1
|
Baynam G, Baker S, Steward C, Summar M, Halley M, Pariser A. Increasing Diversity, Equity, Inclusion, and Accessibility in Rare Disease Clinical Trials. Pharmaceut Med 2024; 38:261-276. [PMID: 38977611 DOI: 10.1007/s40290-024-00529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
Diversity, equity, inclusion, and accessibility (DEIA) are foundational principles for clinical trials and medical research. In rare diseases clinical research, where numbers of participants are already challenged by rarity itself, maximizing inclusion is of particular importance to clinical trial success, as well as ensuring the generalizability and relevance of the trial results to the people affected by these diseases. In this article, we review the medical and gray literature and cite case examples to provide insights into how DEIA can be proactively integrated into rare diseases clinical research. Here, we particularly focus on genetic diversity. While the rare diseases DEIA literature is nascent, it is accelerating as many patient advocacy groups, professional societies, training and educational organizations, researcher groups, and funders are setting intentional strategies to attain DEIA goals moving forward, and to establish metrics to ensure continued improvement. Successful examples in underserved and underrepresented populations are available that can serve as case studies upon which rare diseases clinical research programs can be built. Rare diseases have historically been innovation drivers in basic, translational, and clinical research, and ultimately, all populations benefit from data diversity in rare diseases populations that deliver novel insights and approaches to how clinical research can be performed.
Collapse
Affiliation(s)
- Gareth Baynam
- Rare Care Centre, Perth Children's Hospital, Perth, WA, Australia
| | - Simeón Baker
- Genomics England, London, UK
- HealthWeb Solutions, London, UK
- School of Health Studies, University of Western Ontario, London, ON, Canada
| | | | | | - Meghan Halley
- Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
2
|
Rubinstein YR, Robinson PN, Gahl WA, Avillach P, Baynam G, Cederroth H, Goodwin RM, Groft SC, Hansson MG, Harris NL, Huser V, Mascalzoni D, McMurry JA, Might M, Nellaker C, Mons B, Paltoo DN, Pevsner J, Posada M, Rockett-Frase AP, Roos M, Rubinstein TB, Taruscio D, van Enckevort E, Haendel MA. The case for open science: rare diseases. JAMIA Open 2020; 3:472-486. [PMID: 33426479 PMCID: PMC7660964 DOI: 10.1093/jamiaopen/ooaa030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/30/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023] Open
Abstract
The premise of Open Science is that research and medical management will progress faster if data and knowledge are openly shared. The value of Open Science is nowhere more important and appreciated than in the rare disease (RD) community. Research into RDs has been limited by insufficient patient data and resources, a paucity of trained disease experts, and lack of therapeutics, leading to long delays in diagnosis and treatment. These issues can be ameliorated by following the principles and practices of sharing that are intrinsic to Open Science. Here, we describe how the RD community has adopted the core pillars of Open Science, adding new initiatives to promote care and research for RD patients and, ultimately, for all of medicine. We also present recommendations that can advance Open Science more globally.
Collapse
Affiliation(s)
- Yaffa R Rubinstein
- Special Volunteer in the Office of Strategic Initiatives, National Library of Medicine, Bethesda, Maryland, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - William A Gahl
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, USA
| | - Paul Avillach
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Telethon Kids Institute, Perth, Australia
| | | | - Rebecca M Goodwin
- Department of Health and Human Services, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen C Groft
- NCATS, National Institutes of Health, Bethesda, Maryland, USA
| | - Mats G Hansson
- Center for Research Ethics and Bioethics, Uppsala Universitet, Uppsala, Sweden
| | - Nomi L Harris
- Department of Environmental Genomics & System Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Vojtech Huser
- Department of Health and Human Services, NCBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Deborah Mascalzoni
- Center for Research Ethics and Bioethics, Uppsala University, Sweden and EURAC Research, Bolzano, Italy
| | - Julie A McMurry
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Matthew Might
- Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christoffer Nellaker
- Nuffield Department of Women's and Reproductive Health, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Barend Mons
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Dina N Paltoo
- Department of Health and Human Services, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute and Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Manuel Posada
- Rare Diseases Research Institute & CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Marco Roos
- Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Tamar B Rubinstein
- Children Hospital at Montefiore/Albert Einstein College of Medicine—Pediatrics, Bronx, New York, USA
| | - Domenica Taruscio
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Esther van Enckevort
- Department of Genetics, University Medical Center Groningen, University of Groningen, Leiden, Netherlands
| | - Melissa A Haendel
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Nellåker C, Alkuraya FS, Baynam G, Bernier RA, Bernier FP, Boulanger V, Brudno M, Brunner HG, Clayton-Smith J, Cogné B, Dawkins HJ, deVries BB, Douzgou S, Dudding-Byth T, Eichler EE, Ferlaino M, Fieggen K, Firth HV, FitzPatrick DR, Gration D, Groza T, Haendel M, Hallowell N, Hamosh A, Hehir-Kwa J, Hitz MP, Hughes M, Kini U, Kleefstra T, Kooy RF, Krawitz P, Küry S, Lees M, Lyon GJ, Lyonnet S, Marcadier JL, Meyn S, Moslerová V, Politei JM, Poulton CC, Raymond FL, Reijnders MR, Robinson PN, Romano C, Rose CM, Sainsbury DC, Schofield L, Sutton VR, Turnovec M, Van Dijck A, Van Esch H, Wilkie AO. Enabling Global Clinical Collaborations on Identifiable Patient Data: The Minerva Initiative. Front Genet 2019; 10:611. [PMID: 31417602 PMCID: PMC6681681 DOI: 10.3389/fgene.2019.00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/12/2019] [Indexed: 01/25/2023] Open
Abstract
The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies. This includes the application of cutting-edge machine learning methods to image data. As with most digital tools employed in health care, there are ethical and data governance challenges associated with using identifiable personal image data. There are also risks with failing to deliver on the patient benefits of these new technologies, the biggest of which is posed by data siloing. The Minerva Initiative has been designed to enable the public good of deep phenotyping while mitigating these ethical risks. Its open structure, enabling collaboration and data sharing between individuals, clinicians, researchers and private enterprise, is key for delivering precision public health.
Collapse
Affiliation(s)
- Christoffer Nellåker
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Institute for Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Fowzan S. Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, and Genetic Services of Western Australia, King Edward Memorial, Subiaco, WA, Australia
- Telethon Kids Institute and School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
- Spatial Sciences, Science and Engineering, Curtin University, Perth, WA, Australia
| | - Raphael A. Bernier
- Department of Psychiatry & Behavioral Science, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Vanessa Boulanger
- National Organization for Rare Disorders, Danbury, CT, United States
| | - Michael Brudno
- Department of Computer Science, University of Toronto and the Hospital for Sick Children, Toronto, Canada
| | - Han G. Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Saint Mary’s Hospital, Manchester, United Kingdom
| | - Benjamin Cogné
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Hugh J.S. Dawkins
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health Government of Western Australia, Perth, WA, Australia
- Sir Walter Murdoch School of Policy and International Affairs, Murdoch University
- Centre for Population Health Research, Curtin University of Technology, Perth, WA, Australia
| | - Bert B.A. deVries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Saint Mary’s Hospital, Manchester, United Kingdom
| | | | - Evan E. Eichler
- Department of Genome Science, University of Washington School of Medicine, Seattle, WA, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, United States
| | - Michael Ferlaino
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Karen Fieggen
- Division of Human Genetics, Level 3, Wernher and Beit North, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Helen V. Firth
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - David R. FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Dylan Gration
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Tudor Groza
- The Garvan Institute, Sydney, NSW, Australia
| | - Melissa Haendel
- Oregon Health & Science University, Portland, OR, United States
| | - Nina Hallowell
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, United Kingdom
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jayne Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein–Campus Kiel, Kiel, Germany
| | - Mark Hughes
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, United Kingdom
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford, United Kingdom
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Peter Krawitz
- Institut für Genomische Statistik und Bioinformatik, Universitätsklinikum Bonn, Rheinische-Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Melissa Lees
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Gholson J. Lyon
- George A. Jervis Clinic and Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, United States
| | | | | | - Stephen Meyn
- Department of Computer Science, University of Toronto and the Hospital for Sick Children, Toronto, Canada
| | - Veronika Moslerová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University Hospital, Prague, Czechia
| | - Juan M. Politei
- Laboratorio Chamoles, Errores Congénitos del Metabolismo, Buenos Aires, Argentina
| | - Cathryn C. Poulton
- Department of Paediatrics and Neonates, Fiona Stanley Hospital, Perth, WA, Australia
| | - F Lucy Raymond
- CIMR (Wellcome Trust/MRC Building), Cambridge, United Kingdom
| | - Margot R.F. Reijnders
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | | | | | - Catherine M. Rose
- Victorian Clinical Genetics Service and Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
| | - David C.G. Sainsbury
- Northern & Yorkshire Cleft Lip and Palate Service, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Lyn Schofield
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Vernon R. Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Marek Turnovec
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University Hospital, Prague, Czechia
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Andrew O.M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | |
Collapse
|
4
|
Pantel JT, Zhao M, Mensah MA, Hajjir N, Hsieh TC, Hanani Y, Fleischer N, Kamphans T, Mundlos S, Gurovich Y, Krawitz PM. Advances in computer-assisted syndrome recognition by the example of inborn errors of metabolism. J Inherit Metab Dis 2018; 41:533-539. [PMID: 29623569 PMCID: PMC5959962 DOI: 10.1007/s10545-018-0174-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 11/26/2022]
Abstract
Significant improvements in automated image analysis have been achieved in recent years and tools are now increasingly being used in computer-assisted syndromology. However, the ability to recognize a syndromic facial gestalt might depend on the syndrome and may also be confounded by severity of phenotype, size of available training sets, ethnicity, age, and sex. Therefore, benchmarking and comparing the performance of deep-learned classification processes is inherently difficult. For a systematic analysis of these influencing factors we chose the lysosomal storage diseases mucolipidosis as well as mucopolysaccharidosis type I and II that are known for their wide and overlapping phenotypic spectra. For a dysmorphic comparison we used Smith-Lemli-Opitz syndrome as another inborn error of metabolism and Nicolaides-Baraitser syndrome as another disorder that is also characterized by coarse facies. A classifier that was trained on these five cohorts, comprising 289 patients in total, achieved a mean accuracy of 62%. We also developed a simulation framework to analyze the effect of potential confounders, such as cohort size, age, sex, or ethnic background on the distinguishability of phenotypes. We found that the true positive rate increases for all analyzed disorders for growing cohorts (n = [10...40]) while ethnicity and sex have no significant influence. The dynamics of the accuracies strongly suggest that the maximum distinguishability is a phenotype-specific value, which has not been reached yet for any of the studied disorders. This should also be a motivation to further intensify data sharing efforts, as computer-assisted syndrome classification can still be improved by enlarging the available training sets.
Collapse
Affiliation(s)
- Jean T Pantel
- Institute of Human Genetics and Medical Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | - Max Zhao
- Institute of Human Genetics and Medical Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martin A Mensah
- Institute of Human Genetics and Medical Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | - Nurulhuda Hajjir
- Institute of Human Genetics and Medical Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tzung-Chien Hsieh
- Institute of Human Genetics and Medical Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | | | | - Stefan Mundlos
- Institute of Human Genetics and Medical Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Peter M Krawitz
- Institute of Human Genetics and Medical Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
- GeneTalk, Bonn, Germany.
| |
Collapse
|
5
|
Baynam G, Bauskis A, Pachter N, Schofield L, Verhoef H, Palmer RL, Kung S, Helmholz P, Ridout M, Walker CE, Hawkins A, Goldblatt J, Weeramanthri TS, Dawkins HJS, Molster CM. 3-Dimensional Facial Analysis-Facing Precision Public Health. Front Public Health 2017; 5:31. [PMID: 28443272 PMCID: PMC5385440 DOI: 10.3389/fpubh.2017.00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/14/2017] [Indexed: 11/13/2022] Open
Abstract
Precision public health is a new field driven by technological advances that enable more precise descriptions and analyses of individuals and population groups, with a view to improving the overall health of populations. This promises to lead to more precise clinical and public health practices, across the continuum of prevention, screening, diagnosis, and treatment. A phenotype is the set of observable characteristics of an individual resulting from the interaction of a genotype with the environment. Precision (deep) phenotyping applies innovative technologies to exhaustively and more precisely examine the discrete components of a phenotype and goes beyond the information usually included in medical charts. This form of phenotyping is a critical component of more precise diagnostic capability and 3-dimensional facial analysis (3DFA) is a key technological enabler in this domain. In this paper, we examine the potential of 3DFA as a public health tool, by viewing it against the 10 essential public health services of the “public health wheel,” developed by the US Centers for Disease Control. This provides an illustrative framework to gage current and emergent applications of genomic technologies for implementing precision public health.
Collapse
Affiliation(s)
- Gareth Baynam
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia.,Western Australian Register of Developmental Anomalies, Perth, WA, Australia.,Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Telethon Kids Institute, Perth, WA, Australia.,Spatial Sciences, Department of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Alicia Bauskis
- Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Lyn Schofield
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia.,Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - Hedwig Verhoef
- Cooperative Research Centre for Spatial Information, Perth, WA, Australia
| | - Richard L Palmer
- School of Spatial Sciences, Curtin University, Perth, WA, Australia
| | - Stefanie Kung
- School of Spatial Sciences, Curtin University, Perth, WA, Australia
| | - Petra Helmholz
- School of Spatial Sciences, Curtin University, Perth, WA, Australia
| | - Michael Ridout
- School of Spatial Sciences, Curtin University, Perth, WA, Australia
| | - Caroline E Walker
- Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Anne Hawkins
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Jack Goldblatt
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Tarun S Weeramanthri
- Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Hugh J S Dawkins
- Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia.,Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia.,Centre for Population Health Research, Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, WA, Australia
| | - Caron M Molster
- Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia
| |
Collapse
|