1
|
Bugi MA, Jugănaru I, Simina IE, Nicoară DM, Cristun LI, Brad GF, Huțanu D, Isac R, Kozma K, Cîrnatu D, Mărginean O. Evaluating Therapy and Growth in Children with Phenylketonuria: A Retrospective Longitudinal Study from Two Romanian Centers. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1185. [PMID: 39064614 PMCID: PMC11279053 DOI: 10.3390/medicina60071185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Phenylketonuria (PKU) is a rare genetic disorder characterized by the inability to convert the essential amino acid phenylalanine into tyrosine. Early dietary treatment can successfully prevent complications, but controversies still exist regarding the attainment of normal growth in these patients. Materials and Methods: Eighteen patients with PKU from two Romanian reference centers were compared to eighteen non-PKU controls, matched for age and gender. The comparisons used weight-for-height, weight-for-age, height/length-for-age, and body mass index-for-age z-scores from birth to three years of age. Results: The PKU study group consisted of nine boys and nine girls, with a median follow-up period of thirty-six months (interquartile range = 9.75). While median values of all four growth metrics remained within the normal range across the entire study period, weight-for-age z-scores were significantly lower in PKU patients throughout most of the study (p < 0.001). Conclusions: The persistent lower weight-for-age z-scores of the PKU patients compared to controls indicate that ongoing monitoring and potential adjustments in dietary therapy may be necessary to further optimize growth outcomes.
Collapse
Affiliation(s)
- Meda-Ada Bugi
- Ph.D. School Department, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (M.-A.B.)
- Department of Pediatrics I, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania (G.-F.B.); (O.M.)
- Department of Pharmacy, University of Medicine and Pharmacy ‘Vasile Goldis’, 310025 Arad, Romania
| | - Iulius Jugănaru
- Department of Pediatrics I, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania (G.-F.B.); (O.M.)
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Department of Research Center for Disturbances of Growth and Development in Children–BELIVE, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300011 Timisoara, Romania
| | - Iulia-Elena Simina
- Department of Genetics, Center of Genomic Medicine, ‘Victor Babeş’ University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Delia-Maria Nicoară
- Ph.D. School Department, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (M.-A.B.)
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Lucian-Ioan Cristun
- Ph.D. School Department, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (M.-A.B.)
| | - Giorgiana-Flavia Brad
- Department of Pediatrics I, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania (G.-F.B.); (O.M.)
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Delia Huțanu
- Department of Biology-Chemistry, Biology-Chemistry-Geography Faculty, West University of Timisoara, 300115 Timisoara, Romania;
| | - Raluca Isac
- Department XI Pediatrics, Discipline III Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| | - Kinga Kozma
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410000 Oradea, Romania;
- Regional Center of Medical Genetics Bihor, Emergency Clinical Hospital Bihor, 410000 Oradea, Romania
| | - Daniela Cîrnatu
- Department of Medicine, University of Medicine and Pharmacy ‘Vasile Goldis’, 310025 Arad, Romania
- Romanian National Institute of Public Health, Regional Centre, 300230 Timisoara, Romania
| | - Otilia Mărginean
- Department of Pediatrics I, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania (G.-F.B.); (O.M.)
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Department of Research Center for Disturbances of Growth and Development in Children–BELIVE, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300011 Timisoara, Romania
| |
Collapse
|
2
|
Upadia J, Crivelly K, Noh G, Cunningham A, Cerminaro C, Li Y, Mckoin M, Chenevert M, Andersson HC. Maximal dietary responsiveness after tetrahydrobiopterin (BH4) in 19 phenylalanine hydroxylase deficiency patients: What super-responders can expect. Mol Genet Metab Rep 2024; 38:101050. [PMID: 38469087 PMCID: PMC10926188 DOI: 10.1016/j.ymgmr.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background Inherited phenylalanine hydroxylase deficiency, also known as phenylketonuria (PKU), causes poor growth and neurologic deficits in the untreated state. After ascertainment through newborn screen and dietary phenylalanine (Phe) restriction to achieve plasma Phe in the range of 120-360 μmol/L, these disease manifestations can be prevented. Poor compliance with protein restricted diets supported by medical food is typical in later years, beginning in the late toddler and teenage years. Pharmacologic doses of oral tetrahydrobiopterin (BH4; sapropterin dihydrochloride) is effective in reducing plasma Phe in about 40-50% of PKU patients but effectiveness is highly variable. Objective To assess the maximal responsiveness to 20 mg/kg/day oral BH4 as it affects plasma Phe and dietary Phe allowance in PKU patients. Materials and methods This was a single-center, retrospective observational study, combining case reports of individual patients. We reported an outcome of 85 patients with PKU who were trialed on BH4. Phe levels and dietary records of 19 BH4 "super-responders" were analyzed. Results Overall, 63.5% of the patients (54/85) were considered BH4 responders. However, we quantitated the dietary liberalization of 19 of our responsive patients (35%), those with at least a 2-fold increase in dietary Phe and maintenance of plasma Phe in treatment range. In these "super-responders", the mean plasma Phe at baseline was 371 ± 237 μmol/L and decreased to 284 ± 273 μmol/L after 1 year on BH4. Mean dietary Phe tolerance increased significantly from 595 ± 256 to 2260 ± 1414 mg/day (p ≤0.0001), while maintaining mean plasma Phe levels within treatment range. Four patients no longer required dietary Phe restriction and could discontinue medical food. The majority of patients had at least one BH4-responsive genotype. Conclusion This cohort demonstrates the maximally achievable dietary liberalization which some PKU patients may expect with BH4 therapy. Health benefits are considered to accrue in patients with increased intact protein.
Collapse
Affiliation(s)
- Jariya Upadia
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kea Crivelly
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Grace Noh
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Amy Cunningham
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Caroline Cerminaro
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yuwen Li
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Meredith Mckoin
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Madeline Chenevert
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hans C. Andersson
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Wilson SK, Thomas J. BH4 as a Therapeutic Target for ADHD: Relevance to Neurotransmitters and Stress-Driven Symptoms. J Atten Disord 2024; 28:161-167. [PMID: 37942650 DOI: 10.1177/10870547231204012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Tetrahydrobiopterin (BH4) is a critical cofactor in a variety of metabolic pathways that have been linked to ADHD. There have been no previous studies utilizing BH4 as a supplement for ADHD. BH4 has been approved as a treatment for phenylketonuria (PKU). Individuals with PKU and ADHD appear to have low DA levels in common, suggesting that the hypodopaminergic state seen in both illnesses could be a relationship between the two. Clinical research involving supplementation of BH4 has shown low occurrence of adverse. In experiments, BH4 has also been found to have good blood-brain barrier permeability. BH4 also has the ability in scavenging ROS activity, which is an implication of stress and is seen in ADHD. BH4's significance in ADHD is reviewed in this paper because of its involvement in numerous neurodevelopmental metabolic pathways, and we anticipate that exogenous BH4 can be used to treat ADHD.
Collapse
Affiliation(s)
- Samson K Wilson
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala
| |
Collapse
|
4
|
Adams AD, Fiesco-Roa MÓ, Wong L, Jenkins GP, Malinowski J, Demarest OM, Rothberg PG, Hobert JA. Phenylalanine hydroxylase deficiency treatment and management: A systematic evidence review of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100358. [PMID: 37470789 DOI: 10.1016/j.gim.2022.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 07/21/2023] Open
Abstract
PURPOSE Elevated serum phenylalanine (Phe) levels due to biallelic pathogenic variants in phenylalanine hydroxylase (PAH) may cause neurodevelopmental disorders or birth defects from maternal phenylketonuria. New Phe reduction treatments have been approved in the last decade, but uncertainty on the optimal lifespan goal Phe levels for patients with PAH deficiency remains. METHODS We searched Medline and Embase for evidence of treatment concerning PAH deficiency up to September 28, 2021. Risk of bias was evaluated based on study design. Random-effects meta-analyses were performed to compare IQ, gestational outcomes, and offspring outcomes based on Phe ≤ 360 μmol/L vs > 360 μmol/L and reported as odds ratio and 95% CI. Remaining results were narratively synthesized. RESULTS A total of 350 studies were included. Risk of bias was moderate. Lower Phe was consistently associated with better outcomes. Achieving Phe ≤ 360 μmol/L before conception substantially lowered the risk of negative effect to offspring in pregnant individuals (odds ratio = 0.07, 95% CI = 0.04-0.14; P < .0001). Adverse events due to pharmacologic treatment were common, but medication reduced Phe levels, enabling dietary liberalization. CONCLUSIONS Reduction of Phe levels to ≤360 μmol/L through diet or medication represents effective interventions to treat PAH deficiency.
Collapse
Affiliation(s)
- April D Adams
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX; Division of Maternal-Fetal Medicine, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Moisés Ó Fiesco-Roa
- Programa de Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico; Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | | | | | - Paul G Rothberg
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Judith A Hobert
- University of Utah School of Medicine, Salt Lake City, UT; ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
5
|
Pinto A, Ilgaz F, Evans S, van Dam E, Rocha JC, Karabulut E, Hickson M, Daly A, MacDonald A. Phenylalanine Tolerance over Time in Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3506. [PMID: 37630696 PMCID: PMC10458574 DOI: 10.3390/nu15163506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In phenylketonuria (PKU), natural protein tolerance is defined as the maximum natural protein intake maintaining a blood phenylalanine (Phe) concentration within a target therapeutic range. Tolerance is affected by several factors, and it may differ throughout a person's lifespan. Data on lifelong Phe/natural protein tolerance are limited and mostly reported in studies with low subject numbers. This systematic review aimed to investigate how Phe/natural protein tolerance changes from birth to adulthood in well-controlled patients with PKU on a Phe-restricted diet. Five electronic databases were searched for articles published until July 2020. From a total of 1334 results, 37 articles met the eligibility criteria (n = 2464 patients), and 18 were included in the meta-analysis. The mean Phe (mg/day) and natural protein (g/day) intake gradually increased from birth until 6 y (at the age of 6 months, the mean Phe intake was 267 mg/day, and natural protein intake was 5.4 g/day; at the age of 5 y, the mean Phe intake was 377 mg/day, and the natural protein intake was 8.9 g/day). However, an increase in Phe/natural protein tolerance was more apparent at the beginning of late childhood and was >1.5-fold that of the Phe tolerance in early childhood. During the pubertal growth spurt, the mean natural protein/Phe tolerance was approximately three times higher than in the first year of life, reaching a mean Phe intake of 709 mg/day and a mean natural protein intake of 18 g/day. Post adolescence, a pooled analysis could only be performed for natural protein intake. The mean natural protein tolerance reached its highest (32.4 g/day) point at the age of 17 y and remained consistent (31.6 g/day) in adulthood, but limited data were available. The results of the meta-analysis showed that Phe/natural protein tolerance (expressed as mg or g per day) increases with age, particularly at the beginning of puberty, and reaches its highest level at the end of adolescence. This needs to be interpreted with caution as limited data were available in adult patients. There was also a high degree of heterogeneity between studies due to differences in sample size, the severity of PKU, and target therapeutic levels for blood Phe control.
Collapse
Affiliation(s)
- Alex Pinto
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (S.E.); (A.D.); (A.M.)
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth PL4 6AB, UK;
| | - Fatma Ilgaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey;
| | - Sharon Evans
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (S.E.); (A.D.); (A.M.)
| | - Esther van Dam
- Beatrix Children’s Hospital, University of Groningen, University Medical Center, 9700 RB Groningen, The Netherlands;
| | - Júlio César Rocha
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitario de Lisboa Central, 1169-045 Lisboa, Portugal
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey;
| | - Mary Hickson
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth PL4 6AB, UK;
| | - Anne Daly
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (S.E.); (A.D.); (A.M.)
| | - Anita MacDonald
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (S.E.); (A.D.); (A.M.)
| |
Collapse
|
6
|
Puurunen MK, Vockley J, Searle SL, Sacharow SJ, Phillips JA, Denney WS, Goodlett BD, Wagner DA, Blankstein L, Castillo MJ, Charbonneau MR, Isabella VM, Sethuraman VV, Riese RJ, Kurtz CB, Brennan AM. Safety and pharmacodynamics of an engineered E. coli Nissle for the treatment of phenylketonuria: a first-in-human phase 1/2a study. Nat Metab 2021; 3:1125-1132. [PMID: 34294923 DOI: 10.1038/s42255-021-00430-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/23/2021] [Indexed: 01/01/2023]
Abstract
Phenylketonuria (PKU) is a rare disease caused by biallelic mutations in the PAH gene that result in an inability to convert phenylalanine (Phe) to tyrosine, elevated blood Phe levels and severe neurological complications if untreated. Most patients are unable to adhere to the protein-restricted diet, and thus do not achieve target blood Phe levels. We engineered a strain of E. coli Nissle 1917, designated SYNB1618, through insertion of the genes encoding phenylalanine ammonia lyase and L-amino acid deaminase into the genome, which allow for bacterial consumption of Phe within the gastrointestinal tract. SYNB1618 was studied in a phase 1/2a randomized, placebo-controlled, double-blind, multi-centre, in-patient study ( NCT03516487 ) in adult healthy volunteers (n = 56) and patients with PKU and blood Phe level ≥600 mmol l-1 (n = 14). Participants were randomized to receive a single dose of SYNB1618 or placebo (part 1) or up to three times per day for up to 7 days (part 2). The primary outcome of this study was safety and tolerability, and the secondary outcome was microbial kinetics. A D5-Phe tracer (15 mg kg-1) was used to study exploratory pharmacodynamic effects. SYNB1618 was safe and well tolerated with a maximum tolerated dose of 2 × 1011 colony-forming units. Adverse events were mostly gastrointestinal and of mild to moderate severity. All participants cleared the bacteria within 4 days of the last dose. Dose-responsive increases in strain-specific Phe metabolites in plasma (trans-cinnamic acid) and urine (hippuric acid) were observed, providing a proof of mechanism for the potential to use engineered bacteria in the treatment of rare metabolic disorders.
Collapse
Affiliation(s)
| | - Jerry Vockley
- University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | - Stephanie J Sacharow
- Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | - Benjamin D Goodlett
- Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
van Wegberg A, Evers R, Burgerhof J, van Dam E, Heiner-Fokkema MR, Janssen M, de Vries MC, van Spronsen FJ. Effect of BH4 on blood phenylalanine and tyrosine variations in patients with phenylketonuria. Mol Genet Metab 2021; 133:49-55. [PMID: 33766497 DOI: 10.1016/j.ymgme.2021.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND In patients with phenylketonuria, stability of blood phenylalanine and tyrosine concentrations might influence brain chemistry and therefore patient outcome. This study prospectively investigated the effects of tetrahydrobiopterin (BH4), as a chaperone of phenylalanine hydroxylase on diurnal and day-to-day variations of blood phenylalanine and tyrosine concentrations. METHODS Blood phenylalanine and tyrosine were measured in dried blood spots (DBS) four times daily for 2 days (fasting, before lunch, before dinner, evening) and once daily (fasting) for 6 days in a randomized cross-over design with a period with BH4 and a period without BH4. The sequence was randomized. Eleven proven BH4 responsive PKU patients participated, 5 of them used protein substitutes during BH4 treatment. Natural protein intake and protein substitute dosing was adjusted during the period without BH4 in order to keep DBS phenylalanine levels within target range. Patients filled out a 3-day food diary during both study periods. Variations of DBS phenylalanine and Tyr were expressed in standard deviations (SD) and coefficient of variation (CV). RESULTS BH4 treatment did not significantly influence day-to-day phenylalanine and tyrosine variations nor diurnal phenylalanine variations, but decreased diurnal tyrosine variations (median SD 17.6 μmol/l, median CV 21.3%, p = 0.01) compared to diet only (median SD 34.2 μmol/l, median CV 43.2%). Consequently, during BH4 treatment diurnal phenylalanine/tyrosine ratio variation was smaller, while fasting tyrosine levels tended to be higher. CONCLUSION BH4 did not impact phenylalanine variation but decreased diurnal tyrosine and phenylalanine/tyrosine ratio variations, possibly explained by less use of protein substitute and increased tyrosine synthesis.
Collapse
Affiliation(s)
- Amj van Wegberg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Raf Evers
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jgm Burgerhof
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - E van Dam
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, the Netherlands
| | - M R Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Centre Groningen, the Netherlands
| | - McH Janssen
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - M C de Vries
- Department of Pediatrics, Radboudumc Nijmegen, the Netherlands
| | - F J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
8
|
Evers RAF, van Wegberg AMJ, Ahring K, Beblo S, Bélanger-Quintana A, Bosch AM, Burlina A, Campistol J, Coskun T, Feillet F, Giżewska M, Huijbregts SCJ, Kearney S, Langeveld M, Leuzzi V, Maillot F, Muntau AC, Rocha JC, Romani C, Trefz FK, MacDonald A, van Spronsen FJ. Defining tetrahydrobiopterin responsiveness in phenylketonuria: Survey results from 38 countries. Mol Genet Metab 2021; 132:215-219. [PMID: 33610470 DOI: 10.1016/j.ymgme.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND A subset of patients with phenylketonuria benefit from treatment with tetrahydrobiopterin (BH4), although there is no consensus on the definition of BH4 responsiveness. The aim of this study therefore was to gain insight into the definitions of long-term BH4 responsiveness being used around the world. METHODS We performed a web-based survey targeting healthcare professionals involved in the treatment of PKU patients. Data were analysed according to geographical region (Europe, USA/Canada, other). RESULTS We analysed 166 responses. Long-term BH4 responsiveness was commonly defined using natural protein tolerance (95.6%), improvement of metabolic control (73.5%) and increase in quality of life (48.2%). When a specific value for a reduction in phenylalanine concentrations was reported (n = 89), 30% and 20% were most frequently used as cut-off values (76% and 19% of respondents, respectively). When a specific relative increase in natural protein tolerance was used to define long-term BH4 responsiveness (n = 71), respondents most commonly reported cut-off values of 30% and 100% (28% of respondents in both cases). Respondents from USA/Canada (n = 50) generally used less strict cut-off values compared to Europe (n = 96). Furthermore, respondents working within the same center answered differently. CONCLUSION The results of this study suggest a very heterogeneous situation on the topic of defining long-term BH4 responsiveness, not only at a worldwide level but also within centers. Developing a strong evidence- and consensus-based definition would improve the quality of BH4 treatment.
Collapse
Affiliation(s)
- R A F Evers
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Metabolic Diseases, the Netherlands
| | - A M J van Wegberg
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Metabolic Diseases, the Netherlands
| | - K Ahring
- Department of PKU, Copenhagen University Hospital, Denmark
| | - S Beblo
- Center for Pediatric Research Leipzig, Department of Women and Child Health, Hospital for Children and Adolescents, University Hospitals, Germany
| | - A Bélanger-Quintana
- Metabolic Diseases Unit, Department of Pediatrics, Hospital Ramon y Cajal, Madrid, Spain
| | - A M Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - A Burlina
- Division of Inherited Metabolic Diseases, Department of Integrated Diagnostics, University Hospital of Padova, Padova, Italy
| | - J Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - T Coskun
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Nutrition & Metabolism, Hacettepe, Ankara, Turkey
| | - F Feillet
- Inborn Errors of Metabolism, Pediatric unit, University Hospital of Nancy, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Nancy, France
| | - M Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - S C J Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, Netherlands
| | - S Kearney
- Clinical Psychology Department, Birmingham Children's Hospital, Birmingham, UK
| | - M Langeveld
- Department of Endocrinology and Metabolism, Amterdam UMC, University of Amsterdam, AZ, Amsterdam, the Netherlands
| | - V Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - F Maillot
- Department of Internal Medicine, CHRU de Tours, Université de Tours, Tours, France
| | - A C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J C Rocha
- Centro de Referência na área de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto - CHUP, Porto, Portugal; Centre for Health Technology and Services Research (CINTESIS), Portugal; Nutrition & Metabolism, Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - C Romani
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - F K Trefz
- University Children's Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany
| | - A MacDonald
- Dietetic Department, Birmingham Children's Hospital, Birmingham, UK
| | - F J van Spronsen
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Metabolic Diseases, the Netherlands.
| |
Collapse
|
9
|
Ilgaz F, Marsaux C, Pinto A, Singh R, Rohde C, Karabulut E, Gökmen-Özel H, Kuhn M, MacDonald A. Protein Substitute Requirements of Patients with Phenylketonuria on BH4 Treatment: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:1040. [PMID: 33807079 PMCID: PMC8004763 DOI: 10.3390/nu13031040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
The traditional treatment for phenylketonuria (PKU) is a phenylalanine (Phe)-restricted diet, supplemented with a Phe-free/low-Phe protein substitute. Pharmaceutical treatment with synthetic tetrahydrobiopterin (BH4), an enzyme cofactor, allows a patient subgroup to relax their diet. However, dietary protocols guiding the adjustments of protein equivalent intake from protein substitute with BH4 treatment are lacking. We systematically reviewed protein substitute usage with long-term BH4 therapy. Electronic databases were searched for articles published between January 2000 and March 2020. Eighteen studies (306 PKU patients) were eligible. Meta-analyses demonstrated a significant increase in Phe and natural protein intakes and a significant decrease in protein equivalent intake from protein substitute with cofactor therapy. Protein substitute could be discontinued in 51% of responsive patients, but was still required in 49%, despite improvement in Phe tolerance. Normal growth was maintained, but micronutrient deficiency was observed with BH4 treatment. A systematic protocol to increase natural protein intake while reducing protein substitute dose should be followed to ensure protein and micronutrient requirements are met and sustained. We propose recommendations to guide healthcare professionals when adjusting dietary prescriptions of PKU patients on BH4. Studies investigating new therapeutic options in PKU should systematically collect data on protein substitute and natural protein intakes, as well as other nutritional factors.
Collapse
Affiliation(s)
- Fatma Ilgaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey; (F.I.); (H.G.-Ö.)
| | - Cyril Marsaux
- Danone Nutricia Research, 3584CT Utrecht, The Netherlands;
| | - Alex Pinto
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (A.P.); (A.M.)
| | - Rani Singh
- Metabolic Genetics Nutrition Program, Department of Human Genetics, Emory University, Atlanta, GA 30322, USA;
| | - Carmen Rohde
- Department of Paediatrics of the University Clinics Leipzig, University of Leipzig, 04103 Leipzig, Germany;
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey;
| | - Hülya Gökmen-Özel
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey; (F.I.); (H.G.-Ö.)
| | - Mirjam Kuhn
- Danone Nutricia Research, 3584CT Utrecht, The Netherlands;
| | - Anita MacDonald
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (A.P.); (A.M.)
| |
Collapse
|
10
|
Burgess NM, Kelso W, Malpas CB, Winton-Brown T, Fazio T, Panetta J, De Jong G, Neath J, Atherton S, Velakoulis D, Walterfang M. The effect of improved dietary control on cognitive and psychiatric functioning in adults with phenylketonuria: the ReDAPT study. Orphanet J Rare Dis 2021; 16:35. [PMID: 33461585 PMCID: PMC7814424 DOI: 10.1186/s13023-020-01668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Background Phenylketonuria (PKU) is an autosomal recessive inherited disorder characterised by a deficiency in phenylalanine hydroxylase. Untreated, PKU is associated with a wide range of cognitive and psychiatric sequelae. Contemporary management guidelines recommend lifetime dietary control of phenylalanine (Phe) levels, however many individuals who discontinue dietary control subsequently suffer symptoms of anxiety, depression and disturbances to cognition. We undertook a prospective cohort study of patients with early-treated phenylketonuria who had ceased dietary control to test the hypothesis that resumption of dietary control of PKU is associated with improvements in measures of psychiatric morbidity and cognitive functioning. Methods We re-initiated dietary control for early-treated patients with PKU and monitored cognitive and psychiatric outcomes over a twelve-month period. Assessments included objective cognitive function (measured by cognitive proficiency index (CPI)), anxiety and depression scales. General linear mixed model (GLMM) analyses were performed to assess change in psychometric variables from baseline over twelve months after resumption of dietary control. Results A total of nine patients were recruited. Mean age was 33 years (SD = 8.75), five were female. Mean time off dietary control was 19.1 years (SD = 11.3), and mean baseline phenylalanine (Phe) levels were 1108 µmol/L (SD = 293). GLMM analysis demonstrated a positive relationship between CPI and time on diet (b = 0.56 [95% CI = 0.17, 0.95]). Age, time off diet, Phe levels and depression scores were not associated with cognitive function. There was a negative relationship between time on diet and anxiety (b = − 0.88 95% CI = [− 1.26, − 0.50]) and depression ratings (b = − 0.61, 95% CI = [− 0.95, − 0.26]). Conclusions This study demonstrated improvements in cognitive function, anxiety, and depression ratings associated with resumption of dietary control of PKU. Raw Phe levels were not strongly associated with psychiatric or cognitive scores in this cohort. These findings support the importance of lifelong treatment for PKU in improving the cognitive and psychiatric sequelae of the disease.
Collapse
Affiliation(s)
- Nicholas M Burgess
- Neuropsychiatry Unit, Royal Melbourne Hospital, Level 2, John Cade Building, Melbourne,, 3050, Australia
| | - Wendy Kelso
- Neuropsychiatry Unit, Royal Melbourne Hospital, Level 2, John Cade Building, Melbourne,, 3050, Australia
| | - Charles B Malpas
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia.,Clinical Outcomes Research Unit (CORe), Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Toby Winton-Brown
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Timothy Fazio
- Department of Metabolic Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Melbourne Medical School, Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Julie Panetta
- Department of Metabolic Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Gerard De Jong
- Department of Metabolic Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Joanna Neath
- Neuropsychiatry Unit, Royal Melbourne Hospital, Level 2, John Cade Building, Melbourne,, 3050, Australia
| | | | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Level 2, John Cade Building, Melbourne,, 3050, Australia.,Melbourne Neuropsychiatry Centre, University of Melbourne and North-Western Mental Health, Melbourne, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Level 2, John Cade Building, Melbourne,, 3050, Australia. .,Melbourne Neuropsychiatry Centre, University of Melbourne and North-Western Mental Health, Melbourne, Australia. .,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.
| |
Collapse
|
11
|
Lipids and phenylketonuria: Current evidences pointed the need for lipidomics studies. Arch Biochem Biophys 2020; 688:108431. [DOI: 10.1016/j.abb.2020.108431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
|
12
|
van Wegberg AMJ, Evers RAF, van Dam E, de Vries MC, Janssen MCH, Heiner-Fokkema MR, van Spronsen FJ. Does the 48-hour BH4 loading test miss responsive PKU patients? Mol Genet Metab 2020; 129:186-192. [PMID: 31924462 DOI: 10.1016/j.ymgme.2019.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Phenylketonuria (PKU) is an inborn error of phenylalanine (Phe) metabolism. Besides dietary treatment, some patients are responsive to and treated with tetrahydrobiopterin (BH4). Our primary objective was to examine whether the 48-hour BH4 loading test misses BH4-responsive PKU patients. Secondary, we assessed if it would be beneficial to 1) use a cut-off value of 20% Phe reduction instead of commonly used 30%, and 2) extend the loading test to 7 days. METHODS 24 patients with a 20-30% decrease of blood Phe levels during their initial 48-hour BH4 loading test or at least one mutation associated with long-term BH4 responsiveness, were invited to participate. 22 of them underwent the 7-day BH4 loading test. During the BH4 loading test, BH4 was administered orally once daily for 7 days (20 mg/kg/day). Blood samples on filter paper were collected at 13 time points. Potential BH4 responders (≥20% decrease in blood Phe concentrations at ≥1 moment within the first 48 h or ≥30% at ≥1 moment during the entire test) underwent a treatment trial to assess true long-term responsiveness (≥30% decrease of Phe levels compared to baseline and/or ≥50% increase in natural protein tolerance in accordance with the Dutch guidelines before 2017). The duration of the treatment trial varied from 2 to 18 months. RESULTS Of the 22 patients who completed the 7-day BH4 loading test, 2 were excluded, 8 had negative tests and 12 were considered to be potential BH4 responders. Of these 12 potential BH4-responsive PKU patients, 5 turned out to be false positive, 6 true-responder and 1 was withdrawn. CONCLUSION Even though the 48-hour BH4 loading test has proven its efficacy in the past, a full week may be necessary to detect all responders. So, if blood Phe concentrations during the 48-hour BH4 test shows a clear tendency, but not sufficient decrease, a full week (with only measurements each 24 h) could be offered. A threshold of ≥20% decrease within 48 h is not useful for predicting true BH4 responsiveness.
Collapse
Affiliation(s)
- Annemiek M J van Wegberg
- Department of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Centre Groningen, the Netherlands
| | - Roeland A F Evers
- Department of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Centre Groningen, the Netherlands
| | - Esther van Dam
- Department of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Centre Groningen, the Netherlands
| | - Maaike C de Vries
- Department of Paediatrics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Centre Groningen, the Netherlands
| | - Francjan J van Spronsen
- Department of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Centre Groningen, the Netherlands.
| |
Collapse
|
13
|
Qu J, Yang T, Wang E, Li M, Chen C, Ma L, Zhou Y, Cui Y. Efficacy and safety of sapropterin dihydrochloride in patients with phenylketonuria: A meta-analysis of randomized controlled trials. Br J Clin Pharmacol 2019; 85:893-899. [PMID: 30720885 PMCID: PMC6475685 DOI: 10.1111/bcp.13886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 01/19/2019] [Indexed: 12/22/2022] Open
Abstract
AIMS The aim of the present meta-analysis was to evaluate the efficacy and safety of sapropterin dihydrochloride in phenylketonuria (PKU) patients. METHODS The following databases were searched for randomized controlled trials (RCT) regarding PKU patients treated with sapropterin dihydrochloride: PubMed, Embase, Cochrane Library and clinicaltrials. Two authors independently selected studies, assessed the risk of bias and extracted data. The meta-analysis was performed in RevMan 5.3 provided by the Cochrane Collaboration. RESULTS Four studies met the inclusion criteria. In PKU patients with low blood phenylalanine (Phe) concentration, no significant difference was indicated for the decrease of Phe level (weighted mean difference (WMD) = -7.75 μmol L-1 ; 95% confidence intervals (CI): -82.63 to 67.13, P = 0.84, I2 = 0%), however, the dietary Phe tolerance was significantly improved in the sapropterin group (WMD = 19.89 mg kg-1 d-1 ; 95% CI: 10.26 to 29.52, P < 0.0001, I2 = 0%). In PKU patients with high blood Phe level, sapropterin showed a significant lowering in blood Phe concentration (WMD = -225.31 μmol L-1 ; 95% CI: -312.28 to -138.34, P < 0.00001, I2 = 0%). There was no significant difference for adverse events. CONCLUSIONS Sapropterin could bring benefit for PKU patients with high or low Phe level, due to Phe reduction in a short time or dietary Phe tolerance improvement respectively. Sapropterin has an acceptable safety profile.
Collapse
Affiliation(s)
- Jinghan Qu
- Department of PharmacyPeking University First Hospital8 Xishiku Street, Xicheng DistrictBeijing100034China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical SciencesPeking University Health Science Center38 Xueyuan Rd, Haidian District100191China
| | - Ting Yang
- Department of PharmacyPeking University First Hospital8 Xishiku Street, Xicheng DistrictBeijing100034China
| | - Ente Wang
- Department of PharmacyPeking University First Hospital8 Xishiku Street, Xicheng DistrictBeijing100034China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical SciencesPeking University Health Science Center38 Xueyuan Rd, Haidian District100191China
| | - Min Li
- Department of PharmacyPeking University First Hospital8 Xishiku Street, Xicheng DistrictBeijing100034China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical SciencesPeking University Health Science Center38 Xueyuan Rd, Haidian District100191China
| | - Chaoyang Chen
- Department of PharmacyPeking University First Hospital8 Xishiku Street, Xicheng DistrictBeijing100034China
| | - Lingyun Ma
- Department of PharmacyPeking University First Hospital8 Xishiku Street, Xicheng DistrictBeijing100034China
| | - Ying Zhou
- Department of PharmacyPeking University First Hospital8 Xishiku Street, Xicheng DistrictBeijing100034China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical SciencesPeking University Health Science Center38 Xueyuan Rd, Haidian District100191China
| | - Yimin Cui
- Department of PharmacyPeking University First Hospital8 Xishiku Street, Xicheng DistrictBeijing100034China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical SciencesPeking University Health Science Center38 Xueyuan Rd, Haidian District100191China
| |
Collapse
|
14
|
Ashe K, Kelso W, Farrand S, Panetta J, Fazio T, De Jong G, Walterfang M. Psychiatric and Cognitive Aspects of Phenylketonuria: The Limitations of Diet and Promise of New Treatments. Front Psychiatry 2019; 10:561. [PMID: 31551819 PMCID: PMC6748028 DOI: 10.3389/fpsyt.2019.00561] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Phenylketonuria (PKU) is a recessive disorder of phenylalanine metabolism due to mutations in the gene for phenylalanine hydroxylase (PAH). Reduced PAH activity results in significant hyperphenylalaninemia, which leads to alterations in cerebral myelin and protein synthesis, as well as reduced levels of serotonin, dopamine, and noradrenaline in the brain. When untreated, brain development is grossly disrupted and significant intellectual impairment and behavioral disturbance occur. The advent of neonatal heel prick screening has allowed for diagnosis at birth, and the institution of a phenylalanine restricted diet. Dietary treatment, particularly when maintained across neurodevelopment and well into adulthood, has resulted in markedly improved outcomes at a cognitive and psychiatric level for individuals with PKU. However, few individuals can maintain full dietary control lifelong, and even with good control, an elevated risk remains of-in particular-mood, anxiety, and attentional disorders across the lifespan. Increasingly, dietary recommendations focus on maintaining continuous dietary treatment lifelong to optimize psychiatric and cognitive outcomes, although the effect of long-term protein restricted diets on brain function remains unknown. While psychiatric illness is very common in adult PKU populations, very little data exist to guide clinicians on optimal treatment. The advent of new treatments that do not require restrictive dietary management, such as the enzyme therapy Pegvaliase, holds the promise of allowing patients a relatively normal diet alongside optimized mental health and cognitive functioning.
Collapse
Affiliation(s)
- Killian Ashe
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Wendy Kelso
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Sarah Farrand
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Julie Panetta
- Statewide Adult Metabolic Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Tim Fazio
- Statewide Adult Metabolic Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard De Jong
- Statewide Adult Metabolic Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Melbourne Neuropsychiatry Centre, University of Melbourne and North-Western Mental Health, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Extended Experience of Lower Dose Sapropterin in Irish Adults with Mild Phenylketonuria. JIMD Rep 2017. [PMID: 29030855 DOI: 10.1007/8904_2017_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] Open
Abstract
Adherence to dietary and treatment recommendations is a long-standing concern for adults and adolescents with PKU and treating clinicians. In about 20-30% of PKU patients, Phe levels may be controlled by tetrahydrobiopterin (BH4) therapy. The European PKU 2017 Guidelines recommends treatment with BH4 for cases of proven long-term BH4 responsiveness, with a recommended dosage of Sapropterin 10-20 mg/kg/day.We report four young Irish patients with mild PKU, known to be BH4 responsive, who were treated with lower doses of Sapropterin for over 7 years.Case 1: Female, currently age 20. Genotype p. 165T/p/F39L, c.[194T>C]; [117C>G]. Newborn Phe: 851 μmol/L. Pre-Sapropterin Phe tolerance: 600 mg Phe/day to maintain Phe levels <400 μmol/L. Commenced on Sapropterin 400 mg (6.5 mg/kg/day) with increase in Phe tolerance to 800 mg/day.Case 2: Female, currently age 23. Genotype p. 165T/pF39L; c.[194T>C]; [117C>G]. Newborn Phe: 714 μmol/L. Pre-Sapropterin Phe tolerance: 700 mg Phe/day. Commenced on Sapropterin 400 mg (8 mg/kg/day) with increase in Phe tolerance to 800 mg/day.Case 3: Male, currently age 22. Genotype p. 165T/p.S349P; c.[194T>C][1045T>C]. Newborn Phe: 1,036 μmol/L. Pre-Sapropterin Phe tolerance: 600 mg Phe/day. Commenced on Sapropterin 400 mg (5.4 mg/kg/day). Increased to 1,600 mg Phe/day.Case 4: Female, currently age 29. Genotype p.R408W/p/p.Y414C; c.[1222C>T], [1241A>G]. Newborn Phe: 1,600 μmol/L. Pre-Sapropterin tolerance: 450 mg/day. Commenced on Sapropterin 400 mg (5.0 mg/kg/day). Increased to 900 mg Phe/day.Almost 7 years of surveillance for these four patients has shown that this dose of Sapropterin (range 5-8 mg/kg day) was well tolerated and effective with a significant response to treatment and a marked improvement in quality of life at these lower Sapropterin doses.
Collapse
|
16
|
van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Giżewska M, Huijbregts SC, Kearney S, Leuzzi V, Maillot F, Muntau AC, van Rijn M, Trefz F, Walter JH, van Spronsen FJ. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis 2017; 12:162. [PMID: 29025426 PMCID: PMC5639803 DOI: 10.1186/s13023-017-0685-2] [Citation(s) in RCA: 467] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism caused by deficiency in the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. If left untreated, PKU results in increased phenylalanine concentrations in blood and brain, which cause severe intellectual disability, epilepsy and behavioural problems. PKU management differs widely across Europe and therefore these guidelines have been developed aiming to optimize and standardize PKU care. Professionals from 10 different European countries developed the guidelines according to the AGREE (Appraisal of Guidelines for Research and Evaluation) method. Literature search, critical appraisal and evidence grading were conducted according to the SIGN (Scottish Intercollegiate Guidelines Network) method. The Delphi-method was used when there was no or little evidence available. External consultants reviewed the guidelines. Using these methods 70 statements were formulated based on the highest quality evidence available. The level of evidence of most recommendations is C or D. Although study designs and patient numbers are sub-optimal, many statements are convincing, important and relevant. In addition, knowledge gaps are identified which require further research in order to direct better care for the future.
Collapse
Affiliation(s)
- A. M. J. van Wegberg
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - A. MacDonald
- Dietetic Department, Birmingham Children’s Hospital, Birmingham, UK
| | - K. Ahring
- Department of PKU, Kennedy Centre, Glostrup, Denmark
| | - A. Bélanger-Quintana
- Metabolic Diseases Unit, Department of Paediatrics, Hospital Ramon y Cajal Madrid, Madrid, Spain
| | - N. Blau
- University Children’s Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany
- University Children’s Hospital Zürich, Zürich, Switzerland
| | - A. M. Bosch
- Department of Paediatrics, Division of Metabolic Disorders, Academic Medical Centre, University Hospital of Amsterdam, Amsterdam, The Netherlands
| | - A. Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - J. Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - F. Feillet
- Department of Paediatrics, Hôpital d’Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - M. Giżewska
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - S. C. Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - S. Kearney
- Clinical Psychology Department, Birmingham Children’s Hospital, Birmingham, UK
| | - V. Leuzzi
- Department of Paediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - F. Maillot
- CHRU de Tours, Université François Rabelais, INSERM U1069, Tours, France
| | - A. C. Muntau
- University Children’s Hospital, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - M. van Rijn
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - F. Trefz
- Department of Paediatrics, University of Heidelberg, Heidelberg, Germany
| | - J. H. Walter
- Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - F. J. van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
17
|
van Spronsen FJ, van Wegberg AM, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Giżewska M, Huijbregts SC, Kearney S, Leuzzi V, Maillot F, Muntau AC, Trefz FK, van Rijn M, Walter JH, MacDonald A. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol 2017; 5:743-756. [PMID: 28082082 DOI: 10.1016/s2213-8587(16)30320-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/11/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
We developed European guidelines to optimise phenylketonuria (PKU) care. To develop the guidelines, we did a literature search, critical appraisal, and evidence grading according to the Scottish Intercollegiate Guidelines Network method. We used the Delphi method when little or no evidence was available. From the 70 recommendations formulated, in this Review we describe ten that we deem as having the highest priority. Diet is the cornerstone of treatment, although some patients can benefit from tetrahydrobiopterin (BH4). Untreated blood phenylalanine concentrations determine management of people with PKU. No intervention is required if the blood phenylalanine concentration is less than 360 μmol/L. Treatment is recommended up to the age of 12 years if the phenylalanine blood concentration is between 360 μmol/L and 600 μmol/L, and lifelong treatment is recommended if the concentration is more than 600 μmol/L. For women trying to conceive and during pregnancy (maternal PKU), untreated phenylalanine blood concentrations of more than 360 μmol/L need to be reduced. Treatment target concentrations are as follows: 120-360 μmol/L for individuals aged 0-12 years and for maternal PKU, and 120-600 μmol/L for non-pregnant individuals older than 12 years. Minimum requirements for the management and follow-up of patients with PKU are scheduled according to age, adherence to treatment, and clinical status. Nutritional, clinical, and biochemical follow-up is necessary for all patients, regardless of therapy.
Collapse
Affiliation(s)
- Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Annemiek Mj van Wegberg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kirsten Ahring
- Department of PKU, Kennedy Centre, Copenhagen University Hospital, Glostrup, Denmark
| | | | - Nenad Blau
- University Children's Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany; University Children's Hospital Zurich, Zurich, Switzerland
| | - Annet M Bosch
- Department of Paediatrics, Division of Metabolic Disorders, Academic Medical Centre, University Hospital of Amsterdam, Amsterdam, Netherlands
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - Jaime Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Francois Feillet
- Department of Pediatrics, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - Maria Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - Stephan C Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, Netherlands
| | - Shauna Kearney
- Clinical Psychology Department, Birmingham Children's Hospital, Birmingham, UK
| | - Vincenzo Leuzzi
- Department of Pediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Francois Maillot
- Internal Medicine Service, CHRU de Tours, François Rabelais University, Tours, France
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fritz K Trefz
- University Children's Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany
| | - Margreet van Rijn
- Department of Dietetics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - John H Walter
- Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Anita MacDonald
- Dietetic Department, Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
18
|
Lu DY, Ye J, Han LS, Qiu WJ, Zhang HW, Zhou JD, Bao PZ, Zhang YF, Gu XF. QDPR gene mutation and clinical follow-up in Chinese patients with dihydropteridine reductase deficiency. World J Pediatr 2014; 10:219-26. [PMID: 25124972 DOI: 10.1007/s12519-014-0496-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/10/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study aimed to investigate the mutation spectrum of the QDPR gene, to determine the effect of mutations on dihydropteridine reductase (DHPR) structure/function, to discuss the potential genotypephenotype correlation, and to evaluate the clinical outcome of Chinese patients after treatment. METHODS Nine DHPR-deficient patients were enrolled in this study and seven of them underwent neonatal screening. QDPR gene mutations were analyzed and confirmed by routine methods. The potential pathogenicity of missense variants was analyzed using Clustal X, PolyPhen program and Swiss-PDB Viewer 4.04_OSX software, respectively. The clinical outcomes of the patients were evaluated after long-term treatment. RESULTS In 10 mutations of the 9 patients, 4 were novel mutations (G20V, V86D, G130S and A175R), 4 were reported by us previously, and 2 known mutations were identified. R221X was a hotspot mutation (27.7%) in our patients. Eight missense mutations probably had damage to protein. Six patients in this series were treated with a good control of phenylalanine level. The height and weight of the patients were normal at the age of 4 months to 7.5 years. Four patients, who underwent a neonatal screening and were treated early, showed a normal mental development. In 2 patients diagnosed late, neurological symptoms were significantly improved. CONCLUSIONS The mutation spectrum of the QDPR gene is different in the Chinese population. Most mutations are related to severe phenotype. The determination of DHPR activity should be performed in patients with hyperphenylalaninemia. DHPR-deficient patients who were treated below the age of 2 months may have a near normal mental development.
Collapse
Affiliation(s)
- De-Yun Lu
- Department of Pediatric Endocrinology and Genetic Metabolism and Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau N, Bodamer OA, Brosco JP, Brown CS, Burlina AB, Burton BK, Chang CS, Coates PM, Cunningham AC, Dobrowolski SF, Ferguson JH, Franklin TD, Frazier DM, Grange DK, Greene CL, Groft SC, Harding CO, Howell RR, Huntington KL, Hyatt-Knorr HD, Jevaji IP, Levy HL, Lichter-Konecki U, Lindegren ML, Lloyd-Puryear MA, Matalon K, MacDonald A, McPheeters ML, Mitchell JJ, Mofidi S, Moseley KD, Mueller CM, Mulberg AE, Nerurkar LS, Ogata BN, Pariser AR, Prasad S, Pridjian G, Rasmussen SA, Reddy UM, Rohr FJ, Singh RH, Sirrs SM, Stremer SE, Tagle DA, Thompson SM, Urv TK, Utz JR, van Spronsen F, Vockley J, Waisbren SE, Weglicki LS, White DA, Whitley CB, Wilfond BS, Yannicelli S, Young JM. Phenylketonuria Scientific Review Conference: state of the science and future research needs. Mol Genet Metab 2014; 112:87-122. [PMID: 24667081 DOI: 10.1016/j.ymgme.2014.02.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/17/2023]
Abstract
New developments in the treatment and management of phenylketonuria (PKU) as well as advances in molecular testing have emerged since the National Institutes of Health 2000 PKU Consensus Statement was released. An NIH State-of-the-Science Conference was convened in 2012 to address new findings, particularly the use of the medication sapropterin to treat some individuals with PKU, and to develop a research agenda. Prior to the 2012 conference, five working groups of experts and public members met over a 1-year period. The working groups addressed the following: long-term outcomes and management across the lifespan; PKU and pregnancy; diet control and management; pharmacologic interventions; and molecular testing, new technologies, and epidemiologic considerations. In a parallel and independent activity, an Evidence-based Practice Center supported by the Agency for Healthcare Research and Quality conducted a systematic review of adjuvant treatments for PKU; its conclusions were presented at the conference. The conference included the findings of the working groups, panel discussions from industry and international perspectives, and presentations on topics such as emerging treatments for PKU, transitioning to adult care, and the U.S. Food and Drug Administration regulatory perspective. Over 85 experts participated in the conference through information gathering and/or as presenters during the conference, and they reached several important conclusions. The most serious neurological impairments in PKU are preventable with current dietary treatment approaches. However, a variety of more subtle physical, cognitive, and behavioral consequences of even well-controlled PKU are now recognized. The best outcomes in maternal PKU occur when blood phenylalanine (Phe) concentrations are maintained between 120 and 360 μmol/L before and during pregnancy. The dietary management treatment goal for individuals with PKU is a blood Phe concentration between 120 and 360 μmol/L. The use of genotype information in the newborn period may yield valuable insights about the severity of the condition for infants diagnosed before maximal Phe levels are achieved. While emerging and established genotype-phenotype correlations may transform our understanding of PKU, establishing correlations with intellectual outcomes is more challenging. Regarding the use of sapropterin in PKU, there are significant gaps in predicting response to treatment; at least half of those with PKU will have either minimal or no response. A coordinated approach to PKU treatment improves long-term outcomes for those with PKU and facilitates the conduct of research to improve diagnosis and treatment. New drugs that are safe, efficacious, and impact a larger proportion of individuals with PKU are needed. However, it is imperative that treatment guidelines and the decision processes for determining access to treatments be tied to a solid evidence base with rigorous standards for robust and consistent data collection. The process that preceded the PKU State-of-the-Science Conference, the conference itself, and the identification of a research agenda have facilitated the development of clinical practice guidelines by professional organizations and serve as a model for other inborn errors of metabolism.
Collapse
Affiliation(s)
- Kathryn M Camp
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Melissa A Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Gerard T Berry
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Deborah A Bilder
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA.
| | - Nenad Blau
- University Children's Hospital, Heidelberg, Germany; University Children's Hospital, Zürich, Switzerland.
| | - Olaf A Bodamer
- University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Jeffrey P Brosco
- University of Miami Mailman Center for Child Development, Miami, FL 33101, USA.
| | | | | | - Barbara K Burton
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| | - Christine S Chang
- Agency for Healthcare Research and Quality, Rockville, MD 20850, USA.
| | - Paul M Coates
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Amy C Cunningham
- Tulane University Medical School, Hayward Genetics Center, New Orleans, LA 70112, USA.
| | | | - John H Ferguson
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | | | | | - Dorothy K Grange
- Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Carol L Greene
- University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Stephen C Groft
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Cary O Harding
- Oregon Health & Science University, Portland, OR 97239, USA.
| | - R Rodney Howell
- University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | - Henrietta D Hyatt-Knorr
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Indira P Jevaji
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD 20817, USA.
| | - Harvey L Levy
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Uta Lichter-Konecki
- George Washington University, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | | | | | | - Melissa L McPheeters
- Vanderbilt Evidence-based Practice Center, Institute for Medicine and Public Health, Nashville, TN 37203, USA.
| | - John J Mitchell
- McGill University Health Center, Montreal, Quebec H3H 1P3, Canada.
| | - Shideh Mofidi
- Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, NY 10595, USA.
| | - Kathryn D Moseley
- University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Christine M Mueller
- Office of Orphan Products Development, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Andrew E Mulberg
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Lata S Nerurkar
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Beth N Ogata
- University of Washington, Seattle, WA 98195, USA.
| | - Anne R Pariser
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Suyash Prasad
- BioMarin Pharmaceutical Inc., San Rafael, CA 94901, USA.
| | - Gabriella Pridjian
- Tulane University Medical School, Hayward Genetics Center, New Orleans, LA 70112, USA.
| | | | - Uma M Reddy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | - Sandra M Sirrs
- Vancouver General Hospital, University of British Columbia, Vancouver V5Z 1M9, Canada.
| | | | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Susan M Thompson
- The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.
| | - Tiina K Urv
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jeanine R Utz
- University of Minnesota, Minneapolis, MN 55455, USA.
| | - Francjan van Spronsen
- University of Groningen, University Medical Center of Groningen, Beatrix Children's Hospital, Netherlands.
| | - Jerry Vockley
- University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Susan E Waisbren
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Linda S Weglicki
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Desirée A White
- Department of Psychology, Washington University, St. Louis, MO 63130, USA.
| | | | - Benjamin S Wilfond
- Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA.
| | | | - Justin M Young
- The Young Face, Facial Plastic and Reconstructive Surgery, Cumming, GA 30041, USA.
| |
Collapse
|