1
|
Brooks DL, Carrasco MJ, Qu P, Peranteau WH, Ahrens-Nicklas RC, Musunuru K, Alameh MG, Wang X. Rapid and definitive treatment of phenylketonuria in variant-humanized mice with corrective editing. Nat Commun 2023; 14:3451. [PMID: 37301931 PMCID: PMC10257655 DOI: 10.1038/s41467-023-39246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Phenylketonuria (PKU), an autosomal recessive disorder caused by pathogenic variants in the phenylalanine hydroxylase (PAH) gene, results in the accumulation of blood phenylalanine (Phe) to neurotoxic levels. Current dietary and medical treatments are chronic and reduce, rather than normalize, blood Phe levels. Among the most frequently occurring PAH variants in PKU patients is the P281L (c.842C>T) variant. Using a CRISPR prime-edited hepatocyte cell line and a humanized PKU mouse model, we demonstrate efficient in vitro and in vivo correction of the P281L variant with adenine base editing. With the delivery of ABE8.8 mRNA and either of two guide RNAs in vivo using lipid nanoparticles (LNPs) in humanized PKU mice, we observe complete and durable normalization of blood Phe levels within 48 h of treatment, resulting from corrective PAH editing in the liver. These studies nominate a drug candidate for further development as a definitive treatment for a subset of PKU patients.
Collapse
Affiliation(s)
- Dominique L Brooks
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuel J Carrasco
- Department of Bioengineering, George Mason University, Fairfax, Virginia, USA
| | - Ping Qu
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William H Peranteau
- The Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pediatric General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca C Ahrens-Nicklas
- Division of Human Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kiran Musunuru
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mohamad-Gabriel Alameh
- Department of Bioengineering, George Mason University, Fairfax, Virginia, USA.
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Xiao Wang
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
McInnes G, Sharo AG, Koleske ML, Brown JEH, Norstad M, Adhikari AN, Wang S, Brenner SE, Halpern J, Koenig BA, Magnus DC, Gallagher RC, Giacomini KM, Altman RB. Opportunities and challenges for the computational interpretation of rare variation in clinically important genes. Am J Hum Genet 2021; 108:535-548. [PMID: 33798442 PMCID: PMC8059338 DOI: 10.1016/j.ajhg.2021.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genome sequencing is enabling precision medicine-tailoring treatment to the unique constellation of variants in an individual's genome. The impact of recurrent pathogenic variants is often understood, however there is a long tail of rare genetic variants that are uncharacterized. The problem of uncharacterized rare variation is especially acute when it occurs in genes of known clinical importance with functionally consequential variants and associated mechanisms. Variants of uncertain significance (VUSs) in these genes are discovered at a rate that outpaces current ability to classify them with databases of previous cases, experimental evaluation, and computational predictors. Clinicians are thus left without guidance about the significance of variants that may have actionable consequences. Computational prediction of the impact of rare genetic variation is increasingly becoming an important capability. In this paper, we review the technical and ethical challenges of interpreting the function of rare variants in two settings: inborn errors of metabolism in newborns and pharmacogenomics. We propose a framework for a genomic learning healthcare system with an initial focus on early-onset treatable disease in newborns and actionable pharmacogenomics. We argue that (1) a genomic learning healthcare system must allow for continuous collection and assessment of rare variants, (2) emerging machine learning methods will enable algorithms to predict the clinical impact of rare variants on protein function, and (3) ethical considerations must inform the construction and deployment of all rare-variation triage strategies, particularly with respect to health disparities arising from unbalanced ancestry representation.
Collapse
Affiliation(s)
- Gregory McInnes
- Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305, USA
| | - Andrew G Sharo
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Megan L Koleske
- Department of Bioengineering and Therapeutics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia E H Brown
- Program in Bioethics, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Health & Aging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew Norstad
- Program in Bioethics, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Health & Aging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aashish N Adhikari
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Illumina, Inc., Foster City, CA 94404, USA
| | - Sheng Wang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Steven E Brenner
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jodi Halpern
- UCSF-UCB Joint Medical Program, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Barbara A Koenig
- Program in Bioethics, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Health & Aging, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Social & Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Humanities & Social Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David C Magnus
- Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Renata C Gallagher
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Russ B Altman
- Departments of Bioengineering & Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Oussalah A, Jeannesson-Thivisol E, Chéry C, Perrin P, Rouyer P, Josse T, Cano A, Barth M, Fouilhoux A, Mention K, Labarthe F, Arnoux JB, Maillot F, Lenaerts C, Dumesnil C, Wagner K, Terral D, Broué P, De Parscau L, Gay C, Kuster A, Bédu A, Besson G, Lamireau D, Odent S, Masurel A, Rodriguez-Guéant RM, Feillet F, Guéant JL, Namour F. Population and evolutionary genetics of the PAH locus to uncover overdominance and adaptive mechanisms in phenylketonuria: Results from a multiethnic study. EBioMedicine 2020; 51:102623. [PMID: 31923802 PMCID: PMC7000351 DOI: 10.1016/j.ebiom.2019.102623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism in Europe. The reasons underlying the high prevalence of heterozygous carriers are not clearly understood. We aimed to look for pathogenic PAH variant enrichment according to geographical areas and patients' ethnicity using a multiethnic nationwide cohort of patients with PKU in France. We subsequently appraised the population differentiation, balancing selection and the molecular evolutionary history of the PAH locus. METHODS The French nationwide PKU study included patients who have been referred at the national level to the University Hospital of Nancy, and for whom a molecular diagnosis of phenylketonuria was made by Sanger sequencing. We performed enrichment analyses by comparing alternative allele frequencies using Fisher's exact test with Bonferroni adjustment. We estimated the amount of genetic differentiation among populations using Wright's fixation index (Fst). To estimate the molecular evolutionary history of the PAH gene, we performed phylogenetic and evolutionary analyses using whole-genome and exome-sequencing data from healthy individuals and non-PKU patients, respectively. Finally, we used exome-wide association study to decipher potential genetic loci associated with population divergence on PAH. FINDINGS The study included 696 patients and revealed 132 pathogenic PAH variants. Three geographical areas showed significant enrichment for a pathogenic PAH variant: North of France (p.Arg243Leu), North-West of France (p.Leu348Val), and Mediterranean coast (p.Ala403Val). One PAH variant (p.Glu280Gln) was significantly enriched among North-Africans (OR = 23·23; 95% CI: 9·75-55·38). PAH variants exhibiting a strong genetic differentiation were significantly enriched in the 'Biopterin_H' domain (OR = 6·45; 95% CI: 1·99-20·84), suggesting a balancing selection pressure on the biopterin function of PAH. Phylogenetic and timetree analyses were consistent with population differentiation events on European-, African-, and Asian-ancestry populations. The five PAH variants most strongly associated with a high selection pressure were phylogenetically close and were located within the biopterin domain coding region of PAH or in its vicinity. Among the non-PAH loci potentially associated with population divergence, two reached exome-wide significance: SSPO (SCO-spondin) and DBH (dopamine beta-hydroxylase), involved in neuroprotection and metabolic adaptation, respectively. INTERPRETATION Our data provide evidence on the combination of evolutionary and adaptive events in populations with distinct ancestries, which may explain the overdominance of some genetic variants on PAH. FUNDING French National Institute of Health and Medical Research (INSERM) UMR_S 1256.
Collapse
Affiliation(s)
- Abderrahim Oussalah
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France.
| | - Elise Jeannesson-Thivisol
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France
| | - Céline Chéry
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France
| | - Pascal Perrin
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France
| | - Pierre Rouyer
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France
| | - Thomas Josse
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France
| | - Aline Cano
- Centre of Reference for Inborn Metabolic Diseases, University Hospital La Timone, Marseille, France
| | - Magalie Barth
- Department of Genetics, University Hospital of Angers, Angers, France
| | - Alain Fouilhoux
- Metabolic Diseases Unit, Woman-Mother-Child Hospital, University Hospital of Lyon, Lyon, France
| | | | | | - Jean-Baptiste Arnoux
- Reference Centre for Inherited Metabolic Diseases, Necker-Sick Children's Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - François Maillot
- Department of Internal Medicine, University Hospital of Tours, François Rabelais University, Tours, France
| | - Catherine Lenaerts
- Department of Paediatrics, University Hospital of Amiens, Amiens, France
| | - Cécile Dumesnil
- Paediatric Haematology and Oncology, University Hospital of Rouen, Rouen, France
| | - Kathy Wagner
- Department of Paediatrics, Lenval Hospital, Nice, France
| | - Daniel Terral
- Department of Paediatrics, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Pierre Broué
- Reference Centre for Inborn Errors of Metabolism, University Children Hospital, Toulouse, France
| | - Loic De Parscau
- Department of Paediatrics, University Hospital Morvan, Brest, France
| | - Claire Gay
- Department of Paediatrics, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Alice Kuster
- Paediatric Department, University Hospital of Nantes, Nantes, France
| | - Antoine Bédu
- Department of Neonatology, Mother and Child Hospital, Limoges, France
| | - Gérard Besson
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Delphine Lamireau
- Department of Paediatrics, Pellegrin-Enfants Hospital, Bordeaux, France
| | - Sylvie Odent
- Department of Clinical Genetics, University Hospital of Rennes, Rennes, France
| | - Alice Masurel
- Department of Medical Genetics, Dijon Bourgogne University Hospital, Dijon, France
| | - Rosa-Maria Rodriguez-Guéant
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France
| | - François Feillet
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France; Department of Paediatrics, University Hospital of Nancy, Nancy, France
| | - Jean-Louis Guéant
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France.
| | - Fares Namour
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France
| |
Collapse
|
4
|
Jaffe EK. New protein structures provide an updated understanding of phenylketonuria. Mol Genet Metab 2017; 121:289-296. [PMID: 28645531 PMCID: PMC5549558 DOI: 10.1016/j.ymgme.2017.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022]
Abstract
Phenylketonuria (PKU) and less severe hyperphenylalaninemia (HPA) constitute the most common inborn error of amino acid metabolism, and is most often caused by defects in phenylalanine hydroxylase (PAH) function resulting in accumulation of Phe to neurotoxic levels. Despite the success of dietary intervention in preventing permanent neurological damage, individuals living with PKU clamor for additional non-dietary therapies. The bulk of disease-associated mutations are PAH missense variants, which occur throughout the entire 452 amino acid human PAH protein. While some disease-associated mutations affect protein structure (e.g. truncations) and others encode catalytically dead variants, most have been viewed as defective in protein folding/stability. Here we refine this view to address how PKU-associated missense variants can perturb the equilibrium among alternate native PAH structures (resting-state PAH and activated PAH), thus shifting the tipping point of this equilibrium to a neurotoxic Phe concentration. This refined view of PKU introduces opportunities for the design or discovery of therapeutic pharmacological chaperones that can help restore the tipping point to healthy Phe levels and how such a therapeutic might work with or without the inhibitory pharmacological chaperone BH4. Dysregulation of an equilibrium of architecturally distinct native PAH structures departs from the concept of "misfolding", provides an updated understanding of PKU, and presents an enhanced foundation for understanding genotype/phenotype relationships.
Collapse
Affiliation(s)
- Eileen K Jaffe
- Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, Philadelphia, PA 19111, USA.
| |
Collapse
|
5
|
Li N, Jia H, Liu Z, Tao J, Chen S, Li X, Deng Y, Jin X, Song J, Zhang L, Liang Y, Wang W, Zhu J. Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing. Sci Rep 2015; 5:15769. [PMID: 26503515 PMCID: PMC4621502 DOI: 10.1038/srep15769] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022] Open
Abstract
Phenylketonuria (PKU) is an inherited autosomal recessive disorder of phenylalanine metabolism, mainly caused by a deficiency of phenylalanine hydroxylase (PAH). The incidence of various PAH mutations differs among race and ethnicity. Here we report a spectrum of PAH mutations complied from 796 PKU patients from mainland China. The all 13 exons and adjacent intronic regions of the PAH gene were determined by next-generation sequencing. We identified 194 different mutations, of which 41 are not reported before. Several mutations reoccurred with high frequency including p.R243Q, p.EX6-96A > G, p.V399V, p.R241C, p.R111*, p.Y356*, p.R413P, and IVS4-1G > A. 76.33% of mutations were localized in exons 3, 6, 7, 11, 12. We further compared the frequency of each mutation between populations in northern and southern China, and found significant differences in 19 mutations. Furthermore, we identified 101 mutations that are not reported before in Chinese population, our study thus broadens the mutational spectrum of Chinese PKU patients. Additionally, 41 novel mutations will expand and improve PAH mutation database. Finally, our study offers proof that NGS is effective, reduces screening times and costs, and facilitates the provision of appropriate genetic counseling for PKU patients.
Collapse
Affiliation(s)
- Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China
| | - Haitao Jia
- BGI-Shenzhen, Building No. 11, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China
| | - Jing Tao
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China
| | - Song Chen
- BGI-Shenzhen, Building No. 11, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China.,Laboratory of Molecular Epidemiology for birth defect, West China Institute of Women and Children's Health, Sichuan University, Chengdu, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China
| | - Xi Jin
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China
| | - Jiaping Song
- BGI-Shenzhen, Building No. 11, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong China
| | - Liangtao Zhang
- BGI-Shenzhen, Building No. 11, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong China
| | - Yu Liang
- BGI-Shenzhen, Building No. 11, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong China
| | - Wei Wang
- BGI-Shenzhen, Building No. 11, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Sec. 3 No. 20, South RenMin Road, Chengdu, Sichuan, China.,Laboratory of Molecular Epidemiology for birth defect, West China Institute of Women and Children's Health, Sichuan University, Chengdu, China
| |
Collapse
|