1
|
Wei L, Li Y, Chen J, Wang Y, Wu J, Yang H, Zhang Y. Alternative splicing in ovarian cancer. Cell Commun Signal 2024; 22:507. [PMID: 39425166 PMCID: PMC11488268 DOI: 10.1186/s12964-024-01880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Ovarian cancer is the second leading cause of gynecologic cancer death worldwide, with only 20% of cases detected early due to its elusive nature, limiting successful treatment. Most deaths occur from the disease progressing to advanced stages. Despite advances in chemo- and immunotherapy, the 5-year survival remains below 50% due to high recurrence and chemoresistance. Therefore, leveraging new research perspectives to understand molecular signatures and identify novel therapeutic targets is crucial for improving the clinical outcomes of ovarian cancer. Alternative splicing, a fundamental mechanism of post-transcriptional gene regulation, significantly contributes to heightened genomic complexity and protein diversity. Increased awareness has emerged about the multifaceted roles of alternative splicing in ovarian cancer, including cell proliferation, metastasis, apoptosis, immune evasion, and chemoresistance. We begin with an overview of altered splicing machinery, highlighting increased expression of spliceosome components and associated splicing factors like BUD31, SF3B4, and CTNNBL1, and their relationships to ovarian cancer. Next, we summarize the impact of specific variants of CD44, ECM1, and KAI1 on tumorigenesis and drug resistance through diverse mechanisms. Recent genomic and bioinformatics advances have enhanced our understanding. By incorporating data from The Cancer Genome Atlas RNA-seq, along with clinical information, a series of prognostic models have been developed, which provided deeper insights into how the splicing influences prognosis, overall survival, the immune microenvironment, and drug sensitivity and resistance in ovarian cancer patients. Notably, novel splicing events, such as PIGV|1299|AP and FLT3LG|50,941|AP, have been identified in multiple prognostic models and are associated with poorer and improved prognosis, respectively. These novel splicing variants warrant further functional characterization to unlock the underlying molecular mechanisms. Additionally, experimental evidence has underscored the potential therapeutic utility of targeting alternative splicing events, exemplified by the observation that knockdown of splicing factor BUD31 or antisense oligonucleotide-induced BCL2L12 exon skipping promotes apoptosis of ovarian cancer cells. In clinical settings, bevacizumab, a humanized monoclonal antibody that specifically targets the VEGF-A isoform, has demonstrated beneficial effects in the treatment of patients with advanced epithelial ovarian cancer. In conclusion, this review constitutes the first comprehensive and detailed exposition of the intricate interplay between alternative splicing and ovarian cancer, underscoring the significance of alternative splicing events as pivotal determinants in cancer biology and as promising avenues for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Liwei Wei
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Yisheng Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Jiawang Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325101, China
| | - Yuanmei Wang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
| | - Yi Zhang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
2
|
Ibeh N, Kusuma P, Crenna Darusallam C, Malik SG, Sudoyo H, McCarthy DJ, Gallego Romero I. Profiling genetically driven alternative splicing across the Indonesian archipelago. Am J Hum Genet 2024:S0002-9297(24)00339-2. [PMID: 39383868 DOI: 10.1016/j.ajhg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
One of the regulatory mechanisms influencing the functional capacity of genes is alternative splicing (AS). Previous studies exploring the splicing landscape of human tissues have shown that AS has contributed to human biology, especially in disease progression and the immune response. Nonetheless, this phenomenon remains poorly characterized across human populations, and it is unclear how genetic and environmental variation contribute to AS. Here, we examine a set of 115 Indonesian samples from three traditional island populations spanning the genetic ancestry cline that characterizes Island Southeast Asia. We conduct a global AS analysis between islands to ascertain the degree of functionally significant AS events and their consequences. Using an event-based statistical model, we detected over 1,500 significant differential AS events across all comparisons. Additionally, we identify over 6,000 genetic variants associated with changes in splicing (splicing quantitative trait loci [sQTLs]), some of which are driven by Papuan-like genetic ancestry, and only show partial overlap with other publicly available sQTL datasets derived from other populations. Computational predictions of RNA binding activity reveal that a fraction of these sQTLs directly modulate the binding propensity of proteins involved in the splicing regulation of immune genes. Overall, these results contribute toward elucidating the role of genetic variation in shaping gene regulation in one of the most diverse regions in the world.
Collapse
Affiliation(s)
- Neke Ibeh
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Pradiptajati Kusuma
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Chelzie Crenna Darusallam
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Safarina G Malik
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Herawati Sudoyo
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Davis J McCarthy
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Irene Gallego Romero
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia.
| |
Collapse
|
3
|
Giudice J, Jiang H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol 2024; 25:683-700. [PMID: 38773325 DOI: 10.1038/s41580-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Huang Y, Liu Y, Pu M, Zhang Y, Cao Q, Li S, Wei Y, Hou L. SOX2 interacts with hnRNPK to modulate alternative splicing in mouse embryonic stem cells. Cell Biosci 2024; 14:102. [PMID: 39160617 PMCID: PMC11331657 DOI: 10.1186/s13578-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND SOX2 is a determinant transcription factor that governs the balance between stemness and differentiation by influencing transcription and splicing programs. The role of SOX2 is intricately shaped by its interactions with specific partners. In the interactome of SOX2 in mouse embryonic stem cells (mESCs), there is a cohort of heterogeneous nuclear ribonucleoproteins (hnRNPs) that contributes to multiple facets of gene expression regulation. However, the cross-talk between hnRNPs and SOX2 in gene expression regulation remains unclear. RESULTS Here we demonstrate the indispensable role of the co-existence of SOX2 and heterogeneous nuclear ribonucleoprotein K (hnRNPK) in the maintenance of pluripotency in mESCs. While hnRNPK directly interacts with the SOX2-HMG DNA-binding domain and induces the collapse of the transcriptional repressor 7SK small nuclear ribonucleoprotein (7SK snRNP), hnRNPK does not influence SOX2-mediated transcription, either by modulating the interaction between SOX2 and its target cis-regulatory elements or by facilitating transcription elongation as indicated by the RNA-seq analysis. Notably, hnRNPK enhances the interaction of SOX2 with target pre-mRNAs and collaborates with SOX2 in regulating the alternative splicing of a subset of pluripotency genes. CONCLUSIONS These data reveal that SOX2 and hnRNPK have a direct protein-protein interaction, and shed light on the molecular mechanisms by which hnRNPK collaborates with SOX2 in alternative splicing in mESCs.
Collapse
Affiliation(s)
- Yanlan Huang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuxuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Mingyi Pu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuli Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Senru Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuanjie Wei
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany.
| | - Linlin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
5
|
Lv L, Yang X, Zhang Y, Ren X, Zeng S, Zhang Z, Wang Q, Lv J, Gao P, Dorf ME, Li S, Zhao L, Fu B. hnRNPAB inhibits Influenza A virus infection by disturbing polymerase activity. Antiviral Res 2024; 228:105925. [PMID: 38944160 DOI: 10.1016/j.antiviral.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Influenza A virus (IAV) continuously poses a considerable threat to global health through seasonal epidemics and recurring pandemics. IAV RNA-dependent RNA polymerases (FluPol) mediate the transcription of RNA and replication of the viral genome. Searching for targets that inhibit viral polymerase activity helps us develop better antiviral drugs. Here, we identified heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) as an anti-influenza host factor. hnRNPAB interacts with NP of IAV to inhibit the interaction between PB1 and NP, which is dependent on the 5-amino-acid peptide of the hnRNPAB C-terminal domain (aa 318-322). We further found that the 5-amino-acid peptide blocks the interaction between PB1 and NP to destroy the FluPol activity. In vivo studies demonstrate that hnRNPAB-deficient mice display higher viral burdens, enhanced cytokine production, and increased mortality after influenza infection. These data demonstrate that hnRNPAB perturbs FluPol complex conformation to inhibit IAV infection, providing insights into anti-influenza defense mechanisms.
Collapse
Affiliation(s)
- Linyue Lv
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xue Yang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yuelan Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xiaoyan Ren
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Shaowei Zeng
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zhuyou Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qinyang Wang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Jiaxi Lv
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Pengyue Gao
- Department of Immunology, Yangtze University Health Science Center, Jingzhou, 434023, China
| | - Martin E Dorf
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, 02115. USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bishi Fu
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Roesmann F, Sertznig H, Klaassen K, Wilhelm A, Heininger D, Heß S, Elsner C, Marschalek R, Santiago ML, Esser S, Sutter K, Dittmer U, Widera M. The interferon-regulated host factor hnRNPA0 modulates HIV-1 production by interference with LTR activity, mRNA trafficking, and programmed ribosomal frameshifting. J Virol 2024; 98:e0053424. [PMID: 38899932 PMCID: PMC11265465 DOI: 10.1128/jvi.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The interplay between host factors and viral components impacts viral replication efficiency profoundly. Members of the cellular heterogeneous nuclear ribonucleoprotein family (hnRNPs) have been extensively studied as HIV-1 host dependency factors, but whether they play a role in innate immunity is currently unknown. This study aimed to identify hnRNPA0 as a type I interferon (IFN)-repressed host factor in HIV-1-infected cells. Knockdown of hnRNPA0, a situation that mirrors conditions under IFN stimulation, increased LTR activity, export of unspliced HIV-1 mRNA, viral particle production, and thus, increased infectivity. Conversely, hnRNPA0 overexpression primarily reduced plasmid-driven and integrated HIV-1 long terminal repeat (LTR) activity, significantly decreasing total viral mRNA and protein levels. In addition, high levels of hnRNPA0 significantly reduced the HIV-1 programmed ribosomal frameshifting efficiency, resulting in a shift in the HIV-1 p55/p15 ratio. The HIV-1 alternative splice site usage remained largely unaffected by altered hnRNPA0 levels suggesting that the synergistic inhibition of the LTR activity and viral mRNA transcription, as well as impaired ribosomal frameshifting efficiency, are critical factors for efficient HIV-1 replication regulated by hnRNPA0. The pleiotropic dose-dependent effects under high or low hnRNPA0 levels were further confirmed in HIV-1-infected Jurkat cells. Finally, our study revealed that hnRNPA0 levels in PBMCs were lower in therapy-naive HIV-1-infected individuals compared to healthy controls. Our findings highlight a significant role for hnRNPA0 in HIV-1 replication and suggest that its IFN-I-regulated expression levels are critical for viral fitness allowing replication in an antiviral environment.IMPORTANCERNA-binding proteins, in particular, heterogeneous nuclear ribonucleoproteins (hnRNPs), have been extensively studied. Some act as host dependency factors for HIV-1 since they are involved in multiple cellular gene expression processes. Our study revealed hnRNPA0 as an IFN-regulated host factor, that is differently expressed after IFN-I treatment in HIV-1 target cells and lower expressed in therapy-naïve HIV-1-infected individuals. Our findings demonstrate the significant pleiotropic role of hnRNPA0 in viral replication: In high concentrations, hnRNPA0 limits viral replication by negatively regulating Tat-LTR transcription, retaining unspliced mRNA in the nucleus, and significantly impairing programmed ribosomal frameshifting. Low hnRNPA0 levels as observed in IFN-treated THP-1 cells, particularly facilitate HIV LTR activity and unspliced mRNA export, suggesting a role in innate immunity in favor of HIV replication. Understanding the mode of action between hnRNPA0 and HIV-1 gene expression might help to identify novel therapeutically strategies against HIV-1 and other viruses.
Collapse
Affiliation(s)
- Fabian Roesmann
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Helene Sertznig
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Katleen Klaassen
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Alexander Wilhelm
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Delia Heininger
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Stefanie Heß
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Mario L. Santiago
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Stefan Esser
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Dermatology, HPSTD Outpatient Clinic, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| |
Collapse
|
7
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Graham SV. HPV and RNA Binding Proteins: What We Know and What Remains to Be Discovered. Viruses 2024; 16:783. [PMID: 38793664 PMCID: PMC11126060 DOI: 10.3390/v16050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Papillomavirus gene regulation is largely post-transcriptional due to overlapping open reading frames and the use of alternative polyadenylation and alternative splicing to produce the full suite of viral mRNAs. These processes are controlled by a wide range of cellular RNA binding proteins (RPBs), including constitutive splicing factors and cleavage and polyadenylation machinery, but also factors that regulate these processes, for example, SR and hnRNP proteins. Like cellular RNAs, papillomavirus RNAs have been shown to bind many such proteins. The life cycle of papillomaviruses is intimately linked to differentiation of the epithelial tissues the virus infects. For example, viral late mRNAs and proteins are expressed only in the most differentiated epithelial layers to avoid recognition by the host immune response. Papillomavirus genome replication is linked to the DNA damage response and viral chromatin conformation, processes which also link to RNA processing. Challenges with respect to elucidating how RBPs regulate the viral life cycle include consideration of the orchestrated spatial aspect of viral gene expression in an infected epithelium and the epigenetic nature of the viral episomal genome. This review discusses RBPs that control viral gene expression, and how the connectivity of various nuclear processes might contribute to viral mRNA production.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
10
|
Lee FFY, Harris C, Alper S. RNA Binding Proteins that Mediate LPS-induced Alternative Splicing of the MyD88 Innate Immune Regulator. J Mol Biol 2024; 436:168497. [PMID: 38369277 PMCID: PMC11001520 DOI: 10.1016/j.jmb.2024.168497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Inflammation driven by Toll-like receptor (TLR) signaling pathways is required to combat infection. However, inflammation can damage host tissues; thus it is essential that TLR signaling ultimately is terminated to prevent chronic inflammatory disorders. One mechanism that terminates persistent TLR signaling is alternative splicing of the MyD88 signaling adaptor, which functions in multiple TLR signaling pathways. While the canonical long isoform of MyD88 (MyD88-L) mediates TLR signaling and promotes inflammation, an alternatively-spliced shorter isoform of MyD88 (MyD88-S) produces a dominant negative inhibitor of TLR signaling. MyD88-S production is induced by inflammatory agonists including lipopolysaccharide (LPS), and thus MyD88-S induction is thought to act as a negative feedback loop that prevents chronic inflammation. Despite the potential role that MyD88-S production plays in inflammatory disorders, the mechanisms controlling MyD88 alternative splicing remain unclear. Here, we identify two RNA binding proteins, SRSF1 and HNRNPU, that regulate LPS-induced alternative splicing of MyD88.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO 80045, USA
| | - Chelsea Harris
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO 80045, USA
| | - Scott Alper
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO 80045, USA.
| |
Collapse
|
11
|
Zhang H, Xin M, Lin L, Chen C, Balestra D, Ding Q. Pleiotropic effects of different exonic nucleotide changes at the same position contribute to hemophilia B phenotypic variation. J Thromb Haemost 2024; 22:975-989. [PMID: 38184202 DOI: 10.1016/j.jtha.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The disease-causing effects of genetic variations often depend on their location within a gene. Exonic changes generally lead to alterations in protein production, secretion, activity, or clearance. However, owing to the overlap between proteins and splicing codes, missense variants can also affect messenger RNA splicing, thus adding a layer of complexity and influencing disease phenotypes. OBJECTIVES To extensively characterize a panel of 13 exonic variants in the F9 gene occurring at 6 different factor IX positions and associated with varying severities of hemophilia B (HB). METHODS Computational predictions, splicing analysis, and recombinant factor IX assays were exploited to characterize F9 variants. RESULTS We demonstrated that 5 (38%) of 13 selected F9 exonic variants have pleiotropic effects. Although bioinformatic approaches accurately classified effects, extensive experimental assays were required to elucidate and deepen the molecular mechanisms underlying the pleiotropic effects. Importantly, their characterization was instrumental in developing tailored RNA therapeutics based on engineered U7 small nuclear RNA to mask cryptic splice sites and compensatory U1 small nuclear RNA to enhance exon definition. CONCLUSION Overall, albeit a multitool bioinformatic approach suggested the molecular effects of multiple HB variants, the deep investigation of molecular mechanisms revealed insights into the HB phenotype-genotype relationship, enabling accurate classification of HB variants. Importantly, knowledge of molecular mechanisms allowed the development of tailored RNA therapeutics, which can also be translated to other genetic diseases.
Collapse
Affiliation(s)
- Huayang Zhang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liya Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Ding W, Ding L, Lu Y, Sun W, Wang Y, Wang J, Gao Y, Li M. Circular RNA-circLRP6 protects cardiomyocyte from hypoxia-induced apoptosis by facilitating hnRNPM-mediated expression of FGF-9. FEBS J 2024; 291:1246-1263. [PMID: 38105623 DOI: 10.1111/febs.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/30/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Coronary atherosclerosis-induced myocardial ischemia leads to cardiomyocyte apoptosis. The regulatory mechanisms for cardiomyocyte apoptosis have not been fully understood. Circular RNAs are non-coding RNAs which play important roles in heart function maintenance and progression of heart diseases by regulating gene transcription and protein translation. Here, we reported a conserved cardiac circular RNA, which is generated from the second exon of LRP6 and named circLRP62-2 . CircLRP62-2 can protect cardiomyocyte from hypoxia-induced apoptosis. The expression of circLRP62-2 in cardiomyocytes was down-regulated under hypoxia, while forced expression of circLRP62-2 inhibited cell apoptosis. Normally, circLRP62-2 was mainly localized in the nucleus. Under hypoxia, circLRP62-2 is associated with heterogeneous nuclear ribonucleoprotein M (hnRNPM) to be translocated into the cytoplasm. It recruited hnRNPM to fibroblast growth factor 9 (FGF9) mRNA to enhance the expression of FGF9 protein, promoting hypoxia-adaption and viability of cardiomyocytes. In summary, this study uncovers a new inhibitor of apoptosis and reveals a novel anti-apoptotic pathway composed of circLRP62-2 , hnRNPM, and FGF9, which may provide therapeutic targets for coronary heart disease and ischemic myocardial injury.
Collapse
Affiliation(s)
- Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, China
| | - Lin Ding
- School of Basic Medical Sciences, Qingdao University, China
| | - Yijian Lu
- School of Basic Medical Sciences, Qingdao University, China
| | - Weihan Sun
- School of Basic Medical Sciences, Qingdao University, China
| | - Yu Wang
- School of Basic Medical Sciences, Qingdao University, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, China
| | - Yufang Gao
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, China
| | - Mengyang Li
- School of Basic Medical Sciences, Qingdao University, China
| |
Collapse
|
13
|
Malakar P, Shukla S, Mondal M, Kar RK, Siddiqui JA. The nexus of long noncoding RNAs, splicing factors, alternative splicing and their modulations. RNA Biol 2024; 21:1-20. [PMID: 38017665 PMCID: PMC10761143 DOI: 10.1080/15476286.2023.2286099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
The process of alternative splicing (AS) is widely deregulated in a variety of cancers. Splicing is dependent upon splicing factors. Recently, several long noncoding RNAs (lncRNAs) have been shown to regulate AS by directly/indirectly interacting with splicing factors. This review focuses on the regulation of AS by lncRNAs through their interaction with splicing factors. AS mis-regulation caused by either mutation in splicing factors or deregulated expression of splicing factors and lncRNAs has been shown to be involved in cancer development and progression, making aberrant splicing, splicing factors and lncRNA suitable targets for cancer therapy. This review also addresses some of the current approaches used to target AS, splicing factors and lncRNAs. Finally, we discuss research challenges, some of the unanswered questions in the field and provide recommendations to advance understanding of the nexus of lncRNAs, AS and splicing factors in cancer.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Rajesh Kumar Kar
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
14
|
Sheng M, Zhang Y, Wang Y, Liu W, Wang X, Ke T, Liu P, Wang S, Shao W. Decoding the role of aberrant RNA alternative splicing in hepatocellular carcinoma: a comprehensive review. J Cancer Res Clin Oncol 2023; 149:17691-17708. [PMID: 37898981 DOI: 10.1007/s00432-023-05474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
During eukaryotic gene expression, alternative splicing of messenger RNA precursors is critical in increasing protein diversity and regulatory complexity. Multiple transcript isoforms could be produced by alternative splicing from a single gene; they could eventually be translated into protein isoforms with deleted, added, or altered domains or produce transcripts containing premature termination codons that could be targeted by nonsense-mediated mRNA decay. Alternative splicing can generate proteins with similar, different, or even opposite functions. Increasingly strong evidence indicates that abnormal RNA splicing is a prevalent and crucial occurrence in cellular differentiation, tissue advancement, and the development and progression of cancer. Aberrant alternative splicing could affect cancer cell activities such as growth, apoptosis, invasiveness, drug resistance, angiogenesis, and metabolism. This systematic review provides a comprehensive overview of the impact of abnormal RNA alternative splicing on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mengfei Sheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yaoyun Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weiyi Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xingyu Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tiaoying Ke
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Pingyang Liu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Sihan Wang
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Wei Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Mura-Escorche G, Perdomo-Ramírez A, Ramos-Trujillo E, Trujillo-Frías CJ, Claverie-Martín F. Characterization of pre-mRNA Splicing Defects Caused by CLCN5 and OCRL Mutations and Identification of Novel Variants Associated with Dent Disease. Biomedicines 2023; 11:3082. [PMID: 38002082 PMCID: PMC10669864 DOI: 10.3390/biomedicines11113082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Dent disease (DD) is an X-linked renal tubulopathy characterized by low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis and progressive renal failure. Two-thirds of cases are associated with inactivating variants in the CLCN5 gene (Dent disease 1, DD1) and a few present variants in the OCRL gene (Dent disease 2, DD2). The aim of the present study was to test the effect on the pre-mRNA splicing process of DD variants, described here or in the literature, and describe the clinical and genotypic features of thirteen unrelated patients with suspected DD. All patients presented tubular proteinuria, ten presented hypercalciuria and five had nephrolithiasis or nephrocalcinosis. CLCN5 and OCRL genes were analyzed by Sanger sequencing. Nine patients showed variants in CLCN5 and four in OCRL; eight of these were new. Bioinformatics tools were used to select fifteen variants with a potential effect on pre-mRNA splicing from our patients' group and from the literature, and were experimentally tested using minigene assays. Results showed that three exonic missense mutations and two intronic variants affect the mRNA splicing process. Our findings widen the genotypic spectrum of DD and provide insight into the impact of variants causing DD.
Collapse
Affiliation(s)
- Glorián Mura-Escorche
- Unidad de Investigación, Grupo RenalTube, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (G.M.-E.); (A.P.-R.); (C.J.T.-F.)
- Departamento de Medicina Interna, Dermatología y Psiquiatría, Facultad de Medicina, Universidad de la Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Ana Perdomo-Ramírez
- Unidad de Investigación, Grupo RenalTube, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (G.M.-E.); (A.P.-R.); (C.J.T.-F.)
| | - Elena Ramos-Trujillo
- Unidad de Investigación, Grupo RenalTube, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (G.M.-E.); (A.P.-R.); (C.J.T.-F.)
- Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de la Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Carmen Jane Trujillo-Frías
- Unidad de Investigación, Grupo RenalTube, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (G.M.-E.); (A.P.-R.); (C.J.T.-F.)
| | - Félix Claverie-Martín
- Unidad de Investigación, Grupo RenalTube, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (G.M.-E.); (A.P.-R.); (C.J.T.-F.)
| |
Collapse
|
16
|
Wang J, Luo X, Liu D. Knockdown of HNRNPM inhibits the progression of glioma through inducing ferroptosis. Cell Cycle 2023; 22:2264-2279. [PMID: 38016815 PMCID: PMC10730218 DOI: 10.1080/15384101.2023.2286782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/16/2023] [Indexed: 11/30/2023] Open
Abstract
PURPOSE Ferroptosis acts as an important regulator in diverse human tumors, including the glioma. This study aimed to screen potential ferroptosis-related genes involved in the progression of glioma. MATERIALS AND METHODS Differently expressed genes (DEGs) were screened based on GSE31262 and GSE12657 datasets, and ferroptosis-related genes were separated. Among the important hub genes in the protein-protein interaction networks, HNRNPM was selected as a research target. Following the knockdown of HNRNPM, the viability, migration, and invasion were detected by CCK8, wound healing, and transwell assays, respectively. The role of HNRNPM knockdown was also verified in a xenograft tumor model in mice. Immunohistochemistry detected the expression levels of HNRNPM and Ki67. Moreover, the ferroptosis was evaluated according to the levels of iron, glutathione peroxidase (GSH), and malondialdehyde (MDA), as well as the expression of PTGS2, GPX4, and FTH1. RESULTS Total 41 overlapping DEGs relating with ferroptosis and glioma were screened, among which 4 up-regulated hub genes (HNRNPM, HNRNPA3, RUVBL1, and SNRPPF) were determined. The up-regulation of HNRNPM presented a certain predictive value for glioma. In addition, knockdown of HNRNPM inhibited the viability, migration, and invasion of glioma cells in vitro, and also the tumor growth in mice. Notably, knockdown of HNRNPM enhanced the ferroptosis in glioma cells. Furthermore, HNRNPM was positively associated with SMARCA4 in glioma. CONCLUSIONS Knockdown of HNRNPM inhibits the progression of glioma via inducing ferroptosis. HNRNPM is a promising molecular target for the treatment of glioma via inducing ferroptosis. We provided new insights of glioma progression and potential therapeutic guidance.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Xiaolin Luo
- Party Committee Office, The Third Affiliated Hospital of Gannan Medical University/Affiliated stomatological hospital, Ganzhou, Jiangxi, China
| | - Dehua Liu
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Neurology, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
17
|
Li Z, Wei H, Hu D, Li X, Guo Y, Ding X, Guo H, Zhang L. Research Progress on the Structural and Functional Roles of hnRNPs in Muscle Development. Biomolecules 2023; 13:1434. [PMID: 37892116 PMCID: PMC10604023 DOI: 10.3390/biom13101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a superfamily of RNA-binding proteins consisting of more than 20 members. These proteins play a crucial role in various biological processes by regulating RNA splicing, transcription, and translation through their binding to RNA. In the context of muscle development and regeneration, hnRNPs are involved in a wide range of regulatory mechanisms, including alternative splicing, transcription regulation, miRNA regulation, and mRNA stability regulation. Recent studies have also suggested a potential association between hnRNPs and muscle-related diseases. In this report, we provide an overview of our current understanding of how hnRNPs regulate RNA metabolism and emphasize the significance of the key members of the hnRNP family in muscle development. Furthermore, we explore the relationship between the hnRNP family and muscle-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linlin Zhang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China; (Z.L.); (H.W.); (D.H.); (X.L.); (Y.G.); (X.D.); (H.G.)
| |
Collapse
|
18
|
Covello G, Siva K, Adami V, Denti MA. HCS-Splice: A High-Content Screening Method to Advance the Discovery of RNA Splicing-Modulating Therapeutics. Cells 2023; 12:1959. [PMID: 37566038 PMCID: PMC10417277 DOI: 10.3390/cells12151959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Nucleic acid therapeutics have demonstrated an impressive acceleration in recent years. They work through multiple mechanisms of action, including the downregulation of gene expression and the modulation of RNA splicing. While several drugs based on the former mechanism have been approved, few target the latter, despite the promise of RNA splicing modulation. To improve our ability to discover novel RNA splicing-modulating therapies, we developed HCS-Splice, a robust cell-based High-Content Screening (HCS) assay. By implementing the use of a two-colour (GFP/RFP) fluorescent splicing reporter plasmid, we developed a versatile, effective, rapid, and robust high-throughput strategy for the identification of potent splicing-modulating molecules. The HCS-Splice strategy can also be used to functionally confirm splicing mutations in human genetic disorders or to screen drug candidates. As a proof-of-concept, we introduced a dementia-related splice-switching mutation in the Microtubule-Associated Protein Tau (MAPT) exon 10 splicing reporter. We applied HCS-Splice to the wild-type and mutant reporters and measured the functional change in exon 10 inclusion. To demonstrate the applicability of the method in cell-based drug discovery, HCS-Splice was used to evaluate the efficacy of an exon 10-targeting siRNA, which was able to restore the correct alternative splicing balance.
Collapse
Affiliation(s)
- Giuseppina Covello
- RNA Biology and Biotechnology Laboratory, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| | - Kavitha Siva
- RNA Biology and Biotechnology Laboratory, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| | - Valentina Adami
- High Throughput Screening and Validation Core Facility (HTS), Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| | - Michela Alessandra Denti
- RNA Biology and Biotechnology Laboratory, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| |
Collapse
|
19
|
Li M, Thorne RF, Wang R, Cao L, Cheng F, Sun X, Wu M, Ma J, Liu L. Sestrin2-mediated disassembly of stress granules dampens aerobic glycolysis to overcome glucose starvation. Cell Death Discov 2023; 9:127. [PMID: 37059726 PMCID: PMC10103035 DOI: 10.1038/s41420-023-01411-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
Sestrins are a small gene family of pleiotropic factors whose actions promote cell adaptation to a range of stress conditions. In this report we disclose the selective role of Sestrin2 (SESN2) in dampening aerobic glycolysis to adapt to limiting glucose conditions. Removal of glucose from hepatocellular carcinoma (HCC) cells inhibits glycolysis associated with the downregulation of the rate-limiting glycolytic enzyme hexokinase 2 (HK2). Moreover, the accompanying upregulation of SESN2 through an NRF2/ATF4-dependent mechanism plays a direct role in HK2 regulation by destabilizing HK2 mRNA. We show SESN2 competes with insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) for binding with the 3'-UTR region of HK2 mRNA. Interactions between IGF2BP3 and HK2 mRNA result in their coalescence into stress granules via liquid-liquid phase separation (LLPS), a process which serves to stabilize HK2 mRNA. Conversely, the enhanced expression and cytoplasmic localization of SESN2 under glucose deprivation conditions favors the downregulation of HK2 levels via decreases in the half-life of HK2 mRNA. The resulting dampening of glucose uptake and glycolytic flux inhibits cell proliferation and protect cells from glucose starvation-induced apoptotic cell death. Collectively, our findings reveal an intrinsic survival mechanism allowing cancer cells to overcome chronic glucose shortages, also providing new mechanistic insights into SESN2 as an RNA-binding protein with a role in reprogramming of cancer cell metabolism.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China
| | - Ruijie Wang
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China
| | - Leixi Cao
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China
| | - Fangyuan Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Xuedan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Mian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China.
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, Heilongjiang, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| |
Collapse
|
20
|
Smirnova EV, Rakitina TV, Ziganshin RH, Saratov GA, Arapidi GP, Belogurov AA, Kudriaeva AA. Identification of Myelin Basic Protein Proximity Interactome Using TurboID Labeling Proteomics. Cells 2023; 12:cells12060944. [PMID: 36980286 PMCID: PMC10047773 DOI: 10.3390/cells12060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.
Collapse
Affiliation(s)
- Evgeniya V Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana V Rakitina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - George A Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Georgij P Arapidi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
21
|
Li D, Guo J, Jia R. Epigenetic Control of Cancer Cell Proliferation and Cell Cycle Progression by HNRNPK via Promoting Exon 4 Inclusion of Histone Code Reader SPIN1. J Mol Biol 2023; 435:167993. [PMID: 36736887 DOI: 10.1016/j.jmb.2023.167993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (HNRNPK, hnRNP K), a multifunctional RNA/DNA binding protein, mainly regulates transcription, translation and RNA splicing, and then plays oncogenic roles in many cancers. However, the related mechanisms remain largely unknown. Here, we found that HNRNPK can partially epigenetically regulate cancer cell proliferation via increasing transcription and exon 4-inclusion of SPIN1, an important oncogenic histone code reader. This exon 4 skipping event of SPIN1 generates a long non-coding RNA, followed by the downregulation of SPIN1 protein. SPIN1 is one of the most significantly co-expressed genes of HNRNPK in thirteen TCGA cancers. Our further studies revealed HNRNPK knockdown significantly inhibited cell growth and cell cycle progression in oral squamous cell carcinoma (OSCC) cells and promoted cell apoptosis. Overexpression of SPIN1 was able to partially rescue the growth inhibition triggered by HNRNPK knockdown. Moreover, CCND1 (Cyclin D1), a key cell cycle regulator and oncogene, epigenetically up-regulated by SPIN1, was also positively regulated by HNRNPK. In addition, we discovered that HNRNPK promoted SPIN1 exon 4 inclusion by interacting with an intronic splicing enhancer in intron 4. Collectively, our study suggests a novel epigenetic regulatory pathway of HNRNPK in OSCC, mediated by controlling the transcription activity and alternative splicing of SPIN1 gene.
Collapse
Affiliation(s)
- Di Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Liu Z, Sun J, Quan J, Li L, Zhao G, Lu J. Effect of selenium nanoparticles on alternative splicing in heat-stressed rainbow trout primary hepatocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101042. [PMID: 36455514 DOI: 10.1016/j.cbd.2022.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Alternative splicing (AS) is a ubiquitous post-transcriptional regulatory mechanism in eukaryotes that generates multiple mRNA isoforms from a single gene, increasing diversity of mRNAs and proteins that are essential for eukaryotic developmental processes and responses to environmental stress. Results showed that a total of 37,463 AS events were identified in rainbow trout hepatocytes. In addition, a total of 364 differential alternative splicing (DAS) events were identified in hepatocytes under selenium nanoparticles (SeNPs) and 3632 DAS events were identified under a combination of SeNPs and heat stress (24 °C). Gene Ontology (GO) enrichment showed that some subcategories "immune effector processes", "response to stimuli" and "antioxidant activity" were associated with immunity, abiotic stimuli and antioxidants. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that differentially expressed genes (DEGs) were significantly enriched in spliceosomes by adding SeNPs in heat-stressed hepatocytes. Splicing factor family (SRSF3, SRSF7, SRSF9, U2AF1 and U2AF2) and pre-RNA splicing factors (ACIN1 and PPRF18) were significantly upregulated and promoted AS. Furthermore, addition of SeNPs activated the phosphatidylinositol signaling system and upregulated the related genes PI4KA, DGKH, ITPK1 and Ocrl, and thus attenuated the inflammatory response to heat stress and enhanced resistance to heat stress by activating the adherent plaque kinase-PI3K-Akt signaling pathway and calcium channels. Those findings suggested that AS could be an essential regulatory mechanism in adaptation of rainbow trout to heat-stressed environments.
Collapse
Affiliation(s)
- Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China.
| | - Jun Sun
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Lanlan Li
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Junhao Lu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| |
Collapse
|
23
|
Martín G. Regulation of alternative splicing by retrograde and light signals converges to control chloroplast proteins. FRONTIERS IN PLANT SCIENCE 2023; 14:1097127. [PMID: 36844062 PMCID: PMC9950775 DOI: 10.3389/fpls.2023.1097127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Retrograde signals sent by chloroplasts control transcription in the nucleus. These signals antagonistically converge with light signals to coordinate the expression of genes involved in chloroplast functioning and seedling development. Although significant advances have been made in understanding the molecular interplay between light and retrograde signals at the transcriptional level, little is known about their interconnection at the post-transcriptional level. By using different publicly available datasets, this study addresses the influence of retrograde signaling on alternative splicing and defines the molecular and biological functions of this regulation. These analyses revealed that alternative splicing mimics transcriptional responses triggered by retrograde signals at different levels. First, both molecular processes similarly depend on the chloroplast-localized pentatricopeptide-repeat protein GUN1 to modulate the nuclear transcriptome. Secondly, as described for transcriptional regulation, alternative splicing coupled with the nonsense-mediated decay pathway effectively downregulates expression of chloroplast proteins in response to retrograde signals. Finally, light signals were found to antagonistically control retrograde signaling-regulated splicing isoforms, which consequently generates opposite splicing outcomes that likely contribute to the opposite roles these signals play in controlling chloroplast functioning and seedling development.
Collapse
|
24
|
Corcos L, Le Scanf E, Quéré G, Arzur D, Cueff G, Jossic-Corcos CL, Le Maréchal C. Microsatellite Instability and Aberrant Pre-mRNA Splicing: How Intimate Is It? Genes (Basel) 2023; 14:genes14020311. [PMID: 36833239 PMCID: PMC9957390 DOI: 10.3390/genes14020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Cancers that belong to the microsatellite instability (MSI) class can account for up to 15% of all cancers of the digestive tract. These cancers are characterized by inactivation, through the mutation or epigenetic silencing of one or several genes from the DNA MisMatch Repair (MMR) machinery, including MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2 and Exo1. The unrepaired DNA replication errors turn into mutations at several thousand sites that contain repetitive sequences, mainly mono- or dinucleotides, and some of them are related to Lynch syndrome, a predisposition condition linked to a germline mutation in one of these genes. In addition, some mutations shortening the microsatellite (MS) stretch could occur in the 3'-intronic regions, i.e., in the ATM (ATM serine/threonine kinase), MRE11 (MRE11 homolog) or the HSP110 (Heat shock protein family H) genes. In these three cases, aberrant pre-mRNA splicing was observed, and it was characterized by the occurrence of selective exon skipping in mature mRNAs. Because both the ATM and MRE11 genes, which as act as players in the MNR (MRE11/NBS1 (Nibrin)/RAD50 (RAD50 double strand break repair protein) DNA damage repair system, participate in double strand breaks (DSB) repair, their frequent splicing alterations in MSI cancers lead to impaired activity. This reveals the existence of a functional link between the MMR/DSB repair systems and the pre-mRNA splicing machinery, the diverted function of which is the consequence of mutations in the MS sequences.
Collapse
Affiliation(s)
- Laurent Corcos
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
- CHRU Brest, F-29200 Brest, France
- Correspondence:
| | | | - Gaël Quéré
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
| | | | | | | | - Cédric Le Maréchal
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
- CHRU Brest, F-29200 Brest, France
| |
Collapse
|
25
|
Papanikolaou NA, Nikolaidis M, Amoutzias GD, Fouza A, Papaioannou M, Pandey A, Papavassiliou AG. The Dynamic and Crucial Role of the Arginine Methylproteome in Myoblast Cell Differentiation. Int J Mol Sci 2023; 24:2124. [PMID: 36768448 PMCID: PMC9916730 DOI: 10.3390/ijms24032124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methylation is an extensive and functionally significant post-translational modification. However, little is known about its role in differentiation at the systems level. Using stable isotope labeling by amino acids in cell culture (SILAC) proteomics of whole proteome analysis in proliferating or five-day differentiated mouse C2C12 myoblasts, followed by high-resolution mass spectrometry, biochemical assays, and specific immunoprecipitation of mono- or dimethylated arginine peptides, we identified several protein families that were differentially methylated on arginine. Our study is the first to reveal global changes in the arginine mono- or dimethylation of proteins in proliferating myoblasts and differentiated myocytes and to identify enriched protein domains and novel short linear motifs (SLiMs). Our data may be crucial for dissecting the links between differentiation and cancer growth.
Collapse
Affiliation(s)
- Nikolaos A. Papanikolaou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larisa, Greece
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larisa, Greece
| | - Ariadni Fouza
- Fifth Surgical Department, Ippokrateio General Hospital, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Macedonia, Greece
| | - Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
26
|
Hu X, Wu X, Ding Z, Chen Z, Wu H. Characterization and functional analysis of chicken dsRNA binding protein hnRNPU. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104521. [PMID: 36044969 DOI: 10.1016/j.dci.2022.104521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In mammals, heterogeneous ribonucleoprotein U (hnRNPU), also named as nuclear matrix protein-nuclear scaffold attachment factor (SAFA), was originally identified as a DNA/RNA interactor protein. It has been reported that human hnRNPU facilitates IFN-β generation after vesicular stomatitis virus (VSV) infection. Nevertheless, the role of chicken hnRNPU (chhnRNPU) in IFN-β regulation as well as in infectious bursal diseases virus (IBDV) replication is still unclear. Here, we found that chhnRNPU inhibits IFN-β production via interacting with MDA5 and MAVS, and facilitates IBDV replication via associating with genomic dsRNA of IBDV. Firstly, chicken hnRNPU (chhnRNPU) was widely expressed in different tissues of chickens and was distributed in the nucleus of DF-1 cells. Overexpression of chhnRNPU significantly suppresses IFN-β promoter activities induced by MDA5 and MAVS. Additionally, immunoprecipitated by dsRNA antibodies, which followed LC-MS analysis demonstrate that chhnRNPU is a partner of viral genomic dsRNA. chhnRNPU is translocated from nucleus to cytosol to co-localize with replication complex of IBDV after IBDV infection. Over-expression of chhnRNPU significantly promotes IBDV replication, which was determined by western blotting, qRT-PCR and TCID50 assay. Furthermore, knock down chhnRNPU by siRNA remarkably facilitates IFN-β production, and inhibits IBDV proliferation. These data collectively reveal that chhnRNPU positively regulates IBDV replication via negatively regulating IFN-β response.
Collapse
Affiliation(s)
- Xifeng Hu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xiangdong Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Zhen Ding
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Zheng Chen
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Huansheng Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
27
|
Lee FFY, Alper S. Alternative pre-mRNA splicing as a mechanism for terminating Toll-like Receptor signaling. Front Immunol 2022; 13:1023567. [PMID: 36531997 PMCID: PMC9755862 DOI: 10.3389/fimmu.2022.1023567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
While inflammation induced by Toll-like receptor (TLR) signaling is required to combat infection, persistent inflammation can damage host tissues and contribute to a myriad of acute and chronic inflammatory disorders. Thus, it is essential not only that TLR signaling be activated in the presence of pathogens but that TLR signaling is ultimately terminated. One mechanism that limits persistent TLR signaling is alternative pre-mRNA splicing. In addition to encoding the canonical mRNAs that produce proteins that promote inflammation, many genes in the TLR signaling pathway also encode alternative mRNAs that produce proteins that are dominant negative inhibitors of signaling. Many of these negative regulators are induced by immune challenge, so production of these alternative isoforms represents a negative feedback loop that limits persistent inflammation. While these alternative splicing events have been investigated on a gene by gene basis, there has been limited systemic analysis of this mechanism that terminates TLR signaling. Here we review what is known about the production of negatively acting alternative isoforms in the TLR signaling pathway including how these inhibitors function, how they are produced, and what role they may play in inflammatory disease.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States
| | - Scott Alper
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States,*Correspondence: Scott Alper,
| |
Collapse
|
28
|
Xin Q, Liu Q, Liu Z, Shi X, Liu X, Zhang R, Hong Y, Zhao X, Shao L. Twelve exonic variants in the SLC12A1 and CLCNKB genes alter RNA splicing in a minigene assay. Front Genet 2022; 13:961384. [PMID: 36092934 PMCID: PMC9452827 DOI: 10.3389/fgene.2022.961384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Bartter syndrome (BS) is a rare renal tubular disease caused by gene variants in SLC12A1, KCNJ1, CLCNKA, CLCNKB, BSND or MAGED2 genes. There is growing evidence that many exonic mutations can affect the pre-mRNA normal splicing and induce exon skipping by altering various splicing regulatory signals. Therefore, the aim of this study was to gain new insights into the consequences of exonic mutations associated with BS on pre-mRNA splicing.Methods: We analyzed all the missense, nonsense and synonymous variants described in six pathogenic genes by bioinformatics programs and identified candidate mutations that may promote exon skipping through a minigene system.Results: Results of the study showed that 12 of 14 candidate variants distributed in SLC12A1 (c.728G>A, C.735C>G, c.904C>T, c.905G>A, c.1304C>T, c.1493C>T, c.2221A>T) and CLCNKB (c.226C>T, c.228A>C, c.229G>A, c.229G>C, c.1979C>A) were identified to induce splicing alterations. These variants may not only disrupt exonic splicing enhancers (ESEs) but also generate new exonic splicing silencers (ESSs), or disturb the classic splicing sites.Conclusion: To our knowledge, this is a comprehensive study regarding alterations in pre-mRNA of exonic variants in BS pathogenic genes. Our results reinforce the necessity of assessing the consequences of exonic variants at the mRNA level.
Collapse
Affiliation(s)
- Qing Xin
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Qihua Liu
- Department of Material Supply Management, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhiying Liu
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xiaomeng Shi
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xuyan Liu
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Zhang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yefeng Hong
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xiangzhong Zhao, ; Leping Shao,
| | - Leping Shao
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xiangzhong Zhao, ; Leping Shao,
| |
Collapse
|
29
|
Müller L, Ptok J, Nisar A, Antemann J, Grothmann R, Hillebrand F, Brillen AL, Ritchie A, Theiss S, Schaal H. Modeling splicing outcome by combining 5'ss strength and splicing regulatory elements. Nucleic Acids Res 2022; 50:8834-8851. [PMID: 35947702 PMCID: PMC9410876 DOI: 10.1093/nar/gkac663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Correct pre-mRNA processing in higher eukaryotes vastly depends on splice site recognition. Beyond conserved 5'ss and 3'ss motifs, splicing regulatory elements (SREs) play a pivotal role in this recognition process. Here, we present in silico designed sequences with arbitrary a priori prescribed splicing regulatory HEXplorer properties that can be concatenated to arbitrary length without changing their regulatory properties. We experimentally validated in silico predictions in a massively parallel splicing reporter assay on more than 3000 sequences and exemplarily identified some SRE binding proteins. Aiming at a unified 'functional splice site strength' encompassing both U1 snRNA complementarity and impact from neighboring SREs, we developed a novel RNA-seq based 5'ss usage landscape, mapping the competition of pairs of high confidence 5'ss and neighboring exonic GT sites along HBond and HEXplorer score coordinate axes on human fibroblast and endothelium transcriptome datasets. These RNA-seq data served as basis for a logistic 5'ss usage prediction model, which greatly improved discrimination between strong but unused exonic GT sites and annotated highly used 5'ss. Our 5'ss usage landscape offers a unified view on 5'ss and SRE neighborhood impact on splice site recognition, and may contribute to improved mutation assessment in human genetics.
Collapse
Affiliation(s)
| | | | - Azlan Nisar
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany,Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, Recklinghausen 45665, Germany
| | - Jennifer Antemann
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Ramona Grothmann
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Frank Hillebrand
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anna-Lena Brillen
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anastasia Ritchie
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | | | - Heiner Schaal
- To whom correspondence should be addressed. Tel: +49 211 81 12393; Fax: +49 211 81 10856;
| |
Collapse
|
30
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
Zhang F, Ran Y, Tahir M, Li Z, Wang J, Chen X. Regulation of N6-methyladenosine (m6A) RNA methylation in microglia-mediated inflammation and ischemic stroke. Front Cell Neurosci 2022; 16:955222. [PMID: 35990887 PMCID: PMC9386152 DOI: 10.3389/fncel.2022.955222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcription modification, widely occurring in eukaryotic mRNA and non-coding RNA. m6A modification is highly enriched in the mammalian brain and is associated with neurological diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD). Ischemic stroke (IS) was discovered to alter the cerebral m6A epi-transcriptome, which might have functional implications in post-stroke pathophysiology. Moreover, it is observed that m6A modification could regulate microglia’s pro-inflammatory and anti-inflammatory responses. Given the critical regulatory role of microglia in the inflammatory processes in the central nervous system (CNS), we speculate that m6A modification could modulate the post-stroke microglial inflammatory responses. This review summarizes the vital regulatory roles of m6A modification in microglia-mediated inflammation and IS. Stroke is associated with a high recurrence rate, understanding the relationship between m6A modification and stroke may help stroke rehabilitation and develop novel therapies in the future.
Collapse
Affiliation(s)
- Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Muhammad Tahir
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- *Correspondence: Xuechai Chen,
| |
Collapse
|
32
|
Zhang H, Zhang R, Wang F, Li G, Wen Y, Shan H. Comparative proteomic analysis of PK15 swine kidney cells infected with a pseudorabies pathogenic variant and the Bartha-K/61 vaccine strain. Microb Pathog 2022; 170:105698. [DOI: 10.1016/j.micpath.2022.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
|
33
|
Tram J, Mesnard JM, Peloponese JM. Alternative RNA splicing in cancer: what about adult T-cell leukemia? Front Immunol 2022; 13:959382. [PMID: 35979354 PMCID: PMC9376482 DOI: 10.3389/fimmu.2022.959382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells employ a broad range of mechanisms to regulate gene expression. Among others, mRNA alternative splicing is a key process. It consists of introns removal from an immature mRNA (pre-mRNA) via a transesterification reaction to create a mature mRNA molecule. Large-scale genomic studies have shown that in the human genome, almost 95% of protein-encoding genes go through alternative splicing and produce transcripts with different exons combinations (and sometimes retained introns), thus increasing the proteome diversity. Considering the importance of RNA regulation in cellular proliferation, survival, and differentiation, alterations in the alternative splicing pathway have been linked to several human cancers, including adult T-cell leukemia/lymphoma (ATL). ATL is an aggressive and fatal malignancy caused by the Human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 genome encodes for two oncoproteins: Tax and HBZ, both playing significant roles in the transformation of infected cells and ATL onset. Here, we review current knowledge on alternative splicing and its link to cancers and reflect on how dysregulation of this pathway could participate in HTLV-1-induced cellular transformation and adult T-cell leukemia/lymphoma development.
Collapse
|
34
|
Song J, Quan R, Wang D, Liu J. Seneca Valley Virus 3C pro Cleaves Heterogeneous Nuclear Ribonucleoprotein K to Facilitate Viral Replication. Front Microbiol 2022; 13:945443. [PMID: 35875542 PMCID: PMC9298500 DOI: 10.3389/fmicb.2022.945443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 02/03/2023] Open
Abstract
Seneca Valley virus (SVV) has emerged as an important pathogen that is associated with idiopathic vesicular infection in pigs, causing a potential threat to the global swine industry. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) that shuttles between the nucleus and cytoplasm plays an important role in viral infection. In this study, we observed that infection with SVV induced cleavage, degradation, and cytoplasmic redistribution of hnRNP K in cultured cells, which was dependent on the activity of viral 3Cpro protease. Also, the 3Cpro induced degradation of hnRNP K via the caspase pathway. Further studies demonstrated that SVV 3Cpro cleaved hnRNP K at residue Q364, and the expression of the cleavage fragment hnRNP K (aa.365–464) facilitates viral replication, which is similar to full-length hnRNP K, whereas hnRNP K (aa.1–364) inhibits viral replication. Additionally, hnRNP K interacts with the viral 5′ untranslated region (UTR), and small interfering RNA (siRNA)-mediated knockdown of hnRNP K results in significant inhibition of SVV replication. Overall, our results demonstrated that the hnRNP K positively regulates SVV replication in a protease activity-dependent fashion in which the cleaved C-terminal contributes crucially to the upregulation of SVV replication. This finding of the role of hnRNP K in promoting SVV propagation provides a novel antiviral strategy to utilize hnRNP K as a potential target for therapy.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
dos Santos MGP, Gatti da Silva GH, Nagasse HY, Fuziwara CS, Kimura ET, Coltri PP. hnRNP A1 and hnRNP C associate with miR-17 and miR-18 in thyroid cancer cells. FEBS Open Bio 2022; 12:1253-1264. [PMID: 35417090 PMCID: PMC9157402 DOI: 10.1002/2211-5463.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/03/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are essential players in the regulation of gene expression. The majority of the twenty different hnRNP proteins act through the modulation of pre-mRNA splicing. Most have been shown to regulate the expression of critical genes for the progression of tumorigenic processes and were also observed to be overexpressed in several types of cancer. Moreover, these proteins were described as essential components for the maturation of some microRNAs (miRNAs). In the human genome, over 70% of miRNAs are transcribed from introns; therefore, we hypothesized that regulatory proteins involved with splicing could be important for their maturation. Increased expression of the miR-17-92 cluster has already been shown to be related to the development of many cancers, such as thyroid, lung, and lymphoma. In this article, we show that overexpression of hnRNP A1 and hnRNP C in BCPAP thyroid cancer cells directly affects the expression of miR-17-92 miRNAs. Both proteins associate with the 5'-end of this cluster, strongly precipitate miRNAs miR-17 and miR-18a and upregulate the expression of miR-92a. Upon overexpression of these hnRNPs, BCPAP cells also show increased proliferation, migration, and invasion rates, suggesting upregulation of these proteins and miRNAs is related to an enhanced tumorigenic phenotype.
Collapse
Affiliation(s)
- Maria Gabriela Pereira dos Santos
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
- Present address:
National Center for Tumor Diseases (NCT) DresdenFetscherstraße 74Dresden01307Germany
| | | | - Helder Yudi Nagasse
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Cesar Seigi Fuziwara
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Edna T. Kimura
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Patricia Pereira Coltri
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| |
Collapse
|
36
|
Murphy AJ, Li AH, Li P, Sun H. Therapeutic Targeting of Alternative Splicing: A New Frontier in Cancer Treatment. Front Oncol 2022; 12:868664. [PMID: 35463320 PMCID: PMC9027816 DOI: 10.3389/fonc.2022.868664] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
The ability for cells to harness alternative splicing enables them to diversify their proteome in order to carry out complex biological functions and adapt to external and internal stimuli. The spliceosome is the multiprotein-RNA complex charged with the intricate task of alternative splicing. Aberrant splicing can arise from abnormal spliceosomes or splicing factors and drive cancer development and progression. This review will provide an overview of the alternative splicing process and aberrant splicing in cancer, with a focus on serine/arginine-rich (SR) proteins and their recently reported roles in cancer development and progression and beyond. Recent mapping of the spliceosome, its associated splicing factors, and their relationship to cancer have opened the door to novel therapeutic approaches that capitalize on the widespread influence of alternative splicing. We conclude by discussing small molecule inhibitors of the spliceosome that have been identified in an evolving era of cancer treatment.
Collapse
Affiliation(s)
- Anthony J. Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Alex H. Li
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
37
|
Deng Q, Wu M, Deng J. USP36 promotes tumor growth of non-small cell lung cancer via increasing KHK-A expression by regulating c-MYC-hnRNPH1/H2 axis. Hum Cell 2022; 35:694-704. [PMID: 35133629 DOI: 10.1007/s13577-022-00677-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with poor prognosis. This study designated to figure out the effects of Ubiquitin Specific Peptidase 36 (USP36) on NSCLC. Data of this study demonstrated that upregulation of USP36 was observed in NSCLC tissues and cell lines. Overexpression of USP36 promoted NSCLC cell proliferation and inhibited NSCLC cell apoptosis. Knockdown of USP36 decreased Ketohexokinase A (KHK-A) and increased KHK-C expression at both RNA and protein levels. Expression of c-MYC and hnRNPH1/H2 was positively correlated with the expression of USP36. Upregulation of c-MYC reversed the downregulation of hnRNPH1/H2 induced inhibition of USP36. Overexpression of hnRNPH1/H2 reversed the downregulation of KHK-A induced inhibition of USP36. Results of in vivo xenograft model were consistent with the findings of in vitro experiments. In summary, overexpression of USP36 in NSCLC accelerated tumor growth through upregulation of KHK-A, which was medicated by stabilizing c-MYC to increase hnRNPH1/H2 expression.
Collapse
Affiliation(s)
- Qian Deng
- Department of Palliative Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Maolin Wu
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610075, Sichuan Province, China.
| | - Jing Deng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
38
|
Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss. BIOLOGY 2022; 11:biology11020222. [PMID: 35205090 PMCID: PMC8869236 DOI: 10.3390/biology11020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Alternative splicing (AS) is a key post-transcriptional regulatory mechanism that acts an important regulator in response to environmental stimuli in organisms. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of AS in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). The results indicated that different salinity environments changed the splicing patterns of numerous RNA splicing regulators, which might affect the splicing decisions of many downstream target genes in response to salinity changes. This study provides preliminary evidence for the important roles of AS events in salinity adaptation in teleosts. Abstract Salinity is an important environmental factor that directly affects the survival of aquatic organisms, including fish. However, the underlying molecular mechanism of salinity adaptation at post-transcriptional regulation levels is still poorly understood in fish. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of alternative splicing (AS) in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). A total of 10,826, 10,741 and 10,112 AS events were identified in the livers of the three species. The characteristics of these AS events were systematically investigated. Furthermore, a total of 940, 590 and 553 differentially alternative splicing (DAS) events were determined and characterized in the livers of turbot, tongue sole and steelhead trout, respectively, between low- and high-salinity environments. Functional enrichment analysis indicated that these DAS genes in the livers of three species were commonly enriched in some GO terms and KEGG pathways associated with RNA processing. The most common DAS genes work as RNA-binding proteins and play crucial roles in the regulation of RNA splicing. The study provides new insights into uncovering the molecular mechanisms of salinity adaptation in teleosts.
Collapse
|
39
|
Zarei Ghobadi M, Emamzadeh R. Integration of gene co-expression analysis and multi-class SVM specifies the functional players involved in determining the fate of HTLV-1 infection toward the development of cancer (ATLL) or neurological disorder (HAM/TSP). PLoS One 2022; 17:e0262739. [PMID: 35041720 PMCID: PMC8765610 DOI: 10.1371/journal.pone.0262739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
Human T-cell Leukemia Virus type-1 (HTLV-1) is an oncovirus that may cause two main life-threatening diseases including a cancer type named Adult T-cell Leukemia/Lymphoma (ATLL) and a neurological and immune disturbance known as HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). However, a large number of the infected subjects remain as asymptomatic carriers (ACs). There is no comprehensive study that determines which dysregulated genes differentiate the pathogenesis routes toward ATLL or HAM/TSP. Therefore, two main algorithms including weighted gene co-expression analysis (WGCNA) and multi-class support vector machines (SVM) were utilized to find major gene players in each condition. WGCNA was used to find the highly co-regulated genes and multi-class SVM was employed to identify the most important classifier genes. The identified modules from WGCNA were validated in the external datasets. Furthermore, to find specific modules for ATLL and HAM/TSP, the non-preserved modules in another condition were found. In the next step, a model was constructed by multi-class SVM. The results revealed 467, 3249, and 716 classifiers for ACs, ATLL, and HAM/TSP, respectively. Eventually, the common genes between the WGCNA results and classifier genes resulted from multi-class SVM that also determined as differentially expressed genes, were identified. Through these step-wise analyses, PAIP1, BCAS2, COPS2, CTNNB1, FASLG, GTPBP1, HNRNPA1, RBBP6, TOP1, SLC9A1, JMY, PABPC3, and PBX1 were found as the possible critical genes involved in the progression of ATLL. Moreover, FBXO9, ZNF526, ERCC8, WDR5, and XRCC3 were identified as the conceivable major involved genes in the development of HAM/TSP. These genes can be proposed as specific biomarker candidates and therapeutic targets for each disease.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- * E-mail: ,
| |
Collapse
|
40
|
Eldeeb MA, Ragheb MA, Soliman MH, Fahlman RP. Regulation of Neurodegeneration-associated Protein Fragments by the N-degron Pathways. Neurotox Res 2022; 40:298-318. [PMID: 35043375 DOI: 10.1007/s12640-021-00396-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
Among the most salient features that underpin the development of aging-related neurodegenerative disorders are the accumulation of protein aggregates and the decrease in cellular degradation capacity. Mammalian cells have evolved sophisticated quality control mechanisms to repair or eliminate the otherwise abnormal or misfolded proteins. Chaperones identify unstable or abnormal conformations in proteins and often help them regain their correct conformation. However, if repair is not an option, abnormal proteins are selectively degraded to prevent undesired interactions with other proteins or oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of abnormal or aberrant protein fragments. Despite an increasing understanding regarding the molecular responses that counteract the formation and clearance of dysfunctional protein aggregates, the role of N-degrons in these processes is poorly understood. Previous work demonstrated that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of neurodegeneration-associated proteins, thereby regulating crucial signaling hubs that modulate the progression of neurodegenerative diseases. Herein, we discuss the functional interconnection between N-degron pathways and proteins associated with neurodegenerative disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. We also highlight some future prospects related to how the molecular insights gained from these processes will help unveil novel therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt. .,Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
41
|
Wang S, Chao F, Zhang C, Han D, Xu G, Chen G. Circular RNA circPFKP promotes cell proliferation by activating IMPDH2 in prostate cancer. Cancer Lett 2022; 524:109-120. [PMID: 34673127 DOI: 10.1016/j.canlet.2021.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/22/2022]
Abstract
Prostate cancer (PCa), especially castration-resistant PCa, is a common and fatal disease. circRNAs had been confirmed to affect the proliferation of a variety of malignant tumors. Exploring the role of circRNAs in PCa progression and discovering new therapeutic targets are of great importance for the treatment of PCa. In the present study, we found that the expression of circPFKP was significantly increased in PCa tissues compared with adjacent noncancerous prostate tissues, and was correlated with the D'Amico risk classification, N stage, and prognostic stage group of PCa. CircPFKP promotes the proliferation of PCa cells in vitro and in vivo. Suppressing circPFKP induced the G1/S arrest of PCa cells. Mechanistically, circPFKP interacted with IMPDH2, promoted the biogenesis of guanine nucleotides. Moreover, the replenishment of intracellular guanine nucleotides pool reverses the inhibitory effect of knocking-down circPFKP on PCa cell proliferation. hnRNPF might promote circPFKP generation by binding to flanking Alu elements. Our results identify a novel functional interaction of circPFKP with IMPDH2, which promotes the proliferation of PCa cells.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Parker KA, Robinson NJ, Schiemann WP. The role of RNA processing and regulation in metastatic dormancy. Semin Cancer Biol 2022; 78:23-34. [PMID: 33775829 PMCID: PMC8464634 DOI: 10.1016/j.semcancer.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Tumor dormancy is a major contributor to the lethality of metastatic disease, especially for cancer patients who develop metastases years-to-decades after initial diagnosis. Indeed, tumor cells can disseminate during early disease stages and persist in new microenvironments at distal sites for months, years, or even decades before initiating metastatic outgrowth. This delay between primary tumor remission and metastatic relapse is known as "dormancy," during which disseminated tumor cells (DTCs) acquire quiescent states in response to intrinsic (i.e., cellular) and extrinsic (i.e., microenvironmental) signals. Maintaining dormancy-associated phenotypes requires DTCs to activate transcriptional, translational, and post-translational mechanisms that engender cellular plasticity. RNA processing is emerging as an essential facet of cellular plasticity, particularly with respect to the initiation, maintenance, and reversal of dormancy-associated phenotypes. Moreover, dysregulated RNA processing, particularly that associated with alternative RNA splicing and expression of noncoding RNAs (ncRNAs), can occur in DTCs to mediate intrinsic and extrinsic metastatic dormancy. Here we review the pathophysiological impact of alternative RNA splicing and ncRNAs in promoting metastatic dormancy and disease recurrence in human cancers.
Collapse
Affiliation(s)
- Kimberly A. Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nathaniel J. Robinson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA,Corresponding Author: William P. Schiemann, Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106 Phone: 216-368-5763.
| |
Collapse
|
43
|
Han F, Yang B, Zhou M, Huang Q, Mai M, Huang Z, Lai M, Xu E, Zhang H. OUP accepted manuscript. J Mol Cell Biol 2022; 14:6537407. [PMID: 35218185 PMCID: PMC9188103 DOI: 10.1093/jmcb/mjac009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 11/12/2022] Open
Abstract
Alternative splicing (AS) and transcription elongation are vital biological processes, and their dysregulation causes multiple diseases, including tumors. However, the coregulatory mechanism of AS and transcription elongation in tumors remains unclear. This study demonstrates a novel AS pattern of tight junction protein 1 (ZO1) regulated by the RNA polymerase II elongation rate in colorectal cancer (CRC). Glioma tumor suppressor candidate region gene 1 (GLTSCR1) decreases the transcription elongation rate of ZO1 to provide a time window for binding of the splicing factor HuR to the specific motif in intron 22 of ZO1 and spliceosome recognition of the weak 3′ and 5′ splice sites in exon 23 to promote exon 23 inclusion. Since exon 23 inclusion in ZO1 suppresses migration and invasion of CRC cells, our findings suggest a novel potential therapeutic target for CRC.
Collapse
Affiliation(s)
| | | | | | - Qiong Huang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Minglang Mai
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
| | - Zhaohui Huang
- Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Enping Xu
- Correspondence to: Enping Xu, E-mail:
| | | |
Collapse
|
44
|
The Thiazole-5-Carboxamide GPS491 Inhibits HIV-1, Adenovirus, and Coronavirus Replication by Altering RNA Processing/Accumulation. Viruses 2021; 14:v14010060. [PMID: 35062264 PMCID: PMC8779516 DOI: 10.3390/v14010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.
Collapse
|
45
|
Impact of Alternative Splicing Variants on Liver Cancer Biology. Cancers (Basel) 2021; 14:cancers14010018. [PMID: 35008179 PMCID: PMC8750444 DOI: 10.3390/cancers14010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Among the top ten deadly solid tumors are the two most frequent liver cancers, hepatocellular carcinoma, and intrahepatic cholangiocarcinoma, whose development and malignancy are favored by multifactorial conditions, which include aberrant maturation of pre-mRNA due to abnormalities in either the machinery involved in the splicing, i.e., the spliceosome and associated factors, or the nucleotide sequences of essential sites for the exon recognition process. As a consequence of cancer-associated aberrant splicing in hepatocytes- and cholangiocytes-derived cancer cells, abnormal proteins are synthesized. They contribute to the dysregulated proliferation and eventually transformation of these cells to phenotypes with enhanced invasiveness, migration, and multidrug resistance, which contributes to the poor prognosis that characterizes these liver cancers. Abstract The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.
Collapse
|
46
|
Song J, Wang D, Quan R, Liu J. Seneca Valley virus 3C pro degrades heterogeneous nuclear ribonucleoprotein A1 to facilitate viral replication. Virulence 2021; 12:3125-3136. [PMID: 34923914 PMCID: PMC8923066 DOI: 10.1080/21505594.2021.2014681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Seneca Valley virus (SVV) is a recently-identified important pathogen that is closely related to idiopathic vesicular disease in swine. Infection of SVV has been shown to induce a variety of cellular factors and their activations are essential for viral replication, but whether heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) involved in SVV replication is unknown. The cytoplasmic redistribution of hnRNP A1 is considered to play an important role in the virus life cycle. Here, we demonstrated that SVV infection can promote redistribution of the nucleocytoplasmic shuttling RNA-binding protein hnRNP A1 to the cytoplasm from the nucleus, whereas hnRNP A1 remained mainly in the nucleus of mock-infected cells. siRNA-mediated knockdown of the gene encoding hnRNP A1 attenuated viral replication as evidenced by decreased viral protein expression and virus production, whereas its overexpression enhanced replication. Moreover, infection with SVV induced the degradation of hnRNP A1, and viral 3 C protease (3 Cpro) was found to be responsible for its degradation and translocation. Further studies demonstrated that 3 Cpro induced hnRNP A1 degradation through its protease activity, via the proteasome pathway. This degradation could be attenuated by a proteasome inhibitor (MG132) and inactivation of the conserved catalytic box in 3 Cpro. Taken together, these results presented here reveal that SVV 3 C protease targets cellular hnRNP A1 for its degradation and translocation, which is utilized by SVV to aid viral replication, thereby highlighting the control potential of strategies for infection of SVV.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Distinct roles of hnRNPH1 low-complexity domains in splicing and transcription. Proc Natl Acad Sci U S A 2021; 118:2109668118. [PMID: 34873036 PMCID: PMC8685725 DOI: 10.1073/pnas.2109668118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
Phase separation of low-complexity (LC) domains appended to most RNA-binding proteins (RBPs) emerges as a principle underlying spatiotemporal protein recruitment. Yet, how LC domains regulate the function of RBPs in cells remains unclear. An alternative-splicing regulator, hnRNPH1, contains two LC domains (LC1 and LC2). Here, we show that phase separation of the LC1 can exert control over hnRNPH1 function in RNA-splicing possibly by facilitating interactions between hnRNPH1 and a variety of RBPs. In contrast, the LC2 lacking in vitro phase properties, is required for aberrant transcriptional activation in the context of fusion oncoproteins. These results have broad implications for understanding how phase separation contributes to distinct roles of LC domains in control of physiological as well as oncogenic functions. Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins that control key events in RNA biogenesis under both normal and diseased cellular conditions. The low-complexity (LC) domain of hnRNPs can become liquid-like droplets or reversible amyloid-like polymers by phase separation. Yet, whether phase separation of the LC domains contributes to physiological functions of hnRNPs remains unclear. hnRNPH1 contains two LC domains, LC1 and LC2. Here, we show that reversible phase separation of the LC1 domain is critical for both interaction with different kinds of RNA-binding proteins and control of the alternative-splicing activity of hnRNPH1. Interestingly, although not required for phase separation, the LC2 domain contributes to the robust transcriptional activation of hnRNPH1 when fused to the DNA-binding domain, as found recently in acute lymphoblastic leukemia. Our data suggest that the ability of the LC1 domain to phase-separate into reversible polymers or liquid-like droplets is essential for function of hnRNPH1 as an alternative RNA-splicing regulator, whereas the LC2 domain may contribute to the aberrant transcriptional activity responsible for cancer transformation.
Collapse
|
48
|
Liang Q, Lin X, Wu X, Shao Y, Chen C, Dai J, Lu Y, Wu W, Ding Q, Wang X. Unraveling the molecular basis underlying nine putative splice site variants of von Willebrand factor. Hum Mutat 2021; 43:215-227. [PMID: 34882887 DOI: 10.1002/humu.24312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Approximately 10% of von Willebrand factor (VWF) gene variants are suspected to disrupt messenger RNA (mRNA) processing, the number of which might be underestimated due to the lack of transcript assays. In the present study, we provided a detailed strategy to evaluate the effects of nine putative splice site variants (PSSVs) of VWF on mRNA processing as well as protein properties and establish their genotype-phenotype relationships. Eight of nine PSSVs affected VWF splicing: c.322A>T, c.1534-13_1551delinsCA, and c.8116-2del caused exon skipping; c.221-2A>C, c.323+1G>T, and c.2547-13T>A resulted in the activation of cryptic splice sites; c.2684A>G led to exon skipping and activation of a cryptic splice site; c.2968-14A>G created a new splice site. The remaining c.5171-9del was likely benign. The efficiency of nonsense-mediated mRNA decay (NMD) was much higher in platelets compared to leukocytes, impairing the identification of aberrant transcripts in 4 of 8 PSSVs. The nonsense variant c.322A>T partially impaired mRNA processing, leaking a small amount of correct transcripts with c.322T (p.Arg108*), while the missense variant c.2684A>G totally disrupted normal splicing of VWF, rather than produced mutant protein with the substitution of Gln895Arg. The results of this study would certainly add novel insights into the molecular events behind von Willebrand disease.
Collapse
Affiliation(s)
- Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoyi Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Shao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells 2021; 10:cells10123348. [PMID: 34943856 PMCID: PMC8699513 DOI: 10.3390/cells10123348] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant tumor in men. The epigenetic and genetic alterations appear to be responsible for development of PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce expression level of a specific gene. The various critical genes involved in PC progression can be effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target effects and their degradation by enzymes in serum can diminish their potential in gene silencing. Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are discussed in this article. This review also reveals that how naked siRNAs and their delivery systems can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials, significant progress can be made by translating the current findings into the clinical settings.
Collapse
|
50
|
Yin M, Cheng M, Liu C, Wu K, Xiong W, Fang J, Li Y, Zhang B. HNRNPA2B1 as a trigger of RNA switch modulates the miRNA-mediated regulation of CDK6. iScience 2021; 24:103345. [PMID: 34805798 PMCID: PMC8590077 DOI: 10.1016/j.isci.2021.103345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/17/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
The functional inactivation of tumor suppressor microRNA (miRNA) is closely related to the tumorigenesis of cancer. There are instances where the miRNA and the corresponding target both exist in a cell, but the target gene silencing do not occur as expected. Herein, we found that both miR-506 and its target CDK6 are highly co-expressed in lung cancer cells. Sequence analyses suggested that a miR-506 binding site (1648–1654) and a cis-element (1785–1795) for binding by heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) are evolutionarily conserved and forms a stem structure in the 3′ untranslated region (3′UTR) of CDK6. Furthermore, HNRNPA2B1 can bind to the stem structure to denature it and recruit the RNA helicase DExH-box helicase 9 (DHX9) to the 3′UTR, which ultimately facilitates miRNAs-mediated CDK6 silencing. These results indicate that the cis-element of the 3′UTR of CDK6, where HNRNPA2B1 binds, serves as an RNA switch to regulate miRNAs’ function in cancer cells. Both miR-506 and its target CDK6 are highly co-expressed in lung cancer HNRNPA2B1 facilitates miR-506-mediated CDK6 silence by switching structure in 3′UTR HNRNPA2B1 also recruits the DHX9 to the 3′UTR of its targets HNRNPA2B1 extensively regulates miRNAs-mediated gene silencing through binding to 3′UTR
Collapse
Affiliation(s)
- Menghui Yin
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meidie Cheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengli Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Keli Wu
- School of Life Science, University of Science and Technology of China, Hefei 230026, China
| | - Wei Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Ji Fang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Yinxiong Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Public Health, Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Biliang Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| |
Collapse
|