1
|
Böttcher P, Steinmeyer L, Stark H, Breitkreutz J, Mewes KR. Integration of MUTZ-Langerhans cells into a 3D full-thickness skin equivalent and influences of serum reduction and undefined medium supplements on differentiation. Toxicol In Vitro 2025; 102:105948. [PMID: 39343070 DOI: 10.1016/j.tiv.2024.105948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The MUTZ-3 cell line is a surrogate for Langerhans cells (LCs) employed in New Approach Methodologies for assessing the skin sensitizing potential of chemicals. However, MUTZ-3 cells must first be differentiated to achieve the LC-typical phenotype. As all protocols use high fetal calf serum (FCS) concentrations, we aimed at reducing, or even replacing FCS, while maintaining MUTZ-LC characteristics. Additionally, we assessed the impact of the poorly defined 5637-conditioned medium (5637CM) on MUTZ-LC differentiation. With reducing the FCS content by 75 %, the desired differentiation status was achieved after 7 instead of 14 days, identified by elevated CD207 and CD1a expression. Culture with Ultroser G, a synthetic surrogate for FCS, resulted in an insufficient number of MUTZ-LCs. 5 % FCS-differentiated MUTZ-LCs could be activated with DNCB, an extreme sensitizer, as demonstrated by increased CD83 expression. 5637CM did not affect MUTZ-LC differentiation and is therefore not needed as a supplement. For their intended role in an immunocompetent skin model to assess the sensitizing potential of chemicals, MUTZ-LCs were successfully integrated into the Phenion® Full-Thickness skin model, as demonstrated by CD1a expression. These results are important steps towards medium standardization and the generation of an immunocompetent skin model according to the 3R principles.
Collapse
Affiliation(s)
| | | | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
2
|
Lian AA, Yamaji Y, Kajiwara K, Takaki K, Mori H, Liew MWO, Kotani E, Maruta R. A Bioengineering Approach for the Development of Fibroblast Growth Factor-7-Functionalized Sericin Biomaterial Applicable for the Cultivation of Keratinocytes. Int J Mol Sci 2022; 23:ijms23179953. [PMID: 36077351 PMCID: PMC9456417 DOI: 10.3390/ijms23179953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Growth factors, including fibroblast growth factor-7 (FGF-7), are a group of proteins that stimulate various cellular processes and are often used with carriers to prevent the rapid loss of their activities. Sericin with great biocompatibility has been investigated as a proteinaceous carrier to enhance the stability of incorporated proteins. The difficulties in obtaining intact sericin from silkworm cocoons and the handling of growth factors with poor stability necessitate an efficient technique to incorporate the protein into a sericin-based biomaterial. Here, we report the generation of a transgenic silkworm line simultaneously expressing and incorporating FGF-7 into cocoon shells containing almost exclusively sericin. Growth-factor-functionalized sericin cocoon shells requiring simple lyophilization and pulverization processes were successfully used to induce the proliferation and migration of keratinocytes. Moreover, FGF-7 incorporated into sericin-cocoon powder exhibited remarkable stability, with more than 70% of bioactivity being retained after being stored as a suspension at 25 °C for 3 months. Transgenic sericin-cocoon powder was used to continuously supply biologically active FGF-7 to generate a three-dimensionally cultured keratinocyte model in vitro. The outcomes of this study propound a feasible approach to producing cytokine-functionalized sericin materials that are ready to use for cell cultivation.
Collapse
Affiliation(s)
- Ai Ai Lian
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuka Yamaji
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazuki Kajiwara
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mervyn Wing On Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| | - Rina Maruta
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| |
Collapse
|
3
|
Koning JJ, Rodrigues Neves CT, Schimek K, Thon M, Spiekstra SW, Waaijman T, de Gruijl TD, Gibbs S. A Multi-Organ-on-Chip Approach to Investigate How Oral Exposure to Metals Can Cause Systemic Toxicity Leading to Langerhans Cell Activation in Skin. FRONTIERS IN TOXICOLOGY 2022; 3:824825. [PMID: 35295125 PMCID: PMC8915798 DOI: 10.3389/ftox.2021.824825] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Investigating systemic toxicity in vitro is still a huge challenge. Here, a multi-organ-on-chip approach is presented as a typical case of topical exposure of oral mucosa to metals, which are known to activate the immune system and in turn may result in skin inflammation. Reconstructed human gingiva (RHG) and reconstructed human skin containing MUTZ-3–derived Langerhans cells (MUTZ-LC) in the epidermis (RHS-LC) were incorporated into a HUMIMIC Chip3plus, connected by dynamic flow and cultured for a total period of 72 h. Three independent experiments were performed each with an intra-experiment replicate in order to assess the donor and technical variations. After an initial culture period of 24 h to achieve stable dynamic culture conditions, nickel sulfate was applied topically to RHG for 24 h, and LC activation (maturation and migration) was determined in RHS-LC after an additional 24 h incubation time. A stable dynamic culture of RHG and RHS-LC was achieved as indicated by the assessment of glucose uptake, lactate production, and lactate dehydrogenase release into the microfluidics compartment. Nickel exposure resulted in no major histological changes within RHG or RHS-LC, or cytokine release into the microfluidics compartment, but did result in an increased activation of LC as observed by the increased mRNA levels of CD1a, CD207, HLA-DR, and CD86 in the dermal compartment (hydrogel of RHS-LC (PCR)). This is the first study to describe systemic toxicity and immune cell activation in a multi-organ setting and can provide a framework for studying other organoids in the future.
Collapse
Affiliation(s)
- Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charlotte T Rodrigues Neves
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Maria Thon
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Skin under Strain: From Epithelial Model Tissues to Adult Epithelia. Cells 2021; 10:cells10071834. [PMID: 34360001 PMCID: PMC8304960 DOI: 10.3390/cells10071834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023] Open
Abstract
Formation of a barrier capable of protecting tissue from external damage, chemical factors, and pathogens is one of the main functions of the epidermis. Furthermore, upon development and during aging, mechanoprotective epidermal functions change dramatically. However, comparative studies between embryonic and adult skin in comparison to skin equivalents are still scarce which is especially due to the lack of appropriate measurement systems with sufficient accuracy and long-term tissue compatibility. Our studies fill this gap by developing a combined bioreactor and tensile testing machine for biomechanical analysis of living epithelia. Based on this tissue stretcher, our data clearly show that viscoelastic and plastic deformation behavior of embryonic and adult skin differ significantly. Tissue responses to static strain compared to cyclic strain also show a clear dependence on differentiation stage. Multilayered unkeratinized epidermis equivalents, on the other hand, respond very similar to mechanical stretch as adult tissue. This mechanical similarity is even more evident after a single cycle of mechanical preconditioning. Our studies therefore suggest that skin equivalents are well suited model systems to analyze cellular interactions of epidermal cells in natural tissues.
Collapse
|
5
|
Malhotra D, Pan S, Rüther L, Schlippe G, Voss W, Germann N. Polysaccharide-based skin scaffolds with enhanced mechanical compatibility with native human skin. J Mech Behav Biomed Mater 2021; 122:104607. [PMID: 34198231 DOI: 10.1016/j.jmbbm.2021.104607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023]
Abstract
We report a custom-made technique to synthesize process-convenient skin scaffolds by tuning the mechanical properties of hydrogels based on a few naturally occurring polysaccharides to match the rheological properties of previously established benchmarks, i.e., the ex vivo native human skins. We studied the mechanical parameters using oscillatory shear rheology. At small strain amplitudes, the intrinsic elastic modulus showed an almost linear dependence in the middle and a changing rate profile at the two ends with concentration of the principal hydrogel component variant, i.e., kappa (κ)-carrageenan. At large strain amplitudes, the hydrogels demonstrated intercycle strain-softening behavior, the onset of which was directly proportional to the κ-carrageenan concentration. We observed a concentration match for the intrinsic elastic modulus of the benchmark within this sigmoidal curve fit. Contextually, we need to explore other potent polymeric hydrogel systems to achieve mechanical affinity in terms of multiple rheological parameters derived from both strain amplitude and angular frequency sweeps. Additionally, we carried out diffusion experiments to study caffeine permeation attributes. The hydrogels show improved barrier features with increasing κ-carrageenan concentration. In terms of the penetration flux and total cumulative amount of permeated caffeine, this enhanced mechanical adherence demonstrates comparable penetration features with the commercial 3D skin model.
Collapse
Affiliation(s)
- Deepika Malhotra
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| | - Sharadwata Pan
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| | - Lars Rüther
- Dermatest GmbH, Engelstraße 37, Münster, 48143, Germany.
| | | | - Werner Voss
- Dermatest GmbH, Engelstraße 37, Münster, 48143, Germany.
| | - Natalie Germann
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| |
Collapse
|
6
|
Kakar A, Holzknecht J, Dubrac S, Gelmi ML, Romanelli A, Marx F. New Perspectives in the Antimicrobial Activity of the Amphibian Temporin B: Peptide Analogs Are Effective Inhibitors of Candida albicans Growth. J Fungi (Basel) 2021; 7:457. [PMID: 34200504 PMCID: PMC8226839 DOI: 10.3390/jof7060457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
Temporin B (TB) is a short, positively charged peptide secreted by the granular glands of the European frog Rana temporaria. While the antibacterial and antiviral efficacy of TB and some of its improved analogs are well documented, nothing is known about their antifungal potency so far. We dedicated this study to characterize the antifungal potential of the TB analog TB_KKG6K and the newly designed D-Lys_TB_KKG6K, the latter having the L-lysines replaced by the chiral counterpart D-lysines to improve its proteolytic stability. Both peptides inhibited the growth of opportunistic human pathogenic yeasts and killed planktonic and sessile cells of the most prevalent human pathogen, Candida albicans. The anti-yeast efficacy of the peptides coincided with the induction of intracellular reactive oxygen species. Their thermal, cation, pH and serum tolerance were similar, while the proteolytic stability of D-Lys_TB_KKG6K was superior to that of its template peptide. Importantly, both peptides lacked hemolytic activity and showed minimal in vitro cytotoxicity in primary human keratinocytes. The tolerance of both peptides in a reconstructed human epidermis model further supports their potential for topical application. Our results open up an exciting field of research for new anti-Candida therapeutic options based on amphibian TB analogs.
Collapse
Affiliation(s)
- Anant Kakar
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (A.K.); (J.H.)
| | - Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (A.K.); (J.H.)
| | - Sandrine Dubrac
- Department of Dermatology, Venerology and Allergy, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milan, I-20133 Milano, Italy;
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, I-20133 Milano, Italy;
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (A.K.); (J.H.)
| |
Collapse
|
7
|
Hirano M, Huang Y, Vela Jarquin D, De la Garza Hernández RL, Jodat YA, Luna Cerón E, García-Rivera LE, Shin SR. 3D bioprinted human iPSC-derived somatosensory constructs with functional and highly purified sensory neuron networks. Biofabrication 2021; 13. [PMID: 33962404 DOI: 10.1088/1758-5090/abff11] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Engineering three-dimensional (3D) sensible tissue constructs, along with the complex microarchitecture wiring of the sensory nervous system, has been an ongoing challenge in the tissue engineering field. By combining 3D bioprinting and human pluripotent stem cell (hPSC) technologies, sensible tissue constructs could be engineered in a rapid, precise, and controllable manner to replicate 3D microarchitectures and mechanosensory functionalities of the native sensory tissue (e.g. response to external stimuli). Here, we introduce a biofabrication approach to create complex 3D microarchitecture wirings. We develop an hPSC-sensory neuron (SN) laden bioink using highly purified and functional SN populations to 3D bioprint microarchitecture wirings that demonstrate responsiveness to warm/cold sense-inducing chemicals and mechanical stress. Specifically, we tailor a conventional differentiation strategy to our purification method by utilizing p75 cell surface marker and DAPT treatment along with neuronal growth factors in order to selectively differentiate neural crest cells into SNs. To create spatial resolution in 3D architectures and grow SNs in custom patterns and directions, an induced pluripotent stem cell (iPSC)-SN-laden gelatin bioink was printed on laminin-coated substrates using extrusion-based bioprinting technique. Then the printed constructs were covered with a collagen matrix that guided SNs growing in the printed micropattern. Using a sacrificial bioprinting technique, the iPSC-SNs were seeded into the hollow microchannels created by sacrificial gelatin ink printed in the gelatin methacryloyl supporting bath, thereby demonstrating controllability over axon guidance in curved lines up to several tens of centimeters in length on 2D substrates and in straight microchannels in 3D matrices. Therefore, this biofabrication approach could be amenable to incorporate sensible SN networks into the engineered skin equivalents, regenerative skin implants, and augmented somatosensory neuro-prosthetics that have the potential to regenerate sensible functions by connecting host neuron systems in injured areas.
Collapse
Affiliation(s)
- Minoru Hirano
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Future Vehicle Research Department, Toyota Research Institute North America, Toyota Motor North America Inc., 1555 Woodridge Ave, Ann Arbor, MI 48105, United States of America
| | - Yike Huang
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 100730, People's Republic of China
| | - Daniel Vela Jarquin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Instituto Tecnológico y de Estudios Superiores de Monterrey, Calle del Puente 222, Ejidos de Huipulco, Tlalpan, Ciudad de México, CDMX 14380, Mexico
| | - Rosakaren Ludivina De la Garza Hernández
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Instituto Tecnológico y de Estudios Superiores de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, 64849 Monterrey, NL, Mexico
| | - Yasamin A Jodat
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America
| | - Eder Luna Cerón
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Instituto Tecnológico y de Estudios Superiores de Monterrey, Calle del Puente 222, Ejidos de Huipulco, Tlalpan, Ciudad de México, CDMX 14380, Mexico
| | - Luis Enrique García-Rivera
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Instituto Tecnológico y de Estudios Superiores de Monterrey, Calle del Puente 222, Ejidos de Huipulco, Tlalpan, Ciudad de México, CDMX 14380, Mexico
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America
| |
Collapse
|
8
|
Hennies HC, Poumay Y. Skin Disease Models In Vitro and Inflammatory Mechanisms: Predictability for Drug Development. Handb Exp Pharmacol 2021; 265:187-218. [PMID: 33387068 DOI: 10.1007/164_2020_428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Investigative skin biology, analysis of human skin diseases, and numerous clinical and pharmaceutical applications rely on skin models characterized by reproducibility and predictability. Traditionally, such models include animal models, mainly rodents, and cellular models. While animal models are highly useful in many studies, they are being replaced by human cellular models in more and more approaches amid recent technological development due to ethical considerations. The culture of keratinocytes and fibroblasts has been used in cell biology for many years. However, only the development of co-culture and three-dimensional epidermis and full-skin models have fundamentally contributed to our understanding of cell-cell interaction and cell signalling in the skin, keratinocyte adhesion and differentiation, and mechanisms of skin barrier function. The modelling of skin diseases has highlighted properties of the skin important for its integrity and cutaneous development. Examples of monogenic as well as complex diseases including atopic dermatitis and psoriasis have demonstrated the role of skin models to identify pathomechanisms and drug targets. Recent investigations have indicated that 3D skin models are well suitable for drug testing and preclinical studies of topical therapies. The analysis of skin diseases has recognized the importance of inflammatory mechanisms and immune responses and thus other cell types such as dendritic cells and T cells in the skin. Current developments include the production of more complete skin models comprising a range of different cell types. Organ models and even multi-organ systems are being developed for the analysis of higher levels of cellular interaction and drug responses and are among the most recent innovations in skin modelling. They promise improved robustness and flexibility and aim at a body-on-a-chip solution for comprehensive pharmaceutical in vitro studies.
Collapse
Affiliation(s)
- Hans Christian Hennies
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK. .,Cologne Center for Genomics, University Hospital Cologne, Cologne, Germany.
| | - Yves Poumay
- Faculty of Medicine, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
9
|
Maruta R, Takaki K, Yamaji Y, Sezutsu H, Mori H, Kotani E. Effects of transgenic silk materials that incorporate FGF-7 protein microcrystals on the proliferation and differentiation of human keratinocytes. FASEB Bioadv 2020; 2:734-744. [PMID: 33336160 PMCID: PMC7734426 DOI: 10.1096/fba.2020-00078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
The silk glands of silkworms produce large quantities of fibroin, which is a protein that can be physically processed and used as a biodegradable carrier for cell growth factors in tissue engineering applications. Meanwhile, protein microcrystals known as polyhedra, which are derived from cypovirus 1, have been used as a vehicle to protect and release encapsulated cell growth factors. We report the generation of transgenic silkworms that express recombinant fibroblast growth factor-7 (FGF-7) fused with the polyhedron-encapsulating signal in polyhedra produced in the middle (MSG) and posterior (PSG) silk glands. Immunofluorescence showed that polyhedra from silk glands are associated with FGF-7. The MSG and PSG from transgenic silkworms were processed into fine powdery materials, from which FGF-7 activity was released to stimulate the proliferation of human keratinocyte epidermal cells. Powders from PSGs exhibited higher FGF-7 activity than those from MSGs. Moreover, PSG powder showed a gradual release of FGF-7 activity over a long period and induced keratinocyte proliferation and differentiation in 3D culture to promote the formation of stratified epidermis expressing positive differentiation marker proteins. Our results indicate that powdery materials incorporating the FGF-7-polyhedra microcrystals from silk glands are valuable for developing cell/tissue engineering applications in vivo and in vitro.
Collapse
Affiliation(s)
- Rina Maruta
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Keiko Takaki
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Yuka Yamaji
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Hideki Sezutsu
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Hajime Mori
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Eiji Kotani
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
10
|
Rodrigues Neves CT, Spiekstra SW, de Graaf NPJ, Rustemeyer T, Feilzer AJ, Kleverlaan CJ, Gibbs S. Titanium salts tested in reconstructed human skin with integrated MUTZ-3-derived Langerhans cells show an irritant rather than a sensitizing potential. Contact Dermatitis 2020; 83:337-346. [PMID: 32677096 PMCID: PMC7689826 DOI: 10.1111/cod.13666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The nature of clinically related adverse reactions to titanium is still unknown. OBJECTIVE To determine whether titanium salts have irritant or sensitizing potential in a reconstructed human skin (RHS) model with integrated Langerhans cells (LCs). METHODS RHS-LCs (ie, reconstructed epidermis) containing primary differentiated keratinocytes and CFSE+ CD1a+ -LCs generated from the MUTZ-3 cell line on a primary fibroblast-populated collagen hydrogel (dermis) were topically exposed to titanium(IV) bis(ammonium lactato)dihydroxide (TiALH). LC migration and plasticity were determined. RESULTS TiALH resulted in CFSE+ CD1a+ -LC migration out of the epidermis. Neutralizing antibodies to CCL5 and CXCL12 showed that LC migration was CCL5 and not CXCL12 mediated. LCs accumulating within the dermis after TiALH exposure were CFSE+ Lang+ CD68+ which is characteristic of a phenotypic switch of MUTZ-LC to a macrophage-like cell. Furthermore, TiALH did not result in increased interleukin (IL)-1β or CCR7 messenger RNA (mRNA) in the dermis, but did result in increased IL-10 mRNA. In addition, monocultures of MUTZ-LCs failed to increase LC maturation biomarkers CD83, CD86, and CXCL-8 when exposed to noncytotoxic concentrations of four different titanium salts. CONCLUSION These results classify titanium salts as irritants rather than sensitizers and indicate that titanium implant-related complaints could be due to localized irritant-mediated inflammation arising from leachable agents rather than a titanium metal allergy.
Collapse
Affiliation(s)
- Charlotte T Rodrigues Neves
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Niels P J de Graaf
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas Rustemeyer
- Department of Dermatology, Amsterdam University Medical Centre (location AMC), Amsterdam, The Netherlands
| | - Albert J Feilzer
- Department of Dental Materials Science, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cees J Kleverlaan
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
[Use of 2D and 3D cell cultures in dermatology]. Hautarzt 2020; 71:91-100. [PMID: 31965205 DOI: 10.1007/s00105-019-04537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The skin is a complex organ that performs a number of vital functions, including forming a physical barrier that protects our body from the penetration of pathogens and irritants and from excessive transepidermal water loss. In addition to its passive properties, the skin is also actively involved in the immune process. A complex structure of different cell types and structures allows the skin to fulfil these functions. In vitro research often faces the problem that simple 2D cell cultures are not able to adequately map these functions. Here 3D skin models offer a possible solution. In recent years, there has been significant development in this field; the reproducibility of the method as well as the physiological structure and tissue architecture of the 3D skin models have been improved. Depending on the research question, protocols for 3D skin models have been published, ranging from simple multilayer epidermis models to highly complex vascularized 3D full skin models.
Collapse
|
12
|
Jackson R, Eade S, Zehbe I. An epithelial organoid model with Langerhans cells for assessing virus-host interactions. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180288. [PMID: 30955491 PMCID: PMC6501905 DOI: 10.1098/rstb.2018.0288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Persistent infection with oncogenic human papillomavirus (HPV) may lead to cancer in mucosal and skin tissue. Consequently, HPV must have developed strategies to escape host immune surveillance. Nevertheless, most HPV infections are cleared by the infected host. Our laboratory investigates Langerhans cells (LCs), acting at the interface between innate and adaptive immunity. We hypothesize that this first line of defence is vital for potential HPV elimination. As an alternative to animal models, we use smaller-scale epithelial organoids grown from human primary keratinocytes derived from various anatomical sites. This approach is amenable to large sample sizes-an essential aspect for scientific rigour and statistical power. To evaluate LCs phenotypically and molecularly during the viral life cycle and onset of carcinogenesis, we have included an engineered myeloid cell line with the ability to acquire an LC phenotype. This model is accurately tailored for the crucial time-window of early virus elimination in a complex organism and will shed more light on our long-standing research question of how naturally occurring HPV variants influence disease development. It may also be applied to other microorganism-host interaction research or enquiries of epithelium immunobiology. Finally, our continuously updated pathogen-host analysis tool enables state-of-the-art bioinformatics analyses of next-generation sequencing data. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Robert Jackson
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
- Biotechnology Program, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, CanadaP7B 5E1
| | - Statton Eade
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
| | - Ingeborg Zehbe
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, CanadaP7B 5E1
| |
Collapse
|