1
|
Simpson CE, Ledford JG, Liu G. Application of Metabolomics across the Spectrum of Pulmonary and Critical Care Medicine. Am J Respir Cell Mol Biol 2024; 71:1-9. [PMID: 38547373 PMCID: PMC11225873 DOI: 10.1165/rcmb.2024-0080ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 07/02/2024] Open
Abstract
In recent years, metabolomics, the systematic study of small-molecule metabolites in biological samples, has yielded fresh insights into the molecular determinants of pulmonary diseases and critical illness. The purpose of this article is to orient the reader to this emerging field by discussing the fundamental tenets underlying metabolomics research, the tools and techniques that serve as foundational methodologies, and the various statistical approaches to analysis of metabolomics datasets. We present several examples of metabolomics applied to pulmonary and critical care medicine to illustrate the potential of this avenue of research to deepen our understanding of pathophysiology. We conclude by reviewing recent advances in the field and future research directions that stand to further the goal of personalizing medicine to improve patient care.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Julie G. Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona; and
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
2
|
Wang P, Zhou R, Zhou R, Feng S, Zhao L, Li W, Lin J, Rajapakse A, Lee CH, Furnari FB, Burgess AW, Gunter JH, Liu G, Ostrikov KK, Richard DJ, Simpson F, Dai X, Thompson EW. Epidermal growth factor potentiates EGFR(Y992/1173)-mediated therapeutic response of triple negative breast cancer cells to cold atmospheric plasma-activated medium. Redox Biol 2024; 69:102976. [PMID: 38052106 PMCID: PMC10746566 DOI: 10.1016/j.redox.2023.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023] Open
Abstract
Cold atmospheric plasma (CAP) holds promise as a cancer-specific treatment that selectively kills various types of malignant cells. We used CAP-activated media (PAM) to utilize a range of the generated short- and long-lived reactive species. Specific antibodies, small molecule inhibitors and CRISPR/Cas9 gene-editing approaches showed an essential role for receptor tyrosine kinases, especially epidermal growth factor (EGF) receptor, in mediating triple negative breast cancer (TNBC) cell responses to PAM. EGF also dramatically enhanced the sensitivity and specificity of PAM against TNBC cells. Site-specific phospho-EGFR analysis, signal transduction inhibitors and reconstitution of EGFR-depleted cells with EGFR-mutants confirmed the role of phospho-tyrosines 992/1173 and phospholipase C gamma signaling in up-regulating levels of reactive oxygen species above the apoptotic threshold. EGF-triggered EGFR activation enhanced the sensitivity and selectivity of PAM effects on TNBC cells. The proposed approach based on the synergy of CAP and EGFR-targeted therapy may provide new opportunities to improve the clinical management of TNBC.
Collapse
Affiliation(s)
- Peiyu Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Rusen Zhou
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Shuo Feng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Liqian Zhao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou 510515, PR China
| | - Wenshao Li
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Jinyong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Aleksandra Rajapakse
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Chia-Hwa Lee
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Frank B Furnari
- Department of Medicine, University of California San Diego, California 92093, USA
| | - Antony W Burgess
- Walter and Elisa Hall Institute, Melbourne, Victoria 3052, Australia
| | - Jennifer H Gunter
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia; Cancer and Ageing Research Program, Woolloongabba, Queensland 4102, Australia
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Erik W Thompson
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
3
|
Ofori K, Ghosh A, Verma DK, Wheeler D, Cabrera G, Seo JB, Kim YH. A Novel NOX Inhibitor Alleviates Parkinson's Disease Pathology in PFF-Injected Mice. Int J Mol Sci 2023; 24:14278. [PMID: 37762579 PMCID: PMC10531511 DOI: 10.3390/ijms241814278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress-mediated damage is often a downstream result of Parkinson's disease (PD), which is marked by sharp decline in dopaminergic neurons within the nigrostriatal regions of the brain, accounting for the symptomatic motor deficits in patients. Regulating the level of oxidative stress may present a beneficial approach in preventing PD pathology. Here, we assessed the efficacy of a nicotinamide adenine phosphate (NADPH) oxidase (NOX) inhibitor, an exogenous reactive oxygen species (ROS) regulator synthesized by Aptabio therapeutics with the specificity to NOX-1, 2 and 4. Utilizing N27 rat dopaminergic cells and C57Bl/6 mice, we confirmed that the exposures of alpha-synuclein preformed fibrils (PFF) induced protein aggregation, a hallmark in PD pathology. In vitro assessment of the novel compound revealed an increase in cell viability and decreases in cytotoxicity, ROS, and protein aggregation (Thioflavin-T stain) against PFF exposure at the optimal concentration of 10 nM. Concomitantly, the oral treatment alleviated motor-deficits in behavioral tests, such as hindlimb clasping, rotarod, pole, nesting and grooming test, via reducing protein aggregation, based on rescued dopaminergic neuronal loss. The suppression of NOX-1, 2 and 4 within the striatum and ventral midbrain regions including Substantia Nigra compacta (SNc) contributed to neuroprotective/recovery effects, making it a potential therapeutic option for PD.
Collapse
Affiliation(s)
- Kwadwo Ofori
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| | - Anurupa Ghosh
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| | - Dinesh Kumar Verma
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| | - Darice Wheeler
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| | - Gabriela Cabrera
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| | - Jong-Bok Seo
- Seoul Center, Korea Basic Science Institute, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Yong-Hwan Kim
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| |
Collapse
|
4
|
Tan TCY, Brown HM, Thompson JG, Mustafa S, Dunning KR. Optical imaging detects metabolic signatures associated with oocyte quality. Biol Reprod 2022; 107:1014-1025. [PMID: 35863764 PMCID: PMC9562116 DOI: 10.1093/biolre/ioac145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Oocyte developmental potential is intimately linked to metabolism. Existing approaches to measure metabolism in the cumulus oocyte complex (COC) do not provide information on the separate cumulus and oocyte compartments. Development of an assay that achieves this may lead to an accurate diagnostic for oocyte quality. Optical imaging of the autofluorescent cofactors NAD(P)H and FAD provides a spatially resolved indicator of metabolism via the optical redox ratio ($\mathrm{FAD}/\left[\mathrm{NAD}\left(\mathrm{P}\right)\mathrm{H}+\mathrm{FAD}\right]$). This may provide an assessment of oocyte quality. Here, we determined whether the optical redox ratio is a robust methodology for measuring metabolism in the cumulus and oocyte compartments compared with oxygen consumption in the whole COC. We also determined whether optical imaging could detect metabolic differences associated with poor oocyte quality (etomoxir-treated). We used confocal microscopy to measure NAD(P)H and FAD, and extracellular flux to measure oxygen consumption. We found that the optical redox ratio was an accurate reflection of metabolism in the oocyte compartment when compared with oxygen consumption (whole COC). Etomoxir-treated COCs showed significantly lower levels of NAD(P)H and FAD compared to control. While confocal imaging demonstrated the premise, we validated this approach using hyperspectral imaging, which is clinically compatible due to its low energy dose. This confirmed lower NAD(P)H and FAD in etomoxir-treated COCs. When comparing imaged vs non-imaged COCs, subsequent preimplantation development and post-transfer viability were comparable. Collectively, these results demonstrate that label-free optical imaging of metabolic cofactors is a safe and sensitive assay for measuring metabolism and has potential to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hannah M Brown
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Jeremy G Thompson
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia.,Fertilis Pty Ltd, Adelaide, South Australia, 5005, Australia
| | - Sanam Mustafa
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Nami M, Han P, Hanlon D, Tatsuno K, Wei B, Sobolev O, Pitruzzello M, Vassall A, Yosinski S, Edelson R, Reed M. Rapid Screen for Antiviral T-Cell Immunity with Nanowire Electrochemical Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109661. [PMID: 35165959 DOI: 10.1002/adma.202109661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The ability to rapidly assess and monitor patient immune responses is critical for clinical diagnostics, vaccine design, and fundamental investigations into the presence or generation of protective immunity against infectious diseases. Recently, findings on the limits of antibody-based protection provided by B-cells have highlighted the importance of engaging pathogen-specific T-cells for long-lasting and broad protection against viruses and their emergent variants such as in SARS-CoV-2. However, low-cost and point-of-care tools for detecting engagement of T-cell immunity in patients are conspicuously lacking in ongoing efforts to assess and control population-wide disease risk. Currently available tools for human T-cell analysis are time and resource-intensive. Using multichannel silicon-nanowire field-effect transistors compatible with complementary metal-oxide-semiconductor, a device designed for rapid and label-free detection of human T-cell immune responses is developed. The generalizability of this approach is demonstrated by measuring T-cell responses against melanoma antigen MART1, common and seasonal viruses CMV, EBV, flu, as well as emergent pandemic coronavirus, SARS-CoV-2. Further, this device provides a modular and translational platform for optimizing vaccine formulations and combinations, offering quick and quantitative readouts for acquisition and persistence of T-cell immunity against variant-driven pathogens such as flu and pandemic SARS-CoV-2.
Collapse
Affiliation(s)
- Mohsen Nami
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
- Department of Neurosurgery, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Patrick Han
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
- Department of Immunobiology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Kazuki Tatsuno
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Brian Wei
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Mary Pitruzzello
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Aaron Vassall
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Shari Yosinski
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
| | - Richard Edelson
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Mark Reed
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
- Department of Applied Physics, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
| |
Collapse
|
6
|
Miller AK, Brown JS, Enderling H, Basanta D, Whelan CJ. The Evolutionary Ecology of Dormancy in Nature and in Cancer. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dormancy is an inactive period of an organism’s life cycle that permits it to survive through phases of unfavorable conditions in highly variable environments. Dormancy is not binary. There is a continuum of dormancy phenotypes that represent some degree of reduced metabolic activity (hypometabolism), reduced feeding, and reduced reproduction or proliferation. Similarly, normal cells and cancer cells exhibit a range of states from quiescence to long-term dormancy that permit survival in adverse environmental conditions. In contrast to organismal dormancy, which entails a reduction in metabolism, dormancy in cells (both normal and cancer) is primarily characterized by lack of cell division. “Cancer dormancy” also describes a state characterized by growth stagnation, which could arise from cells that are not necessarily hypometabolic or non-proliferative. This inconsistent terminology leads to confusion and imprecision that impedes progress in interdisciplinary research between ecologists and cancer biologists. In this paper, we draw parallels and contrasts between dormancy in cancer and other ecosystems in nature, and discuss the potential for studies in cancer to provide novel insights into the evolutionary ecology of dormancy.
Collapse
|
7
|
Tan C, Ginzberg MB, Webster R, Iyengar S, Liu S, Papadopoli D, Concannon J, Wang Y, Auld DS, Jenkins JL, Rost H, Topisirovic I, Hilfinger A, Derry WB, Patel N, Kafri R. Cell size homeostasis is maintained by CDK4-dependent activation of p38 MAPK. Dev Cell 2021; 56:1756-1769.e7. [PMID: 34022133 DOI: 10.1016/j.devcel.2021.04.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/08/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
While molecules that promote the growth of animal cells have been identified, it remains unclear how such signals are orchestrated to determine a characteristic target size for different cell types. It is increasingly clear that cell size is determined by size checkpoints-mechanisms that restrict the cell cycle progression of cells that are smaller than their target size. Previously, we described a p38 MAPK-dependent cell size checkpoint mechanism whereby p38 is selectively activated and prevents cell cycle progression in cells that are smaller than a given target size. In this study, we show that the specific target size required for inactivation of p38 and transition through the cell cycle is determined by CDK4 activity. Our data suggest a model whereby p38 and CDK4 cooperate analogously to the function of a thermostat: while p38 senses irregularities in size, CDK4 corresponds to the thermostat dial that sets the target size.
Collapse
Affiliation(s)
- Ceryl Tan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miriam B Ginzberg
- Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Rachel Webster
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Seshu Iyengar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, ON L5L 1C6, Canada
| | - Shixuan Liu
- Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - David Papadopoli
- Gerald Bronfman Department of Oncology and Lady Davis Institute, McGill University Montreal, QC H4A 3T2, Canada
| | - John Concannon
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Yuan Wang
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Douglas S Auld
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jeremy L Jenkins
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Hannes Rost
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology and Lady Davis Institute, McGill University Montreal, QC H4A 3T2, Canada
| | - Andreas Hilfinger
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, ON L5L 1C6, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nish Patel
- Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ran Kafri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|