1
|
Wang Z, Wang M, Zhou Y, Feng K, Tang F. A comprehensive analysis of the defense responses of Odontotermes formosanus (Shiraki) provides insights into the changes during Serratia marcescens infection. BMC Genomics 2024; 25:1044. [PMID: 39506655 PMCID: PMC11539531 DOI: 10.1186/s12864-024-10955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Odontotermes formosanus (Shiraki) is a highly damaging agroforestry pest. Serratia marcescens is a broad-spectrum insecticidal pathogen and is highly lethal to O. formosanus. However, little is known about the mechanism between them. To improve the biological control of pests, a more in-depth analysis of the interactions between the pests and the pathogens is essential. RESULTS We used RNA-seq, enzyme activity assays and real-time fluorescent quantitative PCR (qPCR) to explore the defense responses of O. formosanus against SM1. RNA-seq results showed that 1,160, 2,531 and 4,536 genes were differentially expressed at 3, 6 and 12 h after SM1 infection, and Kyoto Encyclopedia of Genes and Genomes (KEGG) results indicated that immune response and energy metabolism were involved in the defense of O. formosanus against SM1. Reactive oxygen species (ROS) levels and ROS synthesis genes were significantly elevated, and the antioxidant system were induced in O. formosanus after SM1 infection. In addition, the cellular immune genes were affected, and the Toll, immune deficiency (Imd), Janus kinase/signal transducer and activator of transcription (JAK/STAT), c-Jun N-terminal Kinase (JNK) and melanization pathways were activated. In vitro, Oftermicin, an antimicrobial peptide, had a significantly inhibitory effect on SM1. Furthermore, the expression levels and enzyme activities of phosphofructokinase (PFK), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) in glycolysis and tricarboxylic acid (TCA) cycles were increased. CONCLUSIONS Our results clearly demonstrated that O. formosanus defended against SM1 by activating the antioxidant system, innate immunity and energy metabolism. This study would provide useful information for the development of biological controls of O. formosanus.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry and Grassland, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Mingyu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry and Grassland, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry and Grassland, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry and Grassland, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry and Grassland, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
2
|
Pandia S, Chakraborty H. Strategic Design of Tryptophan-Aspartic Acid-Containing Peptide Inhibitors Using Coronin 1 as a Template: Inhibition of Fusion by Enhancing Acyl Chain Order. J Phys Chem B 2024; 128:9163-9171. [PMID: 39268813 DOI: 10.1021/acs.jpcb.4c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Enveloped viruses enter the host cell by fusing at the cell membrane or entering the cell via endocytosis and fusing at the endosome. Conventional inhibitors target the viral fusion protein to inactivate it for inducing fusion. These target-specific vis-à-vis virus-specific inhibitors fail to display their inhibitory efficacy against emerging and remerging viral infections. This necessitates the need to develop broad-spectrum entry inhibitors that are effective irrespective of the virus. Using a broad range of targeting techniques, the fusion inhibitors can modify the physical characteristics of the viral membrane, making it less prone to fusion. We have previously shown that two tryptophan-aspartic acid (WD)-containing hydrophobic peptides, TG-23 and GG-21, from coronin 1, a phagosomal protein, inhibit membrane fusion by modulating membrane organization and dynamics. In the present work, we designed two WD-containing hydrophilic peptides, QG-22 and AG-22, using coronin 1 as a template and evaluated their fusion inhibitory efficacies in the absence and presence of membrane cholesterol. Our results demonstrate that QG-22 and AG-22 inhibit membrane fusion irrespective of the concentration of membrane cholesterol. Our measurements of depth-dependent membrane organization and dynamics reveal that they impede fusion by enhancing the acyl chain order. Overall, our results validate the hypothesis of designing fusion inhibitors by modulating the membrane's physical properties. In addition, it demonstrates that chain hydrophobicity might not be a critical determinant for the development of peptide-based fusion inhibitors.
Collapse
Affiliation(s)
- Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
3
|
Pandia S, Mahapatra A, Chakraborty H. A Coronin 1-Derived Peptide Inhibits Membrane Fusion by Modulating Membrane Organization and Dynamics. J Phys Chem B 2024; 128:4986-4995. [PMID: 38739415 DOI: 10.1021/acs.jpcb.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Membrane fusion is considered the first step in the entry of enveloped viruses into the host cell. Several targeted strategies have been implemented to block viral entry by limiting the fusion protein to form a six-helix bundle, which is a prerequisite for fusion. Nonetheless, the development of broad-spectrum fusion inhibitors is essential to combat emerging and re-emerging viral infections. TG-23, a coronin 1, a tryptophan-aspartate-rich phagosomal protein-derived peptide, demonstrated inhibition of fusion between small unilamellar vesicles (SUVs) by modulating the membrane's physical properties. However, its inhibitory efficacy reduces with an increasing concentration of membrane cholesterol. The present work aims to develop a fusion inhibitor whose efficacy would be unaltered in the presence of membrane cholesterol. A stretch of the tryptophan-aspartic acid-containing peptide with a similar secondary structure and hydrophobicity profile of TG-23 from coronin 1 was synthesized, and its ability to inhibit SUV-SUV fusion with varying concentrations of membrane cholesterol was evaluated. Our results demonstrate that the GG-21 peptide inhibits fusion irrespective of the cholesterol content of the membrane. We have further evaluated the peptide-induced change in the membrane organization and dynamics utilizing arrays of steady-state and time-resolved fluorescence measurements and correlated these results with their effect on fusion. Interestingly, GG-21 displays inhibitory efficacy in a wide variety of lipid compositions despite having a secondary structure and physical properties similar to those of TG-23. Overall, our results advocate that the secondary structure and physical properties of the peptide may not be sufficient to predict its inhibitory efficacy.
Collapse
Affiliation(s)
- Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| |
Collapse
|
4
|
Madrid-Paulino E, Mata-Espinosa D, León-Contreras JC, Serrano-Fujarte I, Díaz de León-Guerrero S, Villaseñor T, Ramon-Luing L, Puente JL, Chavez-Galan L, Hernández-Pando R, Pérez-Martínez L, Pedraza-Alva G. Klf10 favors Mycobacterium tuberculosis survival by impairing IFN-γ production and preventing macrophages reprograming to macropinocytosis. J Leukoc Biol 2022; 112:475-490. [PMID: 35726707 DOI: 10.1002/jlb.4ma0422-288r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
Mycobacterium tuberculosis has developed diverse mechanisms to survive inside phagocytic cells, such as macrophages. Phagocytosis is a key process in eliminating invading pathogens; thus, M. tuberculosis efficiently disrupts phagosome maturation to ensure infection. However, inflammatory cytokines produced by macrophages in response to early M. tuberculosis infection are key to promoting bacterial clarification. IFN-γ enhances M. tuberculosis engulfment and destruction by reprogramming macrophages from phagocytosis to macropinocytosis. Here, we show that the transcription factor Krüppel-like factor 10 (Klf10) plays a positive role in M. tuberculosis survival and infection by negatively modulating IFN-γ levels. Naïve Klf10-deficient macrophages produce more IFN-γ upon stimulation than wild-type macrophages, thus enhancing bacterial uptake and bactericidal activity achieved by macropinocytosis. Moreover, Klf10⁻/ ⁻ macrophages showed cytoplasmic distribution of coronin 1 correlated with increased pseudopod count and length. In agreement with these observations, Klf10⁻/ ⁻ mice showed improved bacterial clearance from the lungs and increased viability. Altogether, our data indicate that Klf10 plays a critical role in M. tuberculosis survival by preventing macrophage reprogramming from phagocytosis to macropinocytosis by negatively regulating IFN-γ production upon macrophage infection.
Collapse
Affiliation(s)
- Edgardo Madrid-Paulino
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Dulce Mata-Espinosa
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Medicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Juan Carlos León-Contreras
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Medicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Isela Serrano-Fujarte
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Sol Díaz de León-Guerrero
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Tomás Villaseñor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Lucero Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Medicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Leonor Pérez-Martínez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Luo J, Wang Z, Tang F, Feng K. Immune Defense Mechanism of Reticulitermes chinensis Snyder (Blattodea: Isoptera) against Serratia marcescens Bizio. INSECTS 2022; 13:insects13030226. [PMID: 35323524 PMCID: PMC8954430 DOI: 10.3390/insects13030226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Reticulitermes chinensis Snyder is the most important pest in China. Serratia marcescens (SM1) can infect insects. In our lab, we found that SM1 can kill R. chinensis. However, the mechanisms underlying the immune defense of R. chinensis against SM1 is unknown. Therefore, understanding the interaction between R. chinensis and SM1 is important for termite control. In this study, immune-related differentially expressed genes (DEGs) in R. chinensis were identified and analyzed after SM1 infection. The results increased our understanding of immune responses in pests. This study was helpful for the development of immune suppressive agents in R. chinensis management. Abstract Reticulitermes chinensis Snyder is an important pest species in China. Serratia marcescens Bizio (SM1) is a potent biological bacterium. In our lab, we found that SM1 can kill R. chinensis. To date, the interaction between R. chinensis and SM1 has not been studied. Here, we explored immune responses of R. chinensis against SM1 using transcriptome sequencing. To elucidate immune-related genes, we identified 126,153 unigenes from R. chinensis. In total, 178 immune-related differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that many cellular responses were enriched in the top 20 terms. Then, we systematically analyzed several cellular immune pathways involved in the response of R. chinensis to SM1, including phagocytosis, autophagy, and endocytosis pathways. Furthermore, the expression profiles of the cellular immune-related genes were assessed using quantitative reverse-transcription PCR, and the expression levels of the selected genes were upregulated. Further results revealed SM1-mediated activation of humoral immune responses genes, including Toll, IMD, and melanization pathways, which suggested the involvement of humoral immune responses in the defense against SM1. This research elucidated the mechanisms underlying the immune defense of R. chinensis against SM1, providing a solid theoretical basis for exploiting new immune suppressive agents to control R. chinensis. Moreover, this study will facilitate the better control of R. chinensis using SM1.
Collapse
Affiliation(s)
- Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.L.); (Z.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.L.); (Z.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.L.); (Z.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-138-1396-6269
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.L.); (Z.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Nelson BN, Beakley SG, Posey S, Conn B, Maritz E, Seshu J, Wozniak KL. Antifungal activity of dendritic cell lysosomal proteins against Cryptococcus neoformans. Sci Rep 2021; 11:13619. [PMID: 34193926 PMCID: PMC8245489 DOI: 10.1038/s41598-021-92991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Savannah G Beakley
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Sierra Posey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Brittney Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Emma Maritz
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Janakiram Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, San Antonio, TX, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA.
| |
Collapse
|
8
|
Pattnaik GP, Chakraborty H. Fusogenic Effect of Cholesterol Prevails over the Inhibitory Effect of a Peptide-Based Membrane Fusion Inhibitor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3477-3489. [PMID: 33689373 DOI: 10.1021/acs.langmuir.1c00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membrane fusion is the primary step in the entry of enveloped viruses into the host cell. Membrane composition modulates the membrane fusion by changing the organization dynamics of the fusion proteins, peptides, and membranes. The asymmetric lipid compositions of the viral envelope and the host cell influence the membrane fusion. Cholesterol is an important constituent of mammalian cells and plays a vital role in the entry of several viruses. In our pursuit of developing peptide-based general fusion inhibitors, we have previously shown that a coronin 1-derived peptide, TG-23, inhibited polyethylene glycol-induced fusion between symmetric membranes without cholesterol. In this work, we have studied the effect of TG-23 on the polyethylene glycol-mediated fusion between 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) (60/30/10 mol %) and DOPC/DOPE/DOPG/CH (50/30/10/10 mol %) membranes and between DOPC/DOPE/DOPG (60/30/10 mol %) and DOPC/DOPE/DOPG/CH (40/30/10/20 mol %) membranes. Our results demonstrate that the TG-23 peptide inhibited the fusion between membranes containing 0 and 10 mol % cholesterol though the efficacy is less than that of symmetric fusion between membranes devoid of cholesterol, and the inhibitory efficacy becomes negligible in the fusion between membranes containing 0 and 20 mol % cholesterol. Several steady-state and time-resolved fluorescence spectroscopic techniques have been successfully utilized to evaluate the organization, dynamics, and membrane penetration of the TG-23 peptide. Taken together, our results demonstrate that the reduction of the inhibitory effect of TG-23 in asymmetric membrane fusion containing cholesterol of varying concentrations is not due to the altered peptide structure, organization, and dynamics, rather owing to the intrinsic negative curvature-inducing property of cholesterol. Therefore, the membrane composition is an added complexity in the journey of developing peptide-based membrane fusion inhibitors.
Collapse
Affiliation(s)
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
- Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
9
|
Pattnaik GP, Chakraborty H. Entry Inhibitors: Efficient Means to Block Viral Infection. J Membr Biol 2020; 253:425-444. [PMID: 32862236 PMCID: PMC7456447 DOI: 10.1007/s00232-020-00136-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
The emerging and re-emerging viral infections are constant threats to human health and wellbeing. Several strategies have been explored to develop vaccines against these viral diseases. The main effort in the journey of development of vaccines is to neutralize the fusion protein using antibodies. However, significant efforts have been made in discovering peptides and small molecules that inhibit the fusion between virus and host cell, thereby inhibiting the entry of viruses. This class of inhibitors is called entry inhibitors, and they are extremely efficient in reducing viral infection as the entry of the virus is considered as the first step of infection. Nevertheless, these inhibitors are highly selective for a particular virus as antibody-based vaccines. The recent COVID-19 pandemic lets us ponder to shift our attention towards broad-spectrum antiviral agents from the so-called ‘one bug-one drug’ approach. This review discusses peptide and small molecule-based entry inhibitors against class I, II, and III viruses and sheds light on broad-spectrum antiviral agents.
Collapse
Affiliation(s)
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India. .,Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| |
Collapse
|
10
|
Fabrice TN, Fiedler T, Studer V, Vinet A, Brogna F, Schmidt A, Pieters J. Interactome and F-Actin Interaction Analysis of Dictyostelium discoideum Coronin A. Int J Mol Sci 2020; 21:E1469. [PMID: 32098122 PMCID: PMC7073074 DOI: 10.3390/ijms21041469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Coronin proteins are evolutionary conserved WD repeat containing proteins that have been proposed to carry out different functions. In Dictyostelium, the short coronin isoform, coronin A, has been implicated in cytoskeletal reorganization, chemotaxis, phagocytosis and the initiation of multicellular development. Generally thought of as modulators of F-actin, coronin A and its mammalian homologs have also been shown to mediate cellular processes in an F-actin-independent manner. Therefore, it remains unclear whether or not coronin A carries out its functions through its capacity to interact with F-actin. Moreover, the interacting partners of coronin A are not known. Here, we analyzed the interactome of coronin A as well as its interaction with F-actin within cells and in vitro. Interactome analysis showed the association with a diverse set of interaction partners, including fimbrin, talin and myosin subunits, with only a transient interaction with the minor actin10 isoform, but not the major form of actin, actin8, which was consistent with the absence of a coronin A-actin interaction as analyzed by co-sedimentation from cells and lysates. In vitro, however, purified coronin A co-precipitated with rabbit muscle F-actin in a coiled-coil-dependent manner. Our results suggest that an in vitro interaction of coronin A and rabbit muscle actin may not reflect the cellular interaction state of coronin A with actin, and that coronin A interacts with diverse proteins in a time-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (T.N.F.); (T.F.); (V.S.); (A.V.); (F.B.); (A.S.)
| |
Collapse
|
11
|
Cholesterol alters the inhibitory efficiency of peptide-based membrane fusion inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183056. [DOI: 10.1016/j.bbamem.2019.183056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/31/2019] [Accepted: 08/23/2019] [Indexed: 11/21/2022]
|
12
|
Popovic M, Yaparla A, Paquin‐Proulx D, Koubourli DV, Webb R, Firmani M, Grayfer L. Colony‐stimulating factor‐1‐ and interleukin‐34‐derived macrophages differ in their susceptibility to
Mycobacterium marinum. J Leukoc Biol 2019; 106:1257-1269. [DOI: 10.1002/jlb.1a0919-147r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Milan Popovic
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Amulya Yaparla
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Dominic Paquin‐Proulx
- Department of Microbiology Immunology and Tropical Medicine George Washington University Washington DC 20037 USA
| | - Daphne V. Koubourli
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Rose Webb
- Pathology Core Laboratory George Washington University Washington DC 20037 USA
| | - Marcia Firmani
- Department of Biomedical Laboratory Sciences George Washington University Washington DC 20037 USA
| | - Leon Grayfer
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| |
Collapse
|
13
|
Pattnaik GP, Chakraborty H. Coronin 1 derived tryptophan-aspartic acid containing peptides inhibit membrane fusion. Chem Phys Lipids 2018; 217:35-42. [DOI: 10.1016/j.chemphyslip.2018.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022]
|
14
|
Liu X, BoseDasgupta S, Jayachandran R, Studer V, Rühl S, Stiess M, Pieters J. Activation of the cAMP/protein kinase A signalling pathway by coronin 1 is regulated by cyclin-dependent kinase 5 activity. FEBS Lett 2016; 590:279-87. [PMID: 26823173 DOI: 10.1002/1873-3468.12046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/31/2023]
Abstract
Coronins constitute a family of conserved proteins expressed in all eukaryotes that have been implicated in the regulation of a wide variety of cellular activities. Recent work showed an essential role for coronin 1 in the modulation of the cAMP/PKA pathway in neurons through the interaction of coronin 1 with the G protein subtype Gαs in a stimulus-dependent manner, but the molecular mechanism regulating coronin 1-Gαs interaction remains unclear. We here show that phosphorylation of coronin 1 on Thr(418/424) by cyclin-dependent kinase (CDK) 5 activity was responsible for coronin 1-Gαs association and the modulation of cAMP production. Together these results show an essential role for CDK5 activity in promoting the coronin 1-dependent cAMP/PKA pathway.
Collapse
Affiliation(s)
| | | | | | - Vera Studer
- Biozentrum, University of Basel, Switzerland
| | | | | | | |
Collapse
|
15
|
Proteomic-based approach to gain insight into reprogramming of THP-1 cells exposed to Leishmania donovani over an early temporal window. Infect Immun 2015; 83:1853-68. [PMID: 25690103 DOI: 10.1128/iai.02833-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/13/2015] [Indexed: 12/20/2022] Open
Abstract
Leishmania donovani, a protozoan parasite, is the causative agent of visceral leishmaniasis. It lives and multiplies within the harsh environment of macrophages. In order to investigate how intracellular parasite manipulate the host cell environment, we undertook a quantitative proteomic study of human monocyte-derived macrophages (THP-1) following infection with L. donovani. We used the isobaric tags for relative and absolute quantification (iTRAQ) method and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare expression profiles of noninfected and L. donovani-infected THP-1 cells. We detected modifications of protein expression in key metabolic pathways, including glycolysis and fatty acid oxidation, suggesting a global reprogramming of cell metabolism by the parasite. An increased abundance of proteins involved in gene transcription, RNA splicing (heterogeneous nuclear ribonucleoproteins [hnRNPs]), histones, and DNA repair and replication was observed at 24 h postinfection. Proteins involved in cell survival and signal transduction were more abundant at 24 h postinfection. Several of the differentially expressed proteins had not been previously implicated in response to the parasite, while the others support the previously identified proteins. Selected proteomics results were validated by real-time PCR and immunoblot analyses. Similar changes were observed in L. donovani-infected human monocyte-derived primary macrophages. The effect of RNA interference (RNAi)-mediated gene knockdown of proteins validated the relevance of the host quantitative proteomic screen. Our findings indicate that the host cell proteome is modulated after L. donovani infection, provide evidence for global reprogramming of cell metabolism, and demonstrate the complex relations between the host and parasite at the molecular level.
Collapse
|
16
|
Bottan S, Robotti F, Jayathissa P, Hegglin A, Bahamonde N, Heredia-Guerrero JA, Bayer IS, Scarpellini A, Merker H, Lindenblatt N, Poulikakos D, Ferrari A. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS NANO 2015; 9:206-19. [PMID: 25525956 DOI: 10.1021/nn5036125] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration.
Collapse
Affiliation(s)
- Simone Bottan
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich , Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Comparison of two FFPE preparation methods using label-free shotgun proteomics: Application to tissues of diverticulitis patients. J Proteomics 2014; 112:250-61. [PMID: 25218866 DOI: 10.1016/j.jprot.2014.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/12/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022]
Abstract
UNLABELLED Formalin-fixed paraffin-embedded (FFPE) specimens of patients are useful sources of materials for clinical research and have recently gained interest for use in the discovery of clinical proteomic biomarkers. However, the critical step in this field is the ability to obtain an efficient and repeatable extraction using the limited quantities of material available for research in hospital biobanks. This work describes the evaluation of the peptide/protein extraction using FFPE sections treated by the following two methods before shotgun proteomic analysis: a commercial solution (FFPE-FASP) (filter aided sample preparation) and an antigen retrieval-derived protocol (On Slice AR). Their efficiencies and repeatabilities are compared using data-independent differential quantitative label-free analysis. FFPE-FASP was shown to be globally better both qualitatively and quantitatively than On Slice AR. FFPE-FASP was tested on several samples, and differential analysis was used to compare the tissues of diverticulitis patients (healthy and inflammatory tissues). In this differential proteomic analysis using retrospective clinical FFPE material, FFPE-FASP was reproducible and provided a high number of confident protein identifications, highlighting potential protein biomarkers. BIOLOGICAL SIGNIFICANCE In clinical proteomics, FFPE is an important resource for retrospective analysis and for the discovery of biomarkers. The challenge for FFPE shotgun proteomic analysis is preparation by an efficient and reproducible protocol, which includes protein extraction and digestion. In this study, we analyzed two different methods and evaluated their repeatabilities and efficiencies. We illustrated the reproducibility of the most efficient method, FFPE-FASP, by a pilot study on diverticulitis tissue and on FFPE samples amount accessible in hospital biobanks. These data showed that FFPE is suitable for use in clinical proteomics, especially when the FFPE-FASP method is combined with label-free shotgun proteomics as described in the workflow presented in this work.
Collapse
|
18
|
Fulton LM, Taylor NA, Coghill JM, West ML, Föger N, Bear JE, Baldwin AS, Panoskaltsis-Mortari A, Serody JS. Altered T-cell entry and egress in the absence of Coronin 1A attenuates murine acute graft versus host disease. Eur J Immunol 2014; 44:1662-71. [PMID: 24752751 DOI: 10.1002/eji.201344155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/12/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
Abstract
Acute graft-versus-host disease (aGvHD) is a major limitation to the use of allogeneic stem cell transplantation for the treatment of patients with relapsed malignant disease. Previous work using animals lacking secondary lymphoid tissue (SLT) suggested that activation of donor T cells in SLT is critically important for the pathogenesis of aGvHD. However, these studies did not determine if impaired migration into, and more importantly, out of SLT, would ameliorate aGvHD. Here, we show that T cells from mice lacking Coronin 1A (Coro 1A(-/-)), an actin-associated protein shown to be important for thymocyte egress, do not mediate acute GvHD. The attenuation of aGvHD was associated with decreased expression of the critical trafficking proteins C-C chemokines receptor type 7 (CCR7) and sphingosine 1 phosphate receptor on donor T cells. This was mediated in part by impaired activation of the canonical NF-κB pathway in the absence of Coro 1A. As a result of these alterations, donor T cells from Coro 1A(-/-) mice were not able to initially traffic to SLT or exit SLT after BM transplantation. However, this alteration did not abrogate the graft-versus-leukemia response. Our data suggest that blocking T-cell migration into and out of SLT is a valid approach to prevent aGvHD.
Collapse
Affiliation(s)
- LeShara M Fulton
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Seto S, Tsujimura K, Horii T, Koide Y. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells. PLoS One 2013; 8:e86017. [PMID: 24376899 PMCID: PMC3871604 DOI: 10.1371/journal.pone.0086017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis is an intracellular pathogen that can survive within phagocytic cells by inhibiting phagolysosome biogenesis. However, host cells can control the intracellular M. tuberculosis burden by the induction of autophagy. The mechanism of autophagosome formation to M. tuberculosis has been well studied in macrophages, but remains unclear in dendritic cells. We therefore characterized autophagosome formation in response to M. tuberculosis infection in dendritic cells. Autophagy marker protein LC3, autophagy adaptor protein p62/SQSTM1 (p62) and ubiquitin co-localized to M. tuberculosis in dendritic cells. Mycobacterial autophagosomes fused with lysosomes during infection, and major histcompatibility complex class II molecules (MHC II) also localized to mycobacterial autophagosomes. The proteins p62 and Atg5 function in the initiation and progression of autophagosome formation to M. tuberculosis, respectively; p62 mediates ubiquitination of M. tuberculosis and Atg5 is involved in the trafficking of degradative vesicles and MHC II to mycobacterial autophagosomes. These results imply that the autophagosome formation to M. tuberculosis in dendritic cells promotes the antigen presentation of mycobacterial peptides to CD4+ T lymphocytes via MHC II.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Kunio Tsujimura
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshinobu Horii
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yukio Koide
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
20
|
Tchang VSY, Mekker A, Siegmund K, Karrer U, Pieters J. Diverging role for coronin 1 in antiviral CD4+ and CD8+ T cell responses. Mol Immunol 2013; 56:683-92. [DOI: 10.1016/j.molimm.2013.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/24/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
|
21
|
Siegmund K, Lee WY, Tchang VS, Stiess M, Terracciano L, Kubes P, Pieters J. Coronin 1 is dispensable for leukocyte recruitment and liver injury in concanavalin A-induced hepatitis. Immunol Lett 2013; 153:62-70. [DOI: 10.1016/j.imlet.2013.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/25/2013] [Accepted: 06/30/2013] [Indexed: 01/13/2023]
|
22
|
Seto S, Tsujimura K, Koide Y. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell Microbiol 2012; 14:710-27. [PMID: 22256790 DOI: 10.1111/j.1462-5822.2012.01754.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mycobacterium tuberculosis is an intracellular bacterium that can survive within macrophages. Such survival is potentially associated with Coronin-1a (Coro1a). We investigated the mechanism by which Coro1a promotes the survival of M. tuberculosis in macrophages and found that autophagy was involved in the inhibition of mycobacterial survival in Coro1a knock-down (KD) macrophages. Fluorescence microscopy and immunoblot analyses revealed that LC3, a representative autophagic protein, was recruited to M. tuberculosis-containing phagosomes in Coro1a KD macrophages. Thin-section electron microscopy demonstrated that bacilli were surrounded by the multiple membrane structures in Coro1a KD macrophages. The proportion of LC3-positive mycobacterial phagosomes colocalized with p62/SQSTM1, ubiquitin or LAMP1 increased in Coro1a KD macrophages during infection. These results demonstrate the formation of autophagosomes around M. tuberculosis in Coro1a KD macrophages. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) was induced in response to M. tuberculosis infection in Coro1a KD macrophages, suggesting that Coro1a blocks the activation of the p38 MAPK pathway involved in autophagosome formation. LC3 recruitment to M. tuberculosis-containing phagosomes was also observed in Coro1a KD alveolar or bone marrow-derived macrophages. These results suggest that Coro1a inhibits autophagosome formation in alveolar macrophages, thereby facilitating M. tuberculosis survival within the lung.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Infectious Diseases, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | | | | |
Collapse
|
23
|
Eitzen G, Lo AN, Mitchell T, Kim JD, Chao DV, Lacy P. Proteomic analysis of secretagogue-stimulated neutrophils implicates a role for actin and actin-interacting proteins in Rac2-mediated granule exocytosis. Proteome Sci 2011; 9:70. [PMID: 22081935 PMCID: PMC3379032 DOI: 10.1186/1477-5956-9-70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 11/14/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Neutrophils are abundant leukocytes that play a primary role in defence against pathogens. Neutrophils enter sites of infection where they eliminate pathogens via phagocytosis and the release of antimicrobial mediators via degranulation. Rho GTPases, particularly Rac2, play a key role in neutrophil degranulation. The purpose of this study was to identify Rac2-dependent changes in protein abundance in stimulated neutrophils. METHODS We performed a proteomic analysis on secretagogue-stimulated bone marrow neutrophils that were isolated from wild-type and Rac2-/- mice. Protein abundance was analyzed by 2-dimensional SDS-PAGE of fluorescently labelled samples which allowed the detection ~3500 proteins. RESULTS We identified 22 proteins that showed significant changes in abundance after secretagogue-stimulation of wild-type neutrophils, which did not occur in neutrophils isolated from Rac2-/- mice. As expected, the abundance of several granule proteins was reduced in wild-type cells; this did not occur in Rac2-/- neutrophils which confirms the requirement for Rac2 in degranulation. We also found changes in abundance of many actin remodelling proteins including coronin-1A, β-actin and the F-actin capping protein, (CapZ-β). Coronin-1A showed elevated levels of several isoforms after stimulation of neutrophils from wild-type, but not from Rac2-/- mice. These isoforms were immunoreactive with anti-phospho-threonine antibodies, suggesting that neutrophil stimulation triggers a Rac2-dependent kinase cascade that results in the phosphorylation of coronin-1A. CONCLUSION The control of Rac2-mediated degranulation in neutrophils likely functions through actin remodelling via activation of several actin-binding proteins. We found coronin-1A to be a novel downstream effector protein of this pathway that is threonine phosphorylated in response to secretagogue stimulation.
Collapse
Affiliation(s)
- Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
Nguyen L, Pieters J. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu Rev Pharmacol Toxicol 2009; 49:427-53. [PMID: 19281311 DOI: 10.1146/annurev-pharmtox-061008-103123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent worldwide emergence of multidrug-resistant and extensively drug-resistant tuberculosis is threatening to destabilize tuberculosis control programs and urging global attention to the development of alternative tuberculosis therapies. Major roadblocks limiting the development and effectiveness of new drugs to combat tuberculosis are the profound innate resistance of Mycobacterium tuberculosis to host defense mechanisms as well as its intrinsic tolerance to chemotherapeutic reagents. The triangle of interactions among the pathogen, the host responses, and the drugs used to cure the disease are critical for the outcome of tuberculosis. We must better understand this three-way interaction in order to develop drugs that are able to kill the bacillus in the most effective way and minimize the emergence of drug resistance. Here we review our recent understanding of the molecular basis underlying intrinsic antibiotic resistance and survival tactics of M. tuberculosis. This knowledge may help to reveal current targets for the development of novel antituberculosis drugs.
Collapse
Affiliation(s)
- Liem Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
25
|
Combaluzier B, Mueller P, Massner J, Finke D, Pieters J. Coronin 1 is essential for IgM-mediated Ca2+ mobilization in B cells but dispensable for the generation of immune responses in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 182:1954-61. [PMID: 19201848 DOI: 10.4049/jimmunol.0801811] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronin 1 is a leukocyte specific regulator of Ca(2+)-dependent signaling and is essential for the survival of peripheral T lymphocytes, but its role in B cells is unknown. In this study, we show that coronin 1 is essential for intracellular Ca(2+) mobilization and proliferation upon triggering of the BCR. However, the presence of costimulatory signals rendered coronin 1 dispensable for B cell signaling, consistent with the generation of normal immune responses against a variety of Ags in coronin 1-deficient mice. We conclude that coronin 1, while being essential for T cell function and survival, is dispensable for B cell function in vivo.
Collapse
|