Bland-Altman plots indicate that liver changes of 3 Hounsfield units (CT) and 0.4 SUVmean (positron emission tomography) are detectable using our automated method of segmentation, which are substantially less than changes observed in the host response to these viral infectious diseases. CONCLUSION The proposed atlas-based liver segmentation technique is generalizable to various sizes and species of nonhuman primates and facilitates preclinical infectious disease research studies. While the image analysis software used is commercially available and facilities with funding can access the software to perform similar nonhuman primate liver quantitative analyses, the approach can be implemented in open-source frameworks as there is nothing proprietary about these methods.
Collapse
Affiliation(s)
- Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA.
| | - Nina Aiosa
- Center for Infectious Disease Imaging, Clinical Center, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Dara Bradley
- Center for Infectious Disease Imaging, Clinical Center, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Marcelo A Castro
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Syed Reza
- Center for Infectious Disease Imaging, Clinical Center, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Bartos
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Philip Sayre
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Ji Hyun Lee
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Jennifer Sword
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Michael R Holbrook
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Richard S Bennett
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Clinical Center, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Reed F Johnson
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Irwin Feuerstein
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
11
|
To B or Not to B: Mechanisms of Protection Conferred by rVSV-EBOV-GP and the Roles of Innate and Adaptive Immunity. Microorganisms 2020; 8:microorganisms8101473. [PMID: 32992829 PMCID: PMC7600878 DOI: 10.3390/microorganisms8101473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022] Open
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family of negative sense, single-stranded RNA viruses. EBOV infection causes Ebola virus disease (EVD), characterized by coagulopathy, lymphopenia, and multi-organ failure, which can culminate in death. In 2019, the FDA approved the first vaccine against EBOV, a recombinant live-attenuated viral vector wherein the G protein of vesicular stomatitis virus is replaced with the glycoprotein (GP) of EBOV (rVSV-EBOV-GP, Ervebo® by Merck). This vaccine demonstrates high efficacy in nonhuman primates by providing prophylactic, rapid, and post-exposure protection. In humans, rVSV-EBOV-GP demonstrated 100% protection in several phase III clinical trials in over 10,000 individuals during the 2013–2016 West Africa epidemic. As of 2020, over 218,000 doses of rVSV-EBOV-GP have been administered to individuals with high risk of EBOV exposure. Despite licensure and robust preclinical studies, the mechanisms of rVSV-EBOV-GP-mediated protection are not fully understood. Such knowledge is crucial for understanding vaccine-mediated correlates of protection from EVD and to aid the further design and development of therapeutics against filoviruses. Here, we summarize the current literature regarding the host response to vaccination and EBOV exposure, and evidence regarding innate and adaptive immune mechanisms involved in rVSV-EBOV-GP-mediated protection, with a focus on the host transcriptional response. Current data strongly suggest a protective synergy between rapid innate and humoral immunity.
Collapse
|
12
|
Greenberg A, Huber BR, Liu DX, Logue JP, Hischak AMW, Hart RJ, Abbott M, Isic N, Hisada YM, Mackman N, Bennett RS, Hensley LE, Connor JH, Crossland NA. Quantification of Viral and Host Biomarkers in the Liver of Rhesus Macaques: A Longitudinal Study of Zaire Ebolavirus Strain Kikwit (EBOV/Kik). THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1449-1460. [PMID: 32275904 PMCID: PMC7322367 DOI: 10.1016/j.ajpath.2020.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Zaire ebolavirus (EBOV) causes Ebola virus disease (EVD), which carries a fatality rate between 25% and 90% in humans. Liver pathology is a hallmark of terminal EVD; however, little is known about temporal disease progression. We used multiplexed fluorescent immunohistochemistry and in situ hybridization in combination with whole slide imaging and image analysis (IA) to quantitatively characterize temporospatial signatures of viral and host factors as related to EBOV pathogenesis. Eighteen rhesus monkeys euthanized between 3 and 8 days post-infection, and 3 uninfected controls were enrolled in this study. Compared with semiquantitative histomorphologic ordinal scoring, quantitative IA detected subtle and progressive features of early and terminal EVD that was not feasible with routine approaches. Sinusoidal macrophages were the earliest cells to respond to infection, expressing proinflammatory cytokine interleukin 6 (IL6) mRNA, which was subsequently also observed in fibrovascular compartments. The mRNA of interferon-stimulated gene-15 (ISG-15), also known as ISG15 ubiquitin like modifier (ISG15), was observed early, with a progressive and ubiquitous hybridization signature involving mesenchymal and epithelial compartments. ISG-15 mRNA was prominent near infected cells, but not in infected cells, supporting the hypothesis that bystander cells produce a robust interferon gene response. This study contributes to our current understanding of early EVD progression and illustrates the value that digital pathology and quantitative IA serve in infectious disease research.
Collapse
Affiliation(s)
- Alexandra Greenberg
- Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts
| | - Bertrand R Huber
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - David X Liu
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - James P Logue
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Amanda M W Hischak
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Randy J Hart
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Maureen Abbott
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Nejra Isic
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Yohei M Hisada
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard S Bennett
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Lisa E Hensley
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - John H Connor
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nicholas A Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
13
|
Gilchuk P, Murin CD, Milligan JC, Cross RW, Mire CE, Ilinykh PA, Huang K, Kuzmina N, Altman PX, Hui S, Gunn BM, Bryan AL, Davidson E, Doranz BJ, Turner HL, Alkutkar T, Flinko R, Orlandi C, Carnahan R, Nargi R, Bombardi RG, Vodzak ME, Li S, Okoli A, Ibeawuchi M, Ohiaeri B, Lewis GK, Alter G, Bukreyev A, Saphire EO, Geisbert TW, Ward AB, Crowe JE. Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity 2020; 52:388-403.e12. [PMID: 32023489 PMCID: PMC7111202 DOI: 10.1016/j.immuni.2020.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 01/14/2023]
Abstract
Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles D. Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacob C. Milligan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert W. Cross
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chad E. Mire
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Philipp A. Ilinykh
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kai Huang
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Natalia Kuzmina
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pilar X. Altman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Hui
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bronwyn M. Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | | | | | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tanwee Alkutkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robin Flinko
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chiara Orlandi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Robert Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin G. Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan E. Vodzak
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Adaora Okoli
- First Consultants Medical Center, Lagos, Nigeria
| | | | | | - George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Corresponding author
| |
Collapse
|
14
|
Chertow DS, Shekhtman L, Lurie Y, Davey RT, Heller T, Dahari H. Modeling Challenges of Ebola Virus-Host Dynamics during Infection and Treatment. Viruses 2020; 12:v12010106. [PMID: 31963118 PMCID: PMC7019702 DOI: 10.3390/v12010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mathematical modeling of Ebola virus (EBOV)-host dynamics during infection and treatment in vivo is in its infancy due to few studies with frequent viral kinetic data, lack of approved antiviral therapies, and limited insight into the timing of EBOV infection of cells and tissues throughout the body. Current in-host mathematical models simplify EBOV infection by assuming a single homogeneous compartment of infection. In particular, a recent modeling study assumed the liver as the largest solid organ targeted by EBOV infection and predicted that nearly all cells become refractory to infection within seven days of initial infection without antiviral treatment. We compared our observations of EBOV kinetics in multiple anatomic compartments and hepatocellular injury in a critically ill patient with Ebola virus disease (EVD) with this model's predictions. We also explored the model's predictions, with and without antiviral therapy, by recapitulating the model using published inputs and assumptions. Our findings highlight the challenges of modeling EBOV-host dynamics and therapeutic efficacy and emphasize the need for iterative interdisciplinary efforts to refine mathematical models that might advance understanding of EVD pathogenesis and treatment.
Collapse
Affiliation(s)
- Daniel S. Chertow
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-(301)-451-7731
| | - Louis Shekhtman
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA; (L.S.); (H.D.)
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
| | - Yoav Lurie
- Liver Unit, Shaare Zedek Medical Center and the Hebrew University of Jerusalem, Jerusalem 9103102, Israel
| | - Richard T. Davey
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Theo Heller
- Translational Hepatology Unit, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA; (L.S.); (H.D.)
| |
Collapse
|
15
|
DeWald LE, Johnson JC, Gerhardt DM, Torzewski LM, Postnikova E, Honko AN, Janosko K, Huzella L, Dowling WE, Eakin AE, Osborn BL, Gahagen J, Tang L, Green CE, Mirsalis JC, Holbrook MR, Jahrling PB, Dyall J, Hensley LE. In Vivo Activity of Amodiaquine against Ebola Virus Infection. Sci Rep 2019; 9:20199. [PMID: 31882748 PMCID: PMC6934550 DOI: 10.1038/s41598-019-56481-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
During the Ebola virus disease (EVD) epidemic in Western Africa (2013‒2016), antimalarial treatment was administered to EVD patients due to the high coexisting malaria burden in accordance with World Health Organization guidelines. In an Ebola treatment center in Liberia, EVD patients receiving the combination antimalarial artesunate-amodiaquine had a lower risk of death compared to those treated with artemether-lumefantrine. As artemether and artesunate are derivatives of artemisinin, the beneficial anti-Ebola virus (EBOV) effect observed could possibly be attributed to the change from lumefantrine to amodiaquine. Amodiaquine is a widely used antimalarial in the countries that experience outbreaks of EVD and, therefore, holds promise as an approved drug that could be repurposed for treating EBOV infections. We investigated the potential anti-EBOV effect of amodiaquine in a well-characterized nonhuman primate model of EVD. Using a similar 3-day antimalarial dosing strategy as for human patients, plasma concentrations of amodiaquine in healthy animals were similar to those found in humans. However, the treatment regimen did not result in a survival benefit or decrease of disease signs in EBOV-infected animals. While amodiaquine on its own failed to demonstrate efficacy, we cannot exclude potential therapeutic value of amodiaquine when used in combination with artesunate or another antiviral.
Collapse
Affiliation(s)
- Lisa Evans DeWald
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
- Emergent BioSolutions Inc, Gaithersburg, MD, 20879, USA
| | - Joshua C Johnson
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
- AbViro LLC, Bethesda, MD, 20814, USA
| | - Dawn M Gerhardt
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - Lisa M Torzewski
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
- Bioqual Inc, Rockville, MD, 20850, USA
| | - Elena Postnikova
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - Anna N Honko
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Krisztina Janosko
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - Louis Huzella
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - William E Dowling
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Ann E Eakin
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Blaire L Osborn
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | | | - Liang Tang
- SRI International, Menlo Park, CA, 94025, USA
| | | | | | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - Peter B Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - Julie Dyall
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Lisa E Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
16
|
Junaid A, Tang H, van Reeuwijk A, Abouleila Y, Wuelfroth P, van Duinen V, Stam W, van Zonneveld AJ, Hankemeier T, Mashaghi A. Ebola Hemorrhagic Shock Syndrome-on-a-Chip. iScience 2019; 23:100765. [PMID: 31887664 PMCID: PMC6941864 DOI: 10.1016/j.isci.2019.100765] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 01/12/2023] Open
Abstract
Ebola virus, for which we lack effective countermeasures, causes hemorrhagic fever in humans, with significant case fatality rates. Lack of experimental human models for Ebola hemorrhagic fever is a major obstacle that hinders the development of treatment strategies. Here, we model the Ebola hemorrhagic syndrome in a microvessel-on-a-chip system and demonstrate its applicability to drug studies. Luminal infusion of Ebola virus-like particles leads to albumin leakage from the engineered vessels. The process is mediated by the Rho/ROCK pathway and is associated with cytoskeleton remodeling. Infusion of Ebola glycoprotein (GP1,2) generates a similar phenotype, indicating the key role of GP1,2 in this process. Finally, we measured the potency of a recently developed experimental drug FX06 and a novel drug candidate, melatonin, in phenotypic rescue. Our study confirms the effects of FX06 and identifies melatonin as an effective, safe, inexpensive therapeutic option that is worth investigating in animal models and human trials.
Collapse
Affiliation(s)
- Abidemi Junaid
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands; Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden 2333 ZA, Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Huaqi Tang
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Anne van Reeuwijk
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Yasmine Abouleila
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | | | - Vincent van Duinen
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands; Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden 2333 ZA, Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden 2333 ZA, Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden 2333 ZA, Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Alireza Mashaghi
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands.
| |
Collapse
|
17
|
Gilchuk P, Mire CE, Geisbert JB, Agans KN, Deer DJ, Cross RW, Slaughter JC, Flyak AI, Mani J, Pauly MH, Velasco J, Whaley KJ, Zeitlin L, Geisbert TW, Crowe JE. Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in Nonhuman Primates. J Infect Dis 2019; 218:S565-S573. [PMID: 29982718 DOI: 10.1093/infdis/jiy295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background The 2013-2016 Ebola virus disease (EVD) epidemics in West Africa highlighted a need for effective therapeutics for treatment of the disease caused by filoviruses. Monoclonal antibodies (mAbs) are promising therapeutic candidates for prophylaxis or treatment of virus infections. Data about efficacy of human mAb monotherapy against filovirus infections in preclinical nonhuman primate models are limited. Methods Previously, we described a large panel of human mAbs derived from the circulating memory B cells from Bundibugyo virus (BDBV) infection survivors that bind to the surface glycoprotein (GP) of the virus. We tested one of these neutralizing mAbs that recognized the glycan cap of the GP, designated mAb BDBV289, as monotherapy in rhesus macaques. Results We found that recombinant mAb BDBV289-N could confer up to 100% protection to BDBV-infected rhesus macaques when treatment was initiated as late as 8 days after virus challenge. Protection was associated with survival and decreased viremia levels in the blood of treated animals. Conclusions These findings define the efficacy of monotherapy of lethal BDBV infection with a glycan cap-specific mAb and identify a candidate mAb therapeutic molecule that could be included in antibody cocktails for prevention or treatment of ebolavirus infections.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy Mani
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
18
|
Sarkar S, Heise MT. Mouse Models as Resources for Studying Infectious Diseases. Clin Ther 2019; 41:1912-1922. [PMID: 31540729 PMCID: PMC7112552 DOI: 10.1016/j.clinthera.2019.08.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
Mouse models are important tools both for studying the pathogenesis of infectious diseases and for the preclinical evaluation of vaccines and therapies against a wide variety of human pathogens. The use of genetically defined inbred mouse strains, humanized mice, and gene knockout mice has allowed the research community to explore how pathogens cause disease, define the role of specific host genes in either controlling or promoting disease, and identify potential targets for the prevention or treatment of a wide range of infectious agents. This review discusses several of the most commonly used mouse model systems, as well as new resources such as the Collaborative Cross as models for studying infectious diseases.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Cooper TK, Sword J, Johnson JC, Bonilla A, Hart R, Liu DX, Bernbaum JG, Cooper K, Jahrling PB, Hensley LE. New Insights Into Marburg Virus Disease Pathogenesis in the Rhesus Macaque Model. J Infect Dis 2018; 218:S423-S433. [PMID: 30053050 PMCID: PMC6249607 DOI: 10.1093/infdis/jiy367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously, several studies have been performed to delineate the development and progression of Marburg virus infection in nonhuman primates (NHPs), primarily to clarify the mechanisms of severe (fatal) disease. After the 2013-2016 Ebola virus disease (EVD) epidemic in Western Africa, there has been a reassessment of the available filovirus animal models and the utility of these to faithfully recapitulate human disease. The high lethality of the NHP models has raised doubts as to their ability to provide meaningful data for the full spectrum of disease observed in humans. Of particular interest are the etiologic and pathophysiologic mechanisms underlying postconvalescent sequelae observed in human survivors of EVD and Marburg virus disease (MVD). In the current study, we evaluated the lesions of MVD in NHPs; however, in contrast to previous studies, we focused on the potential for development of sequelae similar to those reported in human survivors of MVD and EVD. We found that during acute MVD in the macaque model, there is frequent inflammation of peripheral nerves, autonomic ganglia, and the iris of the eye. Furthermore, we demonstrate viral infection of the ocular ciliary body and retina, testis, epididymis, ovary, oviduct, uterine endometrium, prostate, and mammary gland. These findings are relevant for both development of postconvalescent sequelae and the natural transmission of virus.
Collapse
Affiliation(s)
- Timothy K Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Jennifer Sword
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Joshua C Johnson
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Amanda Bonilla
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - David X Liu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - John G Bernbaum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| |
Collapse
|
20
|
Spengler JR, Prescott J, Feldmann H, Spiropoulou CF. Human immune system mouse models of Ebola virus infection. Curr Opin Virol 2017; 25:90-96. [PMID: 28810165 DOI: 10.1016/j.coviro.2017.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 11/28/2022]
Abstract
Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Joseph Prescott
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|