1
|
Bai X, Shang J, Cao X, Li M, Yu H, Wu C, Yang M, Yue X. Proteomic and phosphoproteomic reveal immune-related function of milk fat globule membrane in bovine milk of different lactation periods. Food Chem 2024; 451:139295. [PMID: 38729042 DOI: 10.1016/j.foodchem.2024.139295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/04/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
Information regarding protein expression and phosphorylation modifications in the bovine milk fat globule membrane is scarce, particularly throughout various lactation periods. This study employed a complete proteome and phosphoproteome between bovine colostrum and mature milk. A total of 11 proteins were seen in both protein expression and phosphorylation levels. There were 400 proteins identified in only protein expression, and 104 phosphoproteins identified in only phosphorylation levels. A total of 232 significant protein characteristics were identified within the proteome and significant phosphorylation sites within 86 phosphoproteins of the phosphoproteome. Biological activities and pathways primarily exhibited associations with the immune system. Simultaneously, a comprehensive analysis of proteins and phosphorylation sites using a multi-omics approach. Hence, the data we have obtained has the potential to expand our understanding of how the bovine milk fat globule membrane might be utilized as a beneficial component in dairy products.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingwen Shang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Hong Yu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chunshuang Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| |
Collapse
|
2
|
Guo Y, Wei Z, Zhang Y, Cao J. The Effects of trans-10, cis-12 Conjugated Linoleic Acid on the Production Performance of Dairy Cows and the Expression and Transcription Regulation of Lipid Metabolism-Related Genes in Bovine Mammary Epithelial Cells. ACS OMEGA 2024; 9:34161-34174. [PMID: 39130591 PMCID: PMC11308042 DOI: 10.1021/acsomega.4c05532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
Dietary fatty acids (FAs) determine the quality of dairy products. The trans-10, cis-12 conjugated linoleic acid (t10c12-CLA) is commonly considered an FA factor leading to milk fat depression syndrome (MFDs) in dairy cow. However, its effect on dairy cow performance and involvement in milk fat metabolism have been insufficiently explored. This study administered 136.17 g/day of rumen-protected CLA (RP-CLA) to dairy cows and found a diminution in milk fat percentage and a trend of increasing milk protein percentage on day 21 postpartum. Lactose content, milk yield, and net energy for lactation were unaffected. In the cell experiments, Oil Red O staining showed a notable increase in lipid droplets. Gene and protein expression analysis showed that 300 μM t10c12-CLA upregulated the expression of CD36, DGAT2, and ADRP, while downregulating the expression of ACACA, FASN, SREBP1, FABP3, FATP3, ACSL4, LPIN1, DGAT1, BTN1A1, XDH, SNAP23, and VAMP4. This provides a possible mechanistic pathway for the contradictory phenomenon of t10c12-CLA reducing milk fat while increasing lipid droplets. Overall, t10c12-CLA, as a long-chain fatty acid, can promote lipid droplet synthesis but may reduce milk fat by inhibiting lipid droplet fusion and secretion, FAs de novo synthesis, and triglyceride biosynthesis.
Collapse
Affiliation(s)
- Yuanyin Guo
- College
of Veterinary Medicine, China Agricultural
University, Beijing 100193, China
| | - Ziang Wei
- College
of Veterinary Medicine, China Agricultural
University, Beijing 100193, China
| | - Yi Zhang
- College
of Animal Science and Technology, China
Agricultural University, Beijing 100193, China
| | - Jie Cao
- College
of Veterinary Medicine, China Agricultural
University, Beijing 100193, China
| |
Collapse
|
3
|
Wang Y, Wu J, Zhang H, Yang X, Gu R, Liu Y, Wu R. Comprehensive review of milk fat globule membrane proteins across mammals and lactation periods in health and disease. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39106211 DOI: 10.1080/10408398.2024.2387763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Milk fat globule membrane (MFGM) is a three-layer membrane-like structure encasing natural milk fat globules (MFGs). MFGM holds promise as a nutritional supplement because of the numerous physiological functions of its constituent protein. This review summarizes and compares the differences in MFGM protein composition across various species, including bovines, goats, camels, mares, and donkeys, and different lactation periods, such as colostrum and mature milk, as assessed by techniques such as proteomics and mass spectrometry. We also discuss the health benefits of MFGM proteins throughout life. MFGM proteins promote intestinal development, neurodevelopment, and glucose and lipid metabolism by upregulating tight junction protein expression, brain function-related genes, and glucose and fatty acid biosynthesis processes. We focus on the mechanisms underlying these beneficial effects of MFGM proteins. MFGM proteins activate key substances in in signaling pathways, such as the phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, and myosin light chain kinase signaling pathways. Overall, the consumption of MFGM proteins plays an essential role in conferring health benefits, some of which are important throughout the mammalian life cycle.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| | - Xujin Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, P.R. China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| |
Collapse
|
4
|
Costa A, Lucarini E. Treating chronic stress and chronic pain by manipulating gut microbiota with diet: can we kill two birds with one stone? Nutr Neurosci 2024:1-24. [PMID: 38889540 DOI: 10.1080/1028415x.2024.2365021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Background: Chronic stress and chronic pain are closely linked by the capacity to exacerbate each other, sharing common roots in the brain and in the gut. The strict intersection between these two neurological diseases makes important to have a therapeutic strategy aimed at preventing both to maintain mental health in patients. Diet is an modifiable lifestyle factor associated with gut-brain axis diseases and there is growing interest in its use as adjuvant to main therapies. Several evidence attest the impact of specific diets or nutrients on chronic stress-related disorders and pain with a good degree of certainty. A daily adequate intake of foods containing micronutrients such as amino acids, minerals and vitamins, as well as the reduction in the consumption of processed food products can have a positive impact on microbiota and gut health. Many nutrients are endowed of prebiotic, anti-inflammatory, immunomodulatory and neuroprotective potential which make them useful tools helping the management of chronic stress and pain in patients. Dietary regimes, as intermittent fasting or caloric restriction, are promising, although further studies are needed to optimize protocols according to patient's medical history, age and sex. Moreover, by supporting gut microbiota health with diet is possible to attenuate comorbidities such as obesity, gastrointestinal dysfunction and mood disorders, thus reducing healthcare costs related to chronic stress or pain.Objective: This review summarize the most recent evidence on the microbiota-mediated beneficial effects of macro- and micronutrients, dietary-related factors, specific nutritional regimens and dietary intervention on these pathological conditions.
Collapse
Affiliation(s)
- Alessia Costa
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
5
|
Stastna M. Advances in separation and identification of biologically important milk proteins and peptides. Electrophoresis 2024; 45:101-119. [PMID: 37289082 DOI: 10.1002/elps.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Milk is a rich source of biologically important proteins and peptides. In addition, milk contains a variety of extracellular vesicles (EVs), including exosomes, that carry their own proteome cargo. EVs are essential for cell-cell communication and modulation of biological processes. They act as nature carriers of bioactive proteins/peptides in targeted delivery during various physiological and pathological conditions. Identification of the proteins and protein-derived peptides in milk and EVs and recognition of their biological activities and functions had a tremendous impact on food industry, medicine research, and clinical applications. Advanced separation methods, mass spectrometry (MS)-based proteomic approaches and innovative biostatistical procedures allowed for characterization of milk protein isoforms, genetic/splice variants, posttranslational modifications and their key roles, and contributed to novel discoveries. This review article discusses recently published developments in separation and identification of bioactive proteins/peptides from milk and milk EVs, including MS-based proteomic approaches.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
6
|
Wang C, Zhao R, Fu W, Li S, Cheng J, Jiang S, Guo M. Insights from 4D Label-Free Proteomic Analysis into Variation of Milk Fat Globule Membrane Proteins of Human Milk Associated with Infant's Gender. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12116-12128. [PMID: 37503859 DOI: 10.1021/acs.jafc.3c01257] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Milk fat globule membrane (MFGM) protein profiles of breast milk collected from women in northeast China with male or female babies were investigated using a four-dimensional (4D) label-free proteomic technique. Altogether, 2538 proteins were detected and quantified and 249 were differentially expressed, with 198 decreased proteins compared to the samples of mothers with female babies. Different proteins associated with infant's gender were principally located in nuclear. The differentially expressed proteins were mainly involved in gene ontology (GO) functions of the cellular process, binding, and cell and found to be distributed in lipid-related biological processes and molecular functions to a large extent. The pathway of neurodegeneration-multiple disease ranked top for the altered proteins. The screened proteins were observed to contain some proteins related to typical functions of immunity, lipid metabolism, digestion, and growth and development. 114 proteins formed a relatively compact network (269 interactions) and dolichyl-diphospho-oligosaccharide-protein glycosyltransferase subunit 2 interacted the most with other proteins as the hub protein. MFGM proteins of breast milk were affected by the sex of offspring, and these findings may provide useful information for reasonable adjustments of infant formula powder specifically for boys or girls in the market.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, Jilin University, Changchun 130062, China
| | - Ru Zhao
- Department of Food Science, Jilin University, Changchun 130062, China
| | - Wenfei Fu
- Department of Food Science, Jilin University, Changchun 130062, China
| | - Shuyi Li
- Department of Food Science, Jilin University, Changchun 130062, China
| | - Jianjun Cheng
- Department of Food Science, Northeast Agriculture University, Harbin 150036, China
| | - Shilong Jiang
- R&D center, Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
7
|
Jyväkorpi SK, Niskanen RT, Markkanen M, Salminen K, Sibakov T, Lehtonen KM, Kunvik S, Pitkala KH, Turpeinen AM, Suominen MH. Effect of Milk Fat Globule Membrane- and Protein-Containing Snack Product on Physical Performance of Older Women-A Randomized Controlled Trial. Nutrients 2023; 15:2922. [PMID: 37447248 DOI: 10.3390/nu15132922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION Sarcopenia is common in people 70+ years of age, and its prevalence increases with further aging. Insufficient energy and protein intake accelerates muscle loss, whereas sufficient protein intake and milk fat globule membrane (MFGM) may suppress age-associated deterioration of muscle mass and strength. Our objective was to test whether a snack product high in MFGM and protein would improve physical performance in older women. METHODS In this 12-week randomized controlled trial, women ≥ 70 years, with protein intake < 1.2 g/body weight (BW) kg/day (d), were randomized into intervention (n = 51) and control (n = 50) groups. The intervention group received a daily snack product containing ≥ 23 g of milk protein and 3.6-3.9 g of MFGM. Both groups were advised to perform a five-movement exercise routine. The primary outcome was the change in the five-time-sit-to-stand test between the groups. Secondary outcomes included changes in physical performance, cognition, hand grip strength, and health-related quality of life. RESULTS The change in the five-time-sit-to-stand test did not differ between the intervention and the control groups. The change in the total Short Physical Performance Battery score differed significantly, favoring the intervention group (p = 0.020), and the balance test showed the largest difference. Protein intake increased significantly in the intervention group (+14 g) compared to the control group (+2 g). No other significant changes were observed. CONCLUSIONS Our results indicate that the combination of MFGM and protein may improve the physical performance-related balance of older women.
Collapse
Affiliation(s)
- Satu K Jyväkorpi
- Unit of Primary Health Care, Department of General Practice and Primary Health Care, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00014 Helsinki, Finland
| | - Riikka T Niskanen
- Unit of Primary Health Care, Department of General Practice and Primary Health Care, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00014 Helsinki, Finland
| | - Marianna Markkanen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Society for Gerontological Nutrition in Finland, 00700 Helsinki, Finland
| | - Karoliina Salminen
- Unit of Primary Health Care, Department of General Practice and Primary Health Care, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Susanna Kunvik
- Faculty of Health and Welfare, Satakunta University of Applied Sciences, 28101 Pori, Finland
| | - Kaisu H Pitkala
- Unit of Primary Health Care, Department of General Practice and Primary Health Care, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00014 Helsinki, Finland
| | | | - Merja H Suominen
- Unit of Primary Health Care, Department of General Practice and Primary Health Care, Faculty of Medicine, Helsinki University Central Hospital, University of Helsinki, 00014 Helsinki, Finland
- Society for Gerontological Nutrition in Finland, 00700 Helsinki, Finland
| |
Collapse
|
8
|
Seki D, Errerd T, Hall LJ. The role of human milk fats in shaping neonatal development and the early life gut microbiota. MICROBIOME RESEARCH REPORTS 2023; 2:8. [PMID: 38047278 PMCID: PMC10688791 DOI: 10.20517/mrr.2023.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 12/05/2023]
Abstract
Human breast milk (HBM) is the main source of nutrition for neonates across the critical early-life developmental period. The highest demand for energy is due to rapid neurophysiological expansion post-delivery, which is largely met by human milk lipids (HMLs). These HMLs also play a prebiotic role and potentially promote the growth of certain commensal bacteria, which, via HML digestion, supports the additional transfer of energy to the infant. In tandem, HMLs can also exert bactericidal effects against a variety of opportunistic pathogens, which contributes to overall colonisation resistance. Such interactions are pivotal for sustaining homeostatic relationships between microorganisms and their hosts. However, the underlying molecular mechanisms governing these interactions remain poorly understood. This review will explore the current research landscape with respect to HMLs, including compositional considerations and impact on the early life gut microbiota. Recent papers in this field will also be discussed, including a final perspective on current knowledge gaps and potential next research steps for these important but understudied breast milk components.
Collapse
Affiliation(s)
- David Seki
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich, Freising 85354, Germany
| | - Theresa Errerd
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich, Freising 85354, Germany
| | - Lindsay J Hall
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich, Freising 85354, Germany
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
9
|
Deng T, Wu J, Abdel-Shafy H, Wang X, Lv H, Shaukat A, Zhou X, Zhou Y, Sun H, Wei P, Sun N, Huang Q, Xu L, Liu M, Lin Y, Yang L, Hua G. Comparative Genomic Analysis of the Thiolase Family and Functional Characterization of the Acetyl-Coenzyme A Acyltransferase-1 Gene for Milk Biosynthesis and Production of Buffalo and Cattle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3325-3337. [PMID: 36780201 DOI: 10.1021/acs.jafc.2c07763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cattle and buffalo served as the first and second largest dairy animals, respectively, providing 96% milk products worldwide. Understanding the mechanisms underlying milk synthesis is critical to develop the technique to improve milk production. Thiolases, also known as acetyl-coenzyme A acetyltransferases (ACAT), are an enzyme family that plays vital roles in lipid metabolism, including ACAT1, ACAT2, ACAA1, ACAA2, and HADHB. Our present study showed that these five members were orthologous in six livestock species including buffalo and cattle. Transcriptomic data analyses derived from different lactations stages showed that ACAA1 displayed different expression patterns between buffalo and cattle. Immunohistochemistry staining revealed that ACAA1 were dominantly located in the mammary epithelial cells of these two dairy animals. Knockdown of ACAA1 inhibited mammary epithelial cell proliferation and triglyceride and β-casein secretion by regulating related gene expressions in cattle and buffalo. In contrast, ACAA1 overexpression promoted cell proliferation and triglyceride secretion. Finally, three novel SNPs (g.-681A>T, g.-23117C>T, and g.-24348G>T) were detected and showed significant association with milk production traits of Mediterranean buffaloes. In addition, g.-681A>T mutation located in the promoter region changed transcriptional activity significantly. Our findings suggested that ACAA1 play a key role in regulating buffalo and cattle milk synthesis and provided basic information to further understand the dairy animal lactation physiology.
Collapse
Affiliation(s)
- Tingxian Deng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Guangxi Key Laboratory of Buffalo Genetic, Breeding and Reproduction, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Jiyun Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Xiaojie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aftab Shaukat
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Pengfei Wei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianzhi Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linghua Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Miaoyu Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Lin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Wang Z, Zhang N, Li F, Yue X. Effects of pre-partum dietary crude protein level on colostrum fat globule membrane proteins and the performance of Hu ewes and their offspring. Front Vet Sci 2022; 9:1046214. [DOI: 10.3389/fvets.2022.1046214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Dietary proteins play important roles in the growth and reproduction of sheep, and the ewe's demand for proteins increases dramatically during late pregnancy. This research aimed to investigate the effect of dietary crude protein (CP) levels during late pregnancy on colostrum fat globule membrane (MFGM) protein and the growth performance of Hu sheep and their offspring, and provide a reference for the protein intake of ewes during late pregnancy. A total of 108 multiparous Hu sheep (45.6 ± 1.18 kg) were selected for this study, then 60 pregnant ewes confirmed by B-scan ultrasonography were randomly divided into three treatments (20 ewes/treatment) and fed by total mixed ration pellet with CP levels at 9.00% (LP), 12.0% (MP), and 15.0% (HP) during late pregnancy, respectively. The weight and dry matter intake of ewes during late pregnancy were recorded to calculate the average daily gain (ADG) and feed conversion ratio (FCR). Twin lambs were weighed on days 0, 7, 14, 30, 60, and 180 after birth to calculate ADG. Meanwhile, the colostrum of ewes was collected within 12 h after delivery. The colostrum MFGM proteins were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry methods. In addition, biological functions of differentially expressed proteins (DEPs) were annotated by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results revealed that a 15.0% CP level had significant effects on the BW of lambs on days 0, 7, and 30 (P < 0.05). Notably, a total of 1,529 MFGM proteins were identified and 286 DEPs were found among three treatments. Functional analysis showed that DEPs were mainly involved in cell growth, differentiation, and tissue repair, and involved in metabolic pathways, such as the porphyrin and chlorophyll metabolism pathways. In this study, lambs in HP treatment had better growth performance; moreover, dietary 15.0% CP level also affected the colostrum MFGM proteins composition of Hu ewes. These observations can facilitate future studies on the feeding regimen of ewes during late pregnancy.
Collapse
|
11
|
Lin Y, Sun H, Shaukat A, Deng T, Abdel-Shafy H, Che Z, Zhou Y, Hu C, Li H, Wu Q, Yang L, Hua G. Novel Insight Into the Role of ACSL1 Gene in Milk Production Traits in Buffalo. Front Genet 2022; 13:896910. [PMID: 35734439 PMCID: PMC9207818 DOI: 10.3389/fgene.2022.896910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the genetic mechanisms underlying milk production traits contribute to improving the production potential of dairy animals. Long-chain acyl-CoA synthetase 1 (ACSL1) plays a key role in fatty acid metabolism and was highly expressed in the lactating mammary gland epithelial cells (MGECs). The objectives of the present study were to detect the polymorphisms within ACSL1 in Mediterranean buffalo, the genetic effects of these mutations on milk production traits, and understand the gene regulatory effects on MGECs. A total of twelve SNPs were identified by sequencing, including nine SNPs in the intronic region and three in the exonic region. Association analysis showed that nine SNPs were associated with one or more traits. Two haplotype blocks were identified, and among these haplotypes, the individuals carrying the H2H2 haplotype in block 1 and H5H1 in block 2 were superior to those of other haplotypes in milk production traits. Immunohistological staining of ACSL1 in buffalo mammary gland tissue indicated its expression and localization in MGECs. Knockdown of ACSL1 inhibited cell growth, diminished MGEC lipid synthesis and triglyceride secretion, and downregulated CCND1, PPARγ, and FABP3 expression. The overexpression of ACSL1 promoted cell growth, enhanced the triglyceride secretion, and upregulated CCND1, PPARγ, SREBP1, and FABP3. ACSL1 was also involved in milk protein regulation as indicated by the decreased or increased β-casein concentration and CSN3 expression in the knockdown or overexpression group, respectively. In summary, our present study depicted that ACSL1 mutations were associated with buffalo milk production performance. This may be related to its positive regulation roles on MGEC growth, milk fat, and milk protein synthesis. The current study showed the potential of the ACSL1 gene as a candidate for milk production traits and provides a new understanding of the physiological mechanisms underlying milk production regulation.
Collapse
Affiliation(s)
- Yuxin Lin
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hui Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aftab Shaukat
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingxian Deng
- Guangxi Key Laboratory of Buffalo Genetice, Breeding and Reproduxtion, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Guangxi, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Zhaoxuan Che
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huazhao Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qipeng Wu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR); Frontiers Science Center for Animal Breeding and Sustainable Production; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR); Frontiers Science Center for Animal Breeding and Sustainable Production; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Guohua Hua,
| |
Collapse
|
12
|
Dai W, White R, Liu J, Liu H. Organelles coordinate milk production and secretion during lactation: Insights into mammary pathologies. Prog Lipid Res 2022; 86:101159. [PMID: 35276245 DOI: 10.1016/j.plipres.2022.101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
The mammary gland undergoes a spectacular series of changes during its development and maintains a remarkable capacity to remodel and regenerate during progression through the lactation cycle. This flexibility of the mammary gland requires coordination of multiple processes including cell proliferation, differentiation, regeneration, stress response, immune activity, and metabolic changes under the control of diverse cellular and hormonal signaling pathways. The lactating mammary epithelium orchestrates synthesis and apical secretion of macromolecules including milk lipids, milk proteins, and lactose as well as other minor nutrients that constitute milk. Knowledge about the subcellular compartmentalization of these metabolic and signaling events, as they relate to milk production and secretion during lactation, is expanding. Here we review how major organelles (endoplasmic reticulum, Golgi apparatus, mitochondrion, lysosome, and exosome) within mammary epithelial cells collaborate to initiate, mediate, and maintain lactation, and how study of these organelles provides insight into options to maintain mammary/breast health.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Robin White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
de Almeida CC, Baião DDS, Leandro KC, Paschoalin VMF, da Costa MP, Conte-Junior CA. Protein Quality in Infant Formulas Marketed in Brazil: Assessments on Biodigestibility, Essential Amino Acid Content and Proteins of Biological Importance. Nutrients 2021; 13:nu13113933. [PMID: 34836188 PMCID: PMC8622549 DOI: 10.3390/nu13113933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
Infant formulas, designed to provide similar nutritional composition and performance to human milk, are recommended when breastfeeding is not enough to provide for the nutritional needs of children under 12 months of age. In this context, the present study aimed to assess the protein quality and essential amino acid content of both starting (phase 1) and follow-up (phase 2) formulas from different manufacturers. The chemical amino acid score and protein digestibility corrected by the amino acid score were calculated. The determined protein contents in most formulas were above the maximum limit recommended by FAO and WHO guidelines and at odds with the protein contents declared in the label. All infant formulas contained lactoferrin (0.06 to 0.44 g·100 g−1) and α-lactalbumin (0.02 to 1.34 g·100 g−1) below recommended concentrations, whereas ĸ-casein (8.28 to 12.91 g·100 g−1), α-casein (0.70 to 2.28 g·100 g−1) and β-lactoglobulin (1.32 to 4.19 g·100 g−1) were detected above recommended concentrations. Essential amino acid quantification indicated that threonine, leucine and phenylalanine were the most abundant amino acids found in the investigated infant formulas. In conclusion, infant formulas are still unconforming to nutritional breast milk quality and must be improved in order to follow current global health authority guidelines.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (C.C.d.A.); (K.C.L.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil;
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
| | - Katia Christina Leandro
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (C.C.d.A.); (K.C.L.)
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Marion Pereira da Costa
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil;
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador 40170-110, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (C.C.d.A.); (K.C.L.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Correspondence: ; Tel.: +21-98728-6704 or +21-3938-7825
| |
Collapse
|
14
|
Sugita S, Tamura K, Yano M, Minegishi Y, Ota N. The Impact of Milk Fat Globule Membrane with Exercise on Age-Related Degeneration of Neuromuscular Junctions. Nutrients 2021; 13:nu13072310. [PMID: 34371820 PMCID: PMC8308682 DOI: 10.3390/nu13072310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Morphological changes in neuromuscular junctions (NMJs), which are synapses formed between α-motor neurons and skeletal muscle fibers, are considered to be important in age-related motor dysfunction. We have previously shown that the intake of dietary milk fat globule membrane (MFGM) combined with exercise attenuates age-related NMJ alterations in the early phase of aging. However, it is unclear whether the effect of MFGM with exercise on age-related NMJ alterations persists into old age, and whether intervention from old age is still effective when age-related changes in NMJs have already occurred. In this study, 6- or 18-month-old mice were treated with a 1% MFGM diet and daily running wheel exercise until 23 or 24 months of age, respectively. MFGM treatment with exercise was effective in suppressing the progression of age-related NMJ alterations in old age, and even after age-related changes in NMJs had already occurred. Moreover, the effect of MFGM intake with exercise was not restricted to NMJs but extended to the structure and function of peripheral nerves. This study demonstrates that MFGM intake with exercise may be a novel approach for improving motor function in the elderly by suppressing age-related NMJ alterations.
Collapse
|
15
|
Thum C, Roy NC, Everett DW, McNabb WC. Variation in milk fat globule size and composition: A source of bioactives for human health. Crit Rev Food Sci Nutr 2021; 63:87-113. [PMID: 34190660 DOI: 10.1080/10408398.2021.1944049] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Milk fat globules (MFGs) are secreted from the mammalian gland and are composed of a triacylglycerol core surrounded by a triple membrane structure, the milk fat globule membrane (MFGM). The MFGM contains complex lipids and proteins reported to have nutritional, immunological, neurological and digestive functions. Human and ruminant milk are shown to share a similar MFG structure but with different size, profile and abundance of protein and polar lipids. This review summarizes the reported data on human, bovine, caprine and ovine MFG composition and concentration of bioactive components in different MFG-size fractions. A comprehensive understanding of compositional variations between milk from different species and MFG size fractions may help promote various milk sources as targeted supplements to improve human development and health. MFG size and MFGM composition are species-specific and affected by lactation, diet and breed (or maternal origin). Purification and enrichment methods for some bioactive proteins and lipids present in the MFGM have yet to be established or are not scaled sufficiently to be used to supplement human diets. To overcome this problem, MFG size selection through fractionation or herd selection may provide a convenient way to pre-enrich the MFG fraction with specific protein and lipid components to fulfill human dietary and health requirements.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Nicole C Roy
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - David W Everett
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8850080. [PMID: 34095293 PMCID: PMC8140835 DOI: 10.1155/2021/8850080] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Infant formulas are an alternative to replace or supplement human milk when breastfeeding is not possible. The knowledge of human milk's bioactive compounds and their beneficial effects has attracted the interest of researchers in the field of infant nutrition, as well as researchers of technology and food sciences that seek to improve the nutritional characteristics of infant formulas. Several scientific studies evaluate the optimization of infant formula composition. The bioactive compound inclusion has been used to upgrade the quality and nutrition of infant formulas. In this context, the purpose of this systematic literature review is to assess the scientific evidence of bioactive compounds present in infant formulas (α-lactalbumin, lactoferrin, taurine, milk fat globule membrane, folates, polyamines, long-chain polyunsaturated fatty acids, prebiotics, and probiotics) and their effects on infant nutrition and health. Through previously determined criteria, studies published in the last fifteen years from five different databases were included to identify the advances in the optimization of infant formula composition. Over the last few years, there has been optimization of the infant formula composition, not only to increase the similarities in their content of macro and micronutrients but also to include novel bioactive ingredients with potential health benefits for infants. Although the infant food industry has advanced in the last years, there is no consensus on whether novel bioactive ingredients added to infant formulas have the same functional effects as the compounds found in human milk. Thus, further studies about the impact of bioactive compounds in infant nutrition are fundamental to infant health.
Collapse
|
17
|
Abstract
This review provides an overview of the composition, structure, and biological activities of milk fat globule membrane (MFGM) compounds with focus on the future application of this compound as a food ingredient. MFGM is a particular component of mammalian milks and is comprised of a tri-layer of polar lipids, glycolipids and proteins. In recent years, MFGM has been extensively studied for the purpose of enhancing the efficacy of infant nutrition formula. For example, infant formulas supplemented with bovine MFGM have shown promising results with regard to neurodevelopment and defense against infections. Components of MFGM have been shown to present several health benefits as the proteins of the membrane have shown antiviral activity and a reduction in the incidence of diarrhea. Moreover, the presence of sphingomyelin, a phospholipid, implies beneficial effects on human health such as enhanced neuronal development in infants and the protection of neonates from bacterial infections. The development of a lipid that is similar to human milk fat would represent a significant advance for the infant formula industry and would offer high technology formulas for those infants that depend on infant formula. The complexity of the structure of MFGM and its nutritional and technological properties is critically examined in this review with a focus on issues relevant to the dairy industry.
Collapse
|
18
|
Wang X, Yu Z, Zhao X, Han R, Huang D, Yang Y, Cheng G. Comparative proteomic characterization of bovine milk containing β-casein variants A1A1 and A2A2, and their heterozygote A1A2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:718-725. [PMID: 32710442 DOI: 10.1002/jsfa.10684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Genetic variants of β-casein are cosnidered to affect the components of milk. However, limited data are available on the bovine protein components correlated with β-casein variants at the proteome level. In the present study, cows producing milk containing β-casein variants (A1A1 and A2A2) and their heterozygote (A1A2) were identified using a high-resolution melting method, and milk samples were collected and tested. Comparative analyses of casein micelles, whey and milk fat globule membrane fractions in each milk variant were performed using a label-free proteomics approach. RESULTS The results obtained showed that ceruloplasmin and cathelicidin-2 were the most abundant proteins in milk containing variant A1A1; lactoferrin and CD5 molecule-like were the most abundant proteins in milk containing variant A2A2; and selenoprotein P and osteopontin were the most abundant proteins in milk containing heterozygote A1A2. Differences in protein components in milk containing the different β-casein variants were visualized using hierarchical clustering, and profiles were separated using principal components analysis. The differentially expressed proteins in milk containing A1A1, A2A2 or A1A2 were predominantly involved in response to stress and defense response according to their Gene Ontology annotations. CONCLUSION Our findings provide new insights into differentially expressed milk proteins corresponding to the presence of different β-casein variants. This knowledge will help determine their potential biological functions in dairy products and the effects on human health. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaxia Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhongna Yu
- Haidu College, Qingdao Agricultural University, Laiyang, China
| | - Xiaowei Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Dongwei Huang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Guanglong Cheng
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
19
|
Kwan SH, Wan-Ibrahim WI, Juvarajah T, Fung SY, Abdul-Rahman PS. Isolation and identification of O- and N-linked glycoproteins in milk from different mammalian species and their roles in biological pathways which support infant growth. Electrophoresis 2020; 42:233-244. [PMID: 33085102 DOI: 10.1002/elps.202000142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/07/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023]
Abstract
Milk serves as the sole nutrition for newborns, as well as a medium for the transfer of immunological components from the mother to the baby. This study reveals different glycoprotein profiles obtained from human, bovine, and caprine milk and their potential roles in supporting infant growth. Proteins from these three milk samples are separated and analyzed using two-dimensional gel electrophoresis (2-DE). Glycosylated proteins from all samples are enriched by affinity chromatography using lectins from the seeds of Artocarpus integer before analysis using LC/MS-QTOF. The glycoproteome profiling demonstrates that glycosylated proteins are higher in caprine milk compared to other samples. Analysis using LC/MS-QTOF identified 42 O-glycosylated and 56 N-glycosylated proteins, respectively. Among those identified, human milk has 17 glycoproteins, which are both O- and N-glycosylated, whereas caprine and bovine have 10 and 1, respectively. Only glycoproteins from human milk have shown positive matching to important human biological pathways, such as vesicle-mediated transport, immune system and hemostasis pathways. Human milk remains unique for human babies with the presence of antibodies in the form of immunoglobulins that are lacking in ruminant milk proteomes.
Collapse
Affiliation(s)
- Soon Hong Kwan
- Medical Biotechnology Laboratory, Central Research Laboratories, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wan Izlina Wan-Ibrahim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thaneswari Juvarajah
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Universiti Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Puteri Shafinaz Abdul-Rahman
- Medical Biotechnology Laboratory, Central Research Laboratories, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Universiti Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Li S, Yang Y, Chen C, Li L, Valencak TG, Ren D. Differences in milk fat globule membrane proteins among Murrah, Nili-Ravi and Mediterranean buffaloes revealed by a TMT proteomic approach. Food Res Int 2020; 139:109847. [PMID: 33509470 DOI: 10.1016/j.foodres.2020.109847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
Milk fat globule membrane (MFGM) proteins contribute to human nutrition and health. However, differences in MFGM proteome among the buffalo breeds are unknown. In this study, MFGM proteins from Murrah, Nili-Ravi and Mediterranean buffaloes were identified using a tandem mass tag proteomic approach to characterize the components and their potential activities. A total of 1258 MFGM proteins were identified and 103 differentially expressed proteins were found in the studied buffalo breeds. Of these, toll-like receptor 2 had higher abundance in Mediterranean milk; endoplasmic reticulum resident protein 29 had higher levels in Nili-Ravi milk; uromodulin had higher abundance in Murrah milk. A number of 781 newly proteins in buffalo milk exerted antioxidant, antibacterial, and anti-inflammatory activities. Our findings reveal the component complexity and functional diversity of MFGM proteins in different buffalo breeds. Thus, our data may path the way to promote raw buffalo milk as a healthy and functional dairy product.
Collapse
Affiliation(s)
- Shanshan Li
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Chen Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Ling Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Water Buffalo Institute, Nanning 530001, PR China
| | - Teresa G Valencak
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China.
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China.
| |
Collapse
|
21
|
Brink LR, Lönnerdal B. Milk fat globule membrane: the role of its various components in infant health and development. J Nutr Biochem 2020; 85:108465. [PMID: 32758540 DOI: 10.1016/j.jnutbio.2020.108465] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Breastfeeding confers many benefits to the breast-fed infant which are reflected by better short-term and long-term outcomes as compared to formula-fed infants. Many components of breast milk are likely to contribute to these favorable outcomes, and there has recently been focus on the milk fat globule membrane (MFGM). This fraction is a heterogenous mixture of proteins (many of them glycosylated), phospholipids, sphingolipids, gangliosides, choline, sialic acid and cholesterol which is lacking in infant formula as milk fat (which is also low in these components) is replaced by vegetable oils. Many of these components have been shown to have biological effects, and there is considerable evidence from preclinical studies and clinical trials that providing bovine MFGM results in improved outcomes, in particular with regard to infections and neurodevelopment. Since bovine MFGM is commercially available, it is possible to add it to infant formula. There are, however, considerable variations in composition among commercial sources of bovine MFGM, and as it is not known which of the individual components provide the various bioactivities, it becomes important to critically review studies to date and to delineate the mechanisms behind the activities observed. In this review, we critically examine the preclinical and clinical studies on MFGM and its components in relation to resistance to infections, cognitive development, establishment of gut microbiota and infant metabolism, and discuss possible mechanisms of action.
Collapse
Affiliation(s)
- Lauren R Brink
- Department of Nutrition, University of California, Davis, 95616
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, 95616.
| |
Collapse
|
22
|
Daly RM, Gianoudis J, De Ross B, O'Connell SL, Kruger M, Schollum L, Gunn C. Effects of a multinutrient-fortified milk drink combined with exercise on functional performance, muscle strength, body composition, inflammation, and oxidative stress in middle-aged women: a 4-month, double-blind, placebo-controlled, randomized trial. Am J Clin Nutr 2020; 112:427-446. [PMID: 32469393 DOI: 10.1093/ajcn/nqaa126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Multinutrient protein-enriched supplements are promoted to augment the effects of exercise on muscle mass and strength, but their effectiveness in middle-aged women, or whether there are any additional benefits to physical function, remains uncertain. OBJECTIVES We aimed to evaluate whether a multinutrient-fortified milk drink (MFMD) could enhance the effects of exercise on functional muscle power (stair climbing) in middle-aged women. Secondary aims were to evaluate the intervention effects on physical function, muscle strength, lean mass (LM), fat mass (FM), bone mineral content (BMC), muscle cross-sectional area (CSA), muscle density, balance, flexibility, aerobic fitness, inflammation, oxidative stress, bone and cartilage turnover, blood pressure, and blood lipids. METHODS In this 4-mo, double-blind, placebo-controlled, randomized trial, 244 women (45-65 y) participated in a multimodal resistance-type exercise program 3 d/wk, with random allocation to a twice-daily MFMD containing added protein, vitamin D, calcium, milk fat globule membrane (phospholipids and other bioactives), and other micronutrients (Ex + MFMD, n = 123) or an energy-matched placebo (Ex + placebo, n = 121). RESULTS A total of 216 women (89%) completed the study. After 4 mo, both groups experienced similar 3.6%-4.3% improvements in the primary outcomes of fast-pace 5- and 10-step stair ascent power. In contrast, Ex + MFMD experienced greater improvements in 5-step regular-pace stair descent time [net difference (95% CI): -0.09 s (-0.18, 0.00 s), P = 0.045], countermovement jump height [0.5 cm (0.04, 1.0 cm), P = 0.038], total body LM [0.3 kg (0.04, 0.60 kg), P = 0.020], FM [-0.6 kg (-1.0, -0.2 kg), P = 0.004], BMC [0.4% (0.1%, 0.6%), P = 0.020], muscle CSA [thigh: 1.8% (0.6%, 2.9%), P = 0.003; lower leg: 0.9% (0.3%, 1.6%), P = 0.005], balance eyes closed [3.3 s (1.1, 5.4 s), P = 0.005], 2-min step performance [8 steps (3, 12 steps), P = 0.003], and sit-and-reach flexibility [1.4 cm (0.6, 2.2 cm), P = 0.026]. MFMD did not enhance the effects of exercise on any measures of muscle strength, gait speed, dynamic balance, reaction time, or blood lipids, and there was no effect of either intervention on blood pressure, markers of inflammation, or cartilage turnover. Ex + placebo had a greater improvement in the oxidative stress marker protein carbonyls (P < 0.01). CONCLUSIONS In middle-aged women, daily consumption of an MFMD did not enhance the effects of a multimodal exercise program on the primary outcome of stair climbing ascent power, but did elicit greater improvements in multiple secondary outcomes including various other measures of functional performance, LM, muscle size, FM, balance, aerobic capacity, flexibility, and bone metabolism.This trial was registered at www.anzctr.org.au as ACTRN12617000383369.
Collapse
Affiliation(s)
- Robin M Daly
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Jenny Gianoudis
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Belinda De Ross
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Stella L O'Connell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Marlena Kruger
- School of Health Sciences, Massey University, Palmerston North, New Zealand
| | - Linda Schollum
- Fonterra Co-operative Group Ltd, Palmerston, North New Zealand
| | - Caroline Gunn
- Fonterra Co-operative Group Ltd, Palmerston, North New Zealand
| |
Collapse
|
23
|
Identification and Detection of Bioactive Peptides in Milk and Dairy Products: Remarks about Agro-Foods. Molecules 2020; 25:molecules25153328. [PMID: 32707993 PMCID: PMC7435915 DOI: 10.3390/molecules25153328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Food-based components represent major sources of functional bioactive compounds. Milk is a rich source of multiple bioactive peptides that not only help to fulfill consumers 'nutritional requirements but also play a significant role in preventing several health disorders. Understanding the chemical composition of milk and its products is critical for producing consistent and high-quality dairy products and functional dairy ingredients. Over the last two decades, peptides have gained significant attention by scientific evidence for its beneficial health impacts besides their established nutrient value. Increasing awareness of essential milk proteins has facilitated the development of novel milk protein products that are progressively required for nutritional benefits. The need to better understand the beneficial effects of milk-protein derived peptides has, therefore, led to the development of analytical approaches for the isolation, separation and identification of bioactive peptides in complex dairy products. Continuous emphasis is on the biological function and nutritional characteristics of milk constituents using several powerful techniques, namely omics, model cell lines, gut microbiome analysis and imaging techniques. This review briefly describes the state-of-the-art approach of peptidomics and lipidomics profiling approaches for the identification and detection of milk-derived bioactive peptides while taking into account recent progress in their analysis and emphasizing the difficulty of analysis of these functional and endogenous peptides.
Collapse
|
24
|
Scuderi RA, Lam YW, Ebenstein DB, Tacoma R, Cersosimo LM, Kraft J, Brito AF, Greenwood SL. Comparative analysis of the skim milk and milk fat globule membrane proteomes produced by Jersey cows grazing pastures with different plant species diversity. J Dairy Sci 2020; 103:7498-7508. [PMID: 32448582 PMCID: PMC7992107 DOI: 10.3168/jds.2019-17726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
The objective of this experiment was to identify and characterize the bovine milk proteome within the skim milk fraction and milk fat globule membrane (MFGM)-associated fraction from 16 organically certified lactating Jersey cows after a short term of grazing pastures with or without annual forage crops (AFC). Cows were offered a partial mixed ration (~60% of dry matter intake) and approximately 40% of their total dry matter intake as herbage. Eight cows were offered a cool-season grass–legume herbage (GLH), which included orchardgrass (Dactylis glomerata), timothy (Phleum pratense), Kentucky bluegrass (Poa pratensis), and white clover (Trifolium repens). The other 8 cows were offered the same GLH strip-tilled with the AFC, including oat (Avena sativa), millet (Pennisetum glaucum), teff (Eragrostis tef), buckwheat (Fagopyrum esculentum), and chickling vetch (Lathyrus sativus). Milk samples were collected from each cow during a.m. and p.m. milkings on d 19 to 21 of grazing, and composite milk samples per cow were analyzed for (1) the high-abundance milk protein profile, (2) the skim milk low-abundance protein-enriched proteome, and (3) the MFGM proteome. Of the 443 proteins identified in the skim and MFGM proteomes, 433 were included in statistical analysis, including 68 proteins identified in the skim milk fraction and 365 in the MFGM-associated fraction. Analysis of the skim and MFGM proteomes encompassed unique gene ontology profiles and proportions of functional classifications. In response to diet, αS1-casein as well as 8 low-abundance proteins were present in higher concentration or abundance in milk from cows grazing the GLH strip-tilled with the AFC compared with milk from cows grazing GLH, suggesting that even short-term grazing of pastures including some AFC may affect the milk proteome.
Collapse
Affiliation(s)
- R A Scuderi
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| | - Y-W Lam
- Vermont Genetics Network Proteomics Facility, The University of Vermont, Burlington 05405
| | - D B Ebenstein
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| | - R Tacoma
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| | - L M Cersosimo
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| | - J Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| | - A F Brito
- Department of Agriculture, Nutrition, and Food Systems, The University of New Hampshire, Durham 03824
| | - S L Greenwood
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405.
| |
Collapse
|
25
|
Yano M, Haramizu S, Ota N, Minegishi Y, Shimotoyodome A. Continuous Supplementation of Milk Fat Globule Membrane with Habitual Exercise from a Young Age Improves Motor Coordination and Skeletal Muscle Function in Aged Mice. J Nutr Sci Vitaminol (Tokyo) 2020; 65:405-413. [PMID: 31666477 DOI: 10.3177/jnsv.65.405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since the decline of physical performance gradually progresses with aging, continuous exercise with nutritional supplementation from a young age is a feasible and effective way to maintain a comfortable life until late old age. We examined the effects of continuous milk fat globule membrane (MFGM) supplementation combined with voluntary running exercise (VR) for prevention of aging-associated declines in physical performance in naturally aging mice. The MFGM with VR group showed a significantly attenuated age-related decline in motor coordination and suppression of the loss of muscle mass and strength. Compared with the control group, the MFGM with VR group showed significantly higher mRNA and protein expression for docking protein 7, which maintains neuromuscular junction (NMJ) integrity, in the quadriceps muscles. These results suggest that dietary MFGM and VR attenuate natural aging-related decline in motor coordination and muscle function by regulating NMJ integrity.
Collapse
Affiliation(s)
- Michiko Yano
- Biological Science Research, Health Science, Kao Corporation Tochigi Research Center
| | - Satoshi Haramizu
- Biological Science Research, Health Science, Kao Corporation Tochigi Research Center
| | - Noriyasu Ota
- Biological Science Research, Health Science, Kao Corporation Tochigi Research Center
| | - Yoshihiko Minegishi
- Biological Science Research, Health Science, Kao Corporation Tochigi Research Center
| | - Akira Shimotoyodome
- Biological Science Research, Health Science, Kao Corporation Tochigi Research Center
| |
Collapse
|
26
|
Suzukamo C, Ishimaru K, Ochiai R, Osaki N, Kato T. Milk-Fat Globule Membrane Plus Glucosamine Improves Joint Function and Physical Performance: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. J Nutr Sci Vitaminol (Tokyo) 2020; 65:242-250. [PMID: 31257264 DOI: 10.3177/jnsv.65.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Care of the musculoskeletal system, including the muscles, joints, and bones, is important for a healthy life expectancy in today's aging society. The aim of this randomized, double-blind, placebo-controlled study was to investigate the effect of consumption of milk-fat globule membrane (MFGM) and glucosamine on joint function and physical performance. Participants were healthy Japanese men and women, aged 60-74 y, with a history of mild knee or low back pain at rest. They were randomized to receive tablets containing MFGM 1.0 g+glucosamine 1.5 g or placebo tablets for 8 wk. We assessed passive range of motion, active range of motion (self-reported VAS score), JKOM and JLEQ, and physical performance. Data were available for analysis for 25 participants in the active treatment group and 28 in the placebo group. The active group showed significant improvements in passive range of motion at the knee and active range of motion at both the knee and low back. The active group also showed significant improvements in some physical performance, including obstacle walking speed and speed of ascending stairs. The findings of this study suggest that consumption of a combination of MFGM and glucosamine may improve joint function and physical performance.
Collapse
Affiliation(s)
| | | | | | | | - Tatsuya Kato
- Medical Corporation Jikokai Kouki Internal Medicine Clinic
| |
Collapse
|
27
|
Rodríguez-Camejo C, Puyol A, Fazio L, Villamil E, Arbildi P, Sóñora C, Castro M, Carroscia L, Hernández A. Impact of Holder pasteurization on immunological properties of human breast milk over the first year of lactation. Pediatr Res 2020; 87:32-41. [PMID: 31288249 DOI: 10.1038/s41390-019-0500-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The timing of milk donations to human milk banks ranges from a few days to more than 1 year after delivery, and the Holder method is used for pasteurization. We evaluated the effect of temporal variation and thermal treatment on the immunological properties of milk. METHODS We analyzed 73 milk samples, raw and after pasteurization, donated at different lactation stages. We studied antibodies, lysozyme, cytokines, soluble receptors, and factors with impact on barrier function. We also evaluated in vitro the capacity of milk to modulate nuclear factor-κB (NF-κB) signaling in an HT-29 epithelial cell line stimulated with tumor necrosis factor-α (TNF-α). RESULTS With few exceptions, immune components exhibited their highest levels in colostrum, and were stable in the various stages of mature milk. Pasteurization altered the immunological composition of milk, and very drastically for some components. Raw milk of the first year reduced NF-κB activation in HT-29 cells treated with TNF-α to approximately the same extent, and Holder pasteurization significantly affected this capacity. CONCLUSIONS Overall, the present work reports that mature donated milk is equally valuable over the first year of lactation, but warns about drastic losses of anti-inflammatory properties during Holder pasteurization that could be critical for the health of preterm infants.
Collapse
Affiliation(s)
- Claudio Rodríguez-Camejo
- Cátedra de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Arturo Puyol
- Banco de Leche "Ruben Panizza", Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Laura Fazio
- Banco de Leche "Ruben Panizza", Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Emilia Villamil
- Cátedra de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Paula Arbildi
- Cátedra de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Sóñora
- Cátedra de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.,Escuela Universitaria de Tecnología Médica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mara Castro
- Hospital de la Mujer, Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Lilian Carroscia
- Banco de Leche "Ruben Panizza", Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Ana Hernández
- Cátedra de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
28
|
O'Mahony SM, McVey Neufeld KA, Waworuntu RV, Pusceddu MM, Manurung S, Murphy K, Strain C, Laguna MC, Peterson VL, Stanton C, Berg BM, Dinan TG, Cryan JF. The enduring effects of early-life stress on the microbiota-gut-brain axis are buffered by dietary supplementation with milk fat globule membrane and a prebiotic blend. Eur J Neurosci 2019; 51:1042-1058. [PMID: 31339598 DOI: 10.1111/ejn.14514] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
Abstract
Nutritional interventions targeting the microbiota-gut-brain axis are proposed to modulate stress-induced dysfunction of physiological processes and brain development. Maternal separation (MS) in rats induces long-term alterations to behaviour, pain responses, gut microbiome and brain neurochemistry. In this study, the effects of dietary interventions (milk fat globule membrane [MFGM] and a polydextrose/galacto-oligosaccharide prebiotic blend) were evaluated. Diets were provided from postnatal day 21 to both non-separated and MS offspring. Spatial memory, visceral sensitivity and stress reactivity were assessed in adulthood. Gene transcripts associated with cognition and stress and the caecal microbiota composition were analysed. MS-induced visceral hypersensitivity was ameliorated by MFGM and to greater extent with the combination of MFGM and prebiotic blend. Furthermore, spatial learning and memory were improved by prebiotics and MFGM alone and with the combination. The prebiotic blend and the combination of the prebiotics and MFGM appeared to facilitate return to baseline with regard to HPA axis response to the restraint stress, which can be beneficial in times where coping mechanisms to stressful events are required. Interestingly, the combination of MFGM and prebiotic reduced the long-term impact of MS on a marker of myelination in the prefrontal cortex. MS affected the microbiota at family level only, while MFGM, the prebiotic blend and the combination influenced abundance at family and genus level as well as influencing beta-diversity levels. In conclusion, intervention with MFGM and prebiotic blend significantly impacted the composition of the microbiota as well as ameliorating some of the long-term effects of early-life stress.
Collapse
Affiliation(s)
- Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | | | | | | | - Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Co., Cork, Ireland
| | - Conall Strain
- Teagasc Food Research Centre, Moorepark, Co., Cork, Ireland
| | - Mamen C Laguna
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Co., Cork, Ireland
| | - Brian M Berg
- Mead Johnson Pediatric Nutrition Institute, Evansville, IN, USA
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
29
|
Greenwood SL, Honan MC. Symposium review: Characterization of the bovine milk protein profile using proteomic techniques. J Dairy Sci 2019; 102:2796-2806. [PMID: 30612793 DOI: 10.3168/jds.2018-15266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022]
Abstract
Identification and characterization of the comprehensive bovine milk proteome has historically been limited due to the dichotomy of protein abundances within milk. The high abundance of a select few proteins, including caseins, α-lactalbumin, β-lactoglobulin, and serum albumin, has hindered intensive identification and characterization of the vast array of low-abundance proteins in milk due to limitations in separation techniques and protein labeling capacity. In more recent years, the development and advancement of proteomics techniques have yielded valuable tools for characterization of the protein profile in bovine milk. More extensive fractionation and enrichment techniques, including the use of combinations of precipitation techniques, immunosorption, gel electrophoresis, chromatography, ultracentrifugation, and hexapeptide-based binding enrichment, have allowed for better isolation of lower abundance proteins for further downstream liquid chromatography-tandem mass spectrometry approaches. The different milk subfractions isolated during these processes can also be analyzed as individual entities to assess the protein profile unique to the different fractions-for instance, investigation of the skim milk-associated proteome versus the milk fat globule membrane-associated proteome. Updates to high-throughput methods, equipment, and software have also allowed for greater interpretation and visualization of the data. For instance, labeling techniques have enabled analysis of multiplexed samples and more accurate comparison of specific protein abundances and quantities across samples, and integration of gene ontology analysis has allowed for a more in-depth and visual representation of potential relationships between identified proteins. Inclusively, these developments in proteomic techniques have allowed for a rapid increase in the number of milk-associated proteins identified and a better grasp of the relationships and potential functionality of the proteins within the milk proteome.
Collapse
Affiliation(s)
- Sabrina L Greenwood
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405.
| | - Mallory C Honan
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| |
Collapse
|
30
|
Li W, Li M, Cao X, Yang M, Han H, Kong F, Yue X. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins from donkey colostrum and mature milk. Food Funct 2019; 10:4256-4268. [DOI: 10.1039/c9fo00386j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The composition and functions of milk fat globule membrane (MFGM) proteins are important indicators of the nutritional quality of milk.
Collapse
Affiliation(s)
- Weixuan Li
- College of Food Science
- Shenyang Agricultural University
- Shenyang
- China
| | - Mohan Li
- College of Food Science
- Shenyang Agricultural University
- Shenyang
- China
| | - Xueyan Cao
- College of Food Science
- Shenyang Agricultural University
- Shenyang
- China
| | - Mei Yang
- College of Food Science
- Shenyang Agricultural University
- Shenyang
- China
| | - Hongjiao Han
- College of Food Science
- Shenyang Agricultural University
- Shenyang
- China
| | - Fanhua Kong
- College of Food Science
- Shenyang Agricultural University
- Shenyang
- China
| | - Xiqing Yue
- College of Food Science
- Shenyang Agricultural University
- Shenyang
- China
| |
Collapse
|
31
|
Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, Hernell O, Lönnerdal B, Slupsky C. Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development. Front Pediatr 2018; 6:313. [PMID: 30460213 PMCID: PMC6232911 DOI: 10.3389/fped.2018.00313] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
Human milk is uniquely optimized for the needs of the developing infant. Its composition is complex and dynamic, driven primarily by maternal genetics, and to a lesser extent by diet and environment. One important component that is gaining attention is the milk fat globule (MFG). The MFG is composed of a triglyceride-rich core surrounded by a tri-layer membrane, also known as the milk fat globule membrane (MFGM) that originates from mammary gland epithelia. The MFGM is enriched with glycerophospholipids, sphingolipids, cholesterol, and proteins, some of which are glycosylated, and are known to exert numerous biological roles. Mounting evidence suggests that the structure of the MFG and bioactive components of the MFGM may benefit the infant by aiding in the structural and functional maturation of the gut through the provision of essential nutrients and/or regulating various cellular events during infant growth and immune education. Further, antimicrobial peptides and surface carbohydrate moieties surrounding the MFG might have a pivotal role in shaping gut microbial populations, which in turn may promote protection against immune and inflammatory diseases early in life. This review seeks to: (1) understand the components of the MFG, as well as maternal factors including genetic and lifestyle factors that influence its characteristics; (2) examine the potential role of this milk component on the intestinal immune system; and (3) delineate the mechanistic roles of the MFG in infant intestinal maturation and establishment of the microbiota in the alimentary canal.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Emily Padhi
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jules Larke
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Mariana Parenti
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Carolyn Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Harvatine KJ, Boisclair YR, Bauman DE. Time-dependent effect of trans-10,cis-12 conjugated linoleic acid on gene expression of lipogenic enzymes and regulators in mammary tissue of dairy cows. J Dairy Sci 2018; 101:7585-7592. [PMID: 29803423 DOI: 10.3168/jds.2017-13935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
Trans-10,cis-12 conjugated linoleic acid (CLA) has been identified as an intermediate of rumen fatty acid biohydrogenation that caused milk fat depression (MFD) in the dairy cow. Previous studies in cows experiencing CLA- and diet-induced MFD have identified reduced mammary expression of the master lipogenic regulator sterol response element transcription factor 1 (SREBF1) and many of its dependent genes. To distinguish between primary mechanisms regulating milk fat synthesis and secondary adaptations to the reduction in milk fat, we conducted a time-course experiment. Eleven dairy cows received by abomasal infusion an initial priming dose of 6.25 g of CLA followed by 12.5 g/d delivered in multiple pulses per day for 5 d. Cows were milked 3×/d and mammary biopsies were obtained under basal condition (prebolus control) and 12, 30, and 120 h relative to initiation of CLA infusion. Milk fat concentration and yield decreased progressively reaching a nadir at 69 h (1.82% and 38.2 g/h) and averaged 2.03 ± 0.19% and 42.1 ± 4.10 g/h on the last day of treatment (±standard deviation). Expression of fatty acid synthase (FASN) and lipoprotein lipase (LPL) were decreased at 30 and 120 h compared with control. Expression of SREBF1 and THRSP were also decreased at 30 and 120 h compared with control. Additionally, we failed to observe changes in other factors, including peroxisome proliferator-activated receptor γ and liver × receptor β and milk fat globular membrane proteins, during CLA treatment. However, expression of milk fat globular membrane proteins were decreased after 14 d of diet-induced MFD in samples from a previous experiment, indicating a possible long-term response. The rapid decrease in lipogenic enzymes, SREBF1, and THRSP provide strong support for their transcriptional regulation as a primary mechanism of milk fat depression.
Collapse
Affiliation(s)
- Kevin J Harvatine
- Department of Animal Science, Penn State University, University Park 16802.
| | - Y R Boisclair
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - Dale E Bauman
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| |
Collapse
|
33
|
Effects of dietary supplementation with milk fat globule membrane on the physical performance of community-dwelling Japanese adults: a randomised, double-blind, placebo-controlled trial. J Nutr Sci 2018; 7:e18. [PMID: 29721316 PMCID: PMC5921044 DOI: 10.1017/jns.2018.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/08/2018] [Accepted: 03/05/2018] [Indexed: 01/04/2023] Open
Abstract
We conducted a randomised, double-blind, placebo-controlled trial to elucidate the effects of dietary milk fat globule membrane (MFGM) on the physical performance of community-dwelling Japanese adults. For this 24-week study, 115 middle-aged subjects (range 50–70 years old) were invited, of whom 113 (seventy-two women, forty-one men) completed the trial. Participants were then divided into either the placebo control or MFGM group. Measurements of physical performance (without undertaking any mandatory exercise) examining muscle strength, agility and balance were tested every 6 weeks until 24 weeks. Analyses were performed using the intention-to-treat method for all participants. Although the effects of MFGM on muscle strength and agility were not significant, we noted that the parameter for balance (such as the ability to stand on one leg with eyes closed for longer durations) increased in the MFGM group (mean 10·1 (95 % CI 8·25, 12·4) s) compared with the placebo (mean 7·53 (95 % CI 6·11, 9·30) s) (P = 0·046). Similarly, application of the mixed-effect model for repeated measures under unstructured covariance also revealed that the effect of MFGM was significant when compared with the placebo (10·2 (95 % CI 8·33, 12·4) v. 7·61 (95 % CI 6·17, 9·30) s) (P = 0·045). In conclusion, we demonstrated that MFGM had an effect on the physical performance of community-dwelling Japanese adults despite mandatory exercise. However, studies using larger cohorts of individuals from different demographic backgrounds are required to further elucidate the mechanisms underlying these effects and to extend the application of MFGM.
Collapse
|
34
|
Bernard L, Bonnet M, Delavaud C, Delosière M, Ferlay A, Fougère H, Graulet B. Milk Fat Globule in Ruminant: Major and Minor Compounds, Nutritional Regulation and Differences Among Species. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700039] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laurence Bernard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Carole Delavaud
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Mylène Delosière
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Anne Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Hélène Fougère
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Benoît Graulet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| |
Collapse
|
35
|
Bardanzellu F, Fanos V, Reali A. "Omics" in Human Colostrum and Mature Milk: Looking to Old Data with New Eyes. Nutrients 2017; 9:E843. [PMID: 28783113 PMCID: PMC5579636 DOI: 10.3390/nu9080843] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
Human Milk (HM) is the best source for newborn nutrition until at least six months; it exerts anti-inflammatory and anti-infective functions, promotes immune system formation and supports organ development. Breastfeeding could also protect from obesity, diabetes and cardiovascular disease. Furthermore, human colostrum (HC) presents a peculiar role in newborn support as a protective effect against allergic and chronic diseases, in addition to long-term metabolic benefits. In this review, we discuss the recent literature regarding "omics" technologies and growth factors (GF) in HC and the effects of pasteurization on its composition. Our aim was to provide new evidence in terms of transcriptomics, proteomics, metabolomics, and microbiomics, also in relation to maternal metabolic diseases and/or fetal anomalies and to underline the functions of GF. Since HC results are so precious, particularly for the vulnerable pre-terms category, we also discuss the importance of HM pasteurization to ensure donated HC even to neonates whose mothers are unable to provide. To the best of our knowledge, this is the first review analyzing in detail the molecular pattern, microbiota, bioactive factors, and dynamic profile of HC, finding clinical correlations of such mediators with their possible in vivo effects and with the consequent impact on neonatal outcomes.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| | - Alessandra Reali
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| |
Collapse
|
36
|
Yano M, Minegishi Y, Sugita S, Ota N. Milk fat globule membrane supplementation with voluntary running exercise attenuates age-related motor dysfunction by suppressing neuromuscular junction abnormalities in mice. Exp Gerontol 2017; 97:29-37. [PMID: 28729214 DOI: 10.1016/j.exger.2017.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
Age-related loss of skeletal muscle mass and function attenuates physical performance, and maintaining fine muscle innervation is known to play an important role in its prevention. We had previously shown that consumption of milk fat globule membrane (MFGM) with habitual exercise improves the muscle mass and motor function in humans and mice. Improvement of neuromuscular junction (NMJ) was suggested as one of the mechanisms underlying these effects. In this study, we evaluated the effect of MFGM intake combined with voluntary running (MFGM-VR) on morphological changes of NMJ and motor function in aging mice. Seven months following the intervention, the MFGM-VR group showed a significantly improved motor coordination in the rotarod test and muscle force in the grip strength test compared with the control group at 13 and 14months of age, respectively. In 14-month old control mice, the extensor digitorum longus muscle showed increased abnormal NMJs, such as fragmentation and denervation, compared with 6-month old young mice. However, such age-related deteriorations of NMJs were significantly suppressed in the MFGM-VR group. Increase in the expression of NMJ formation-related genes, such as agrin and LDL Receptor Related Protein 4 (LRP4), might contribute to this beneficial effect. Rotarod performance and grip strength showed significant negative correlation with the status of denervation and fragmentation of NMJs. These results suggest that MFGM intake with voluntary running exercise effectively suppresses age-related morphological deterioration of NMJ, thus contributing to improvement of motor function.
Collapse
Affiliation(s)
- Michiko Yano
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Yoshihiko Minegishi
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Satoshi Sugita
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Noriyasu Ota
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| |
Collapse
|
37
|
Proteins and bioactive peptides from donkey milk: The molecular basis for its reduced allergenic properties. Food Res Int 2017; 99:41-57. [PMID: 28784499 DOI: 10.1016/j.foodres.2017.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/18/2022]
Abstract
The legendary therapeutics properties of donkey milk have recently been supported by many clinical trials who have clearly demonstrated that, even if with adequate lipid integration, it may represent a valid natural substitute of cow milk for feeding allergic children. During the last decade many investigations by MS-based methods have been performed in order to obtain a better knowledge of donkey milk proteins. The knowledge about the primary structure of donkey milk proteins now may provide the basis for a more accurate comprehension of its potential benefits for human nutrition. In this aspect, experimental data today available clearly demonstrate that donkey milk proteins (especially casein components) are more closely related with the human homologues rather than cow counterparts. Moreover, the low allergenic properties of donkey milk with respect to cow one seem to be related to the low total protein content, the low ratio of caseins to whey fraction, and finally to the presence in almost all bovine IgE-binding linear epitopes of multiple amino acid differences with respect to the corresponding regions of donkey milk counterparts.
Collapse
|
38
|
Yang M, Cao X, Wu R, Liu B, Ye W, Yue X, Wu J. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS. Int J Food Sci Nutr 2017; 68:671-681. [PMID: 28276902 DOI: 10.1080/09637486.2017.1279129] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.
Collapse
Affiliation(s)
- Mei Yang
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Xueyan Cao
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Rina Wu
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Biao Liu
- b Inner Mongolia Yili Industrial Group Company Limited , Hohhot , PR China
| | - Wenhui Ye
- b Inner Mongolia Yili Industrial Group Company Limited , Hohhot , PR China
| | - Xiqing Yue
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Junrui Wu
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| |
Collapse
|
39
|
Hernell O, Timby N, Domellöf M, Lönnerdal B. Clinical Benefits of Milk Fat Globule Membranes for Infants and Children. J Pediatr 2016; 173 Suppl:S60-5. [PMID: 27234413 DOI: 10.1016/j.jpeds.2016.02.077] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The milk fat globule membrane (MFGM) in breast milk contains many bioactive components. Infant formulas traditionally have been devoid of the MFGM fraction, but dairy technology now has made the addition of bovine MFGM technically feasible. We identified 6 double-blinded randomized controlled trials exploring the effects of MFGM supplementation on the diets of infants or children. Results suggest that supplementation is safe and indicate positive effects on both neurodevelopment and defense against infections. MFGM supplementation of infant formula may narrow the gap in cognitive performance and infection rates between breastfed and formula-fed infants. Because of the small number of studies and the heterogeneity of interventions, more high-quality double-blinded randomized controlled trials are needed, with well characterized and clearly defined MFGM fractions, before firm conclusions on the effects of MFGM supplementation on the health and development of infants can be drawn.
Collapse
Affiliation(s)
- Olle Hernell
- Department of Clinical Sciences, Umeå University, Umeå, Sweden.
| | - Niklas Timby
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Magnus Domellöf
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA
| |
Collapse
|
40
|
Yang M, Cong M, Peng X, Wu J, Wu R, Liu B, Ye W, Yue X. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling. Food Funct 2016; 7:2438-50. [PMID: 27159491 DOI: 10.1039/c6fo00083e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Milk fat globule membrane (MFGM) proteins have many functions. To explore the different proteomics of human and bovine MFGM, MFGM proteins were separated from human and bovine colostrum and mature milk, and analyzed by the iTRAQ proteomic approach. A total of 411 proteins were recognized and quantified. Among these, 232 kinds of differentially expressed proteins were identified. These differentially expressed proteins were analyzed based on multivariate analysis, gene ontology (GO) annotation and KEGG pathway. Biological processes involved were response to stimulus, localization, establishment of localization, and the immune system process. Cellular components engaged were the extracellular space, extracellular region parts, cell fractions, and vesicles. Molecular functions touched upon were protein binding, nucleotide binding, and enzyme inhibitor activity. The KEGG pathway analysis showed several pathways, including regulation of the actin cytoskeleton, focal adhesion, neurotrophin signaling pathway, leukocyte transendothelial migration, tight junction, complement and coagulation cascades, vascular endothelial growth factor signaling pathway, and adherens junction. These results enhance our understanding of different proteomes of human and bovine MFGM across different lactation phases, which could provide important information and potential directions for the infant milk powder and functional food industries.
Collapse
Affiliation(s)
- Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lu J, Argov-Argaman N, Anggrek J, Boeren S, van Hooijdonk T, Vervoort J, Hettinga KA. The protein and lipid composition of the membrane of milk fat globules depends on their size. J Dairy Sci 2016; 99:4726-4738. [PMID: 26995123 DOI: 10.3168/jds.2015-10375] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/30/2016] [Indexed: 11/19/2022]
Abstract
In bovine milk, fat globules (MFG) have a heterogeneous size distribution with diameters ranging from 0.1 to 15 µm. Although efforts have been made to explain differences in lipid composition, little is known about the protein composition of MFG membranes (MFGM) in different sizes of MFG. In this study, protein and lipid analyses were combined to study MFG formation and secretion. Two different sized MFG fractions (7.6±0.9 µm and 3.3±1.2 µm) were obtained by centrifugation. The protein composition of MFGM in the large and small MFG fractions was compared using mass-spectrometry-based proteomics techniques. The lipid composition and fatty acid composition of MFG was determined using HPLC-evaporative light-scattering detector and gas chromatography, respectively. Two frequently studied proteins in lipid droplet biogenesis, perilipin-2 and TIP47, were increased in the large and small MFG fractions, respectively. In the large MFG fraction, besides perilipin-2, cytoplasmic vesicle proteins (heat shock proteins, 14-3-3 proteins, and Rabs), microfilaments and intermediate filament-related proteins (actin and vimentin), host defense proteins (cathelicidins), and phosphatidylinositol were higher in concentration. On the other hand, cholesterol synthesis enzymes [lanosterol synthase and sterol-4-α-carboxylate 3-dehydrogenase (decarboxylating)], cholesterol, unsaturated fatty acids, and phosphatidylethanolamine were, besides TIP47, higher in concentration in the small MFG fraction. These results suggest that vesicle proteins, microfilaments and intermediate filaments, cholesterol, and specific phospholipids play an important role in lipid droplet growth, secretion, or both. The observations from this study clearly demonstrated the difference in protein and lipid composition between small and large MFG fractions. Studying the role of these components in more detail in future experiments may lead to a better understanding of fat globule formation and secretion.
Collapse
Affiliation(s)
- Jing Lu
- Dairy Science and Technology, Food Quality and Design group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands; Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, the Netherlands; Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China
| | - Nurit Argov-Argaman
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Jeni Anggrek
- Dairy Science and Technology, Food Quality and Design group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, the Netherlands
| | - Toon van Hooijdonk
- Dairy Science and Technology, Food Quality and Design group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, the Netherlands
| | - Kasper Arthur Hettinga
- Dairy Science and Technology, Food Quality and Design group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands.
| |
Collapse
|
42
|
MINEGISHI Y, OTA N, SOGA S, SHIMOTOYODOME A. Effects of Nutritional Supplementation with Milk Fat Globule Membrane on Physical and Muscle Function in Healthy Adults Aged 60 and Over with Semiweekly Light Exercise: A Randomized Double-Blind, Placebo-Controlled Pilot Trial. J Nutr Sci Vitaminol (Tokyo) 2016; 62:409-415. [DOI: 10.3177/jnsv.62.409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Satoko SOGA
- Biological Science Research, Kao Corporation
| | | |
Collapse
|
43
|
|
44
|
Soga S, Ota N, Shimotoyodome A. Dietary milk fat globule membrane supplementation combined with regular exercise improves skeletal muscle strength in healthy adults: a randomized double-blind, placebo-controlled, crossover trial. Nutr J 2015; 14:85. [PMID: 26303780 PMCID: PMC4547417 DOI: 10.1186/s12937-015-0073-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/12/2015] [Indexed: 01/20/2023] Open
Abstract
Background Our previous studies demonstrated that dietary supplementation with milk fat globule membrane (MFGM) combined with habitual exercise improved muscle strength by stimulating neuromuscular development in mice. This study aimed to demonstrate the beneficial effects of dietary MFGM supplementation plus regular exercise on muscle strength and neuromuscular function in healthy humans. Methods The study was designed as a randomized, double-blind, placebo-controlled, crossover trial. Fourteen Japanese adults aged 31–48 years took daily MFGM (1 g) or placebo tablets during the 4-week study period and attended a training program twice a week. Physical function tests and surface electromyography (EMG) were conducted at baseline and at the end of the study period. Results The MFGM group had significantly greater leg extension strength than the placebo group after the 4-week study period. Surface EMG showed that the MFGM group had a significantly higher root mean square amplitude than the placebo group, which indicated that the MFGM group had higher motor unit activity. Conclusions Dietary MFGM supplementation combined with regular exercise improves skeletal muscle strength, which may be due to increased motor unit recruitment in healthy Japanese middle-aged adults.
Collapse
Affiliation(s)
- Satoko Soga
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Noriyasu Ota
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Akira Shimotoyodome
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| |
Collapse
|
45
|
Ota N, Soga S, Hase T, Shimotoyodome A. Daily consumption of milk fat globule membrane plus habitual exercise improves physical performance in healthy middle-aged adults. SPRINGERPLUS 2015; 4:120. [PMID: 25810952 PMCID: PMC4369537 DOI: 10.1186/s40064-015-0896-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/20/2015] [Indexed: 11/10/2022]
Abstract
Our recent studies demonstrated that habitual exercise plus dietary supplementation with milk fat globule membrane (MFGM) improved endurance capacity and muscle function by stimulating neuromuscular development in mice. The aim of this study was to investigate the efficacy of dietary MFGM supplementation plus habitual exercise on the physical performance of middle-aged Japanese adults in a pilot randomized, double-blind, placebo-controlled trial. Forty-four subjects (men, n = 22; women, n = 22) were randomly assigned into two groups: one received placebo tablets (placebo group, n = 22 [men, n = 11; women, n = 11]), while the other received MFGM tablets (MFGM group, n = 22 [men, n = 11; women, n = 11]). The subjects ingested either MFGM (1 g/day) or placebo (1 g/day of whole milk powder) tablets every day for the 10-week study period and engaged in an exercise training program twice per week. A physical function test was performed at baseline and at 5 and 10 weeks. A significant group-by-time interaction was found for the side step test, muscle cross-sectional area (CSA), and muscle fiber conduction velocity (MFCV). In the placebo group, there were no significant intragroup differences. In the MFGM group, side step score and muscle CSA were significantly greater at 10 weeks compared to the baseline, and MFCV was significantly higher than that in the placebo group at 10 weeks. The changes in percentage of the side step score, muscle CSA, and MFCV in the MFGM group were significantly higher than in the placebo group at 10 weeks. These results suggest that daily MFGM ingestion combined with regular exercise might enhance physical performance such as agility in middle-aged adults.
Collapse
Affiliation(s)
- Noriyasu Ota
- Biological Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Satoko Soga
- Biological Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Tadashi Hase
- Biological Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Akira Shimotoyodome
- Biological Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| |
Collapse
|
46
|
Yang Y, Zheng N, Zhao X, Zhang Y, Han R, Ma L, Zhao S, Li S, Guo T, Wang J. Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis. J Proteomics 2015; 116:34-43. [PMID: 25576853 DOI: 10.1016/j.jprot.2014.12.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/24/2014] [Accepted: 12/03/2014] [Indexed: 11/19/2022]
Abstract
UNLABELLED Milk fat globule membrane (MFGM) proteins are known to be involved in many biological functions; however, their components and inter-species complexity have not yet been completely elucidated. We investigated the protein composition of the MFGM-enriched fraction from Holstein, Jersey, yak, buffalo, goat, camel, horse, and human. Extracted proteins from the MFGM-enriched fractions were identified and quantified by an iTRAQ proteomic approach. We identified 520 protein species categorized as biological processes, cellular components and molecular function according to their annotation. Cellular process, localization, transport, signal transduction, and response to stimulus were the most common biological processes; binding and catalytic activities were the most prevalent molecular functions. Pathway analysis revealed several pathways, including glycolysis/gluconeogenesis, peroxisome proliferator-activated receptor signaling, and fatty acid biosynthesis. Quantified MFGM-enriched proteins were subjected to discriminative proteomic profiling by principal component analysis and a hierarchical clustering method, and then organized into four major clusters: (1) Holstein, Jersey, and yak milk; (2) buffalo and goat milk; (3) Holstein, Jersey, buffalo, yak, and goat milk; and (4) camel, horse, and human milk. These novel quantitative data provide insight into the protein composition of the MFGM and their potential physiological functions, and highlight the significant differences in the MFGM fractions among mammalian species. BIOLOGICAL SIGNIFICANCE Milk fat globule membrane (MFGM) proteins have exhibited a relatively larger diversity than other milk fractions, and implicated health beneficial effects. Proteomic analysis of MFGM protein was mainly focused on human, bovine and goat in previous studies. Recently, there is an increasing demand for natural milk from minor dairy animals. Differences in protein components were not yet elucidated that required the integration of this information across multiple species. Thus, iTRAQ analysis of the proteins in MFGM fractions from Holstein, Jersey, yak, buffalo, goat, camel, horse, and human was performed in this study. A total of 520 proteins were identified and quantified in the MFGM fractions. The results were contributed to a comprehensive overview and discriminative profiling of the MFGM proteome across species.
Collapse
Affiliation(s)
- Yongxin Yang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Nan Zheng
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaowei Zhao
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yangdong Zhang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rongwei Han
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lu Ma
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Songli Li
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tongjun Guo
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
47
|
|
48
|
Kathriarachchi K, Leus M, Everett DW. Oxidation of aldehydes by xanthine oxidase located on the surface of emulsions and washed milk fat globules. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
|
50
|
Haramizu S, Mori T, Yano M, Ota N, Hashizume K, Otsuka A, Hase T, Shimotoyodome A. Habitual exercise plus dietary supplementation with milk fat globule membrane improves muscle function deficits via neuromuscular development in senescence-accelerated mice. SPRINGERPLUS 2014; 3:339. [PMID: 25110626 PMCID: PMC4125610 DOI: 10.1186/2193-1801-3-339] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/26/2014] [Indexed: 01/11/2023]
Abstract
We examined the effects of habitual exercise plus nutritional intervention through consumption of milk fat globule membrane (MFGM), a milk component, on aging-related deficits in muscle mass and function in senescence-accelerated P1 mice. Combining wheel-running and MFGM (MFGMEx) intake significantly attenuated age-related declines in quadriceps muscle mass (control: 318 ± 6 mg; MFGMEx: 356 ± 9 mg; P < 0.05) and in contractile force (1.4-fold and 1.5-fold higher in the soleus and extensor digitorum longus muscles, respectively). Microarray analysis of genes in the quadriceps muscle revealed that MFGMEx stimulated neuromuscular development; this was supported by significantly increased docking protein-7 (Dok-7) and myogenin mRNA expression. Treatment of differentiating myoblasts with MFGM-derived phospholipid or sphingolipid fractions plus mechanical stretching also significantly increased Dok-7 mRNA expression. These findings suggest that habitual exercise plus dietary MFGM improves muscle function deficits through neuromuscular development, and that phospholipid and sphingolipid in MFGM contribute to its physiological actions.
Collapse
Affiliation(s)
- Satoshi Haramizu
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuya Mori
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Michiko Yano
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Noriyasu Ota
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | | | - Atsuko Otsuka
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Tadashi Hase
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | | |
Collapse
|