1
|
Peters PN, Whitaker RS, Lim F, Russell S, Bloom EA, Pollara J, Strickland KC, Cantwell MJ, Beg A, Berchuck A, Antonia S, Previs RA. Oncolytic adenovirus MEM-288 encoding membrane-stable CD40L and IFNβ induces an anti-tumor immune response in high grade serous ovarian cancer. Neoplasia 2024; 57:101056. [PMID: 39276533 PMCID: PMC11417341 DOI: 10.1016/j.neo.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Single agent immune checkpoint inhibitors have been ineffective for patients with advanced stage and recurrent high grade serous ovarian cancer (HGSOC). Using pre-clinical models of HGSOC, we evaluated the anti-tumor and immune stimulatory effects of an oncolytic adenovirus, MEM-288. This conditionally replicative virus encodes a modified membrane stable CD40L and IFNβ. We demonstrated this virus successfully infects HGSOC cell lines and primary human ascites samples in vitro. We evaluated the anti-tumor and immunostimulatory activity in vivo in immune competent mouse models. Intraperitoneal delivery of MEM-288 decreased ascites and solid tumor burden compared to controls, and treatment generated a systemic anti-tumor immune response. The tumor microenvironment had a higher proportion of anti-tumor macrophages and decreased markers of angiogenesis. MEM-288 is a promising immunotherapy agent in HGSOC, with further pre-clinical studies required to understand the mechanism of action in the peritoneal microenvironment and clinical activity in combination with other therapies.
Collapse
Affiliation(s)
| | | | - Felicia Lim
- Duke University Department of Pharmacology and Cancer Biology
| | - Shonagh Russell
- Duke University Department of Pharmacology and Cancer Biology
| | | | | | - Kyle C Strickland
- Duke University Department of Pathology; Labcorp Oncology, Durham, NC, USA
| | | | - Amer Beg
- Moffitt Cancer Center Department of Immunology
| | | | | | - Rebecca A Previs
- Duke University Department of Obstetrics and Gynecology; Labcorp Oncology, Durham, NC, USA
| |
Collapse
|
2
|
Zhai W, Huang Y, He Y, Chu Y, Tao C, Pang Z, Wang Z, Zhu H, Jia H. Immunogenicity Analysis and Identification of Potential T-Cell Epitopes in C129R Protein of African Swine Fever Virus. Microorganisms 2024; 12:1056. [PMID: 38930438 PMCID: PMC11205686 DOI: 10.3390/microorganisms12061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The highly conserved C129R protein of AFSV was utilized in the development of an ASFV recombinant adenovirus vaccine, demonstrating strong immunogenicity. In this study, we immunized 6-week-old female C57BL/6J mice via subcutaneous injection with 10 μg of purified C129R protein. Humoral and cellular immune effects were assessed using ELISA, flow cytometry, and ELISpot assays. Additionally, 19 peptides of the C129R protein were synthesized and screened for the use of bioinformatics. Positive T-cell epitopes were screened using ELISpot. The results indicated a higher proportion of CD4+ and CD8+ T lymphocytes in immunized mice compared to control mice. ELISA analysis revealed a serum titer of approximately 1:1, 638, 400 in the experimental group of mice. Additionally, peptides C11(53-61aa), C14(81-89aa), C16(97-105aa), and C18(116-124aa) from the C129R protein were able to activate mice spleen lymphocytes to produce IFN-γ. These findings suggest that the C129R protein significantly enhances both humoral and cellular immunity in immunized mice. Moreover, peptides C11, C14, C16, and C18 may serve as potential T-cell epitopes for the C129R protein. These results lay the groundwork for the further exploration of ASFV C129R protein and the identification of novel ASF vaccine antigens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100080, China; (W.Z.); (Y.H.); (Y.H.); (Y.C.); (C.T.); (Z.P.); (Z.W.); (H.Z.)
| |
Collapse
|
3
|
Agbayani G, Akache B, Renner TM, Tran A, Stuible M, Dudani R, Harrison BA, Duque D, Bavananthasivam J, Deschatelets L, Hemraz UD, Régnier S, Durocher Y, McCluskie MJ. Intranasal administration of unadjuvanted SARS-CoV-2 spike antigen boosts antigen-specific immune responses induced by parenteral protein subunit vaccine prime in mice and hamsters. Eur J Immunol 2024:e2350620. [PMID: 38561974 DOI: 10.1002/eji.202350620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
With the continued transmission of SARS-CoV-2 across widely vaccinated populations, it remains important to develop new vaccines and vaccination strategies capable of providing protective immunity and limiting the spread of disease. Heterologous prime-boost vaccination based on the selection of different vaccine formulations and administration routes for priming and booster doses presents a promising strategy for inducing broader immune responses in key systemic and respiratory mucosal compartments. Intranasal vaccination can induce mucosal immune responses at the site of SARS-CoV-2 infection; however, the lack of clinically approved mucosal adjuvants makes it difficult to induce robust immune responses with protein subunit vaccines. Herein, we evaluated the immunogenicity of heterologous prime-boost regimens in mice and hamsters based on a parenteral vaccination of the antigen in combination with sulfated lactosylarchaeol (SLA) archaeosomes, a liposome adjuvant comprised of a single semisynthetic archaeal lipid, followed by an intranasally administered unadjuvanted SARS-CoV-2 spike antigen. Intranasal administration of unadjuvanted spike to mice and hamsters increased serum spike-specific IgG titers and spike-neutralizing activity compared with nonboosted animals. Spike-specific IgA responses were also detected in the bronchoalveolar lavage fluid in the lungs of mice that received an intranasal boost. In hamsters, the intranasal boost showed high efficacy against SARS-CoV-2 infection by protecting from body weight loss and reducing viral titers in the lungs and nasal turbinate. Overall, our heterologous intramuscular prime-intranasal boost with SLA-adjuvanted and unadjuvanted spike, respectively, demonstrated the potential of protein subunit formulations to promote antigen-specific systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Gerard Agbayani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Bassel Akache
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Tyler M Renner
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anh Tran
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Renu Dudani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Blair A Harrison
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Lise Deschatelets
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Usha D Hemraz
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Sophie Régnier
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Kamenšek U, Remic T. Immunospot Assessment of T-Cell Responses in Preclinical Tumor Models with Undefined Target Antigens. Methods Mol Biol 2024; 2773:165-174. [PMID: 38236545 DOI: 10.1007/978-1-0716-3714-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Assessment of functional tumor-specific T-cell responses in preclinical tumor models represents an important tool for successful translation of new immunotherapies to clinics. Usually, it requires a known tumor antigen target. Here, we describe the method to detect tumor-specific T cell after immunotherapies without a known antigen. Splenocytes, lymph node immune cells, or PBMCs are isolated from treated mice and stimulated with relevant tumor cells ex vivo before immunospot analysis of Granzyme B and interferon γ-positive T cells. The method is especially valuable for monitoring tumor-specific T cells after vaccination with various whole tumor vaccines or after in situ vaccination and other antigen agnostic immunotherapies, where no specific antigens are used.
Collapse
Affiliation(s)
- Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Slovenia.
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Tinkara Remic
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Bela-Ong DB, Thompson KD, Kim HJ, Park SB, Jung TS. CD4 + T lymphocyte responses to viruses and virus-relevant stimuli in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109007. [PMID: 37625734 DOI: 10.1016/j.fsi.2023.109007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Fish diseases caused by viruses are a major threat to aquaculture. Development of disease protection strategies for sustainable fish aquaculture requires a better understanding of the immune mechanisms involved in antiviral defence. The innate and adaptive arms of the vertebrate immune system collaborate to mount an effective defence against viral pathogens. The T lymphocyte components of the adaptive immune system, comprising two major classes (helper T, Th or CD4+ and cytotoxic T lymphocytes, CTLs or CD8+ T cells), are responsible for cell-mediated immune responses. In particular, CD4+ T cells and their different subsets orchestrate the actions of various other immune cells during immune responses, making CD4+ T cells central drivers of responses to pathogens and vaccines. CD4+ T cells are also present in teleost fish. Here we review the literature that reported the use of antibodies against CD4 in a few teleost fish species and transcription profiling of Th cell-relevant genes in the context of viral infections and virus-relevant immunomodulation. Studies reveal massive CD4+ T cell proliferation and expression of key cytokines, transcription factors, and effector molecules that evoke mammalian Th cell responses. We also discuss gaps in the current understanding and evaluation of teleost CD4+ T cell responses and how development and application of novel tools and approaches to interrogate such responses could bridge these gaps. A greater understanding of fish Th cell responses will further illuminate the evolution of vertebrate adaptive immunity, inform strategies to address viral infections in aquaculture, and could further foster fish as model organisms.
Collapse
Affiliation(s)
- Dennis Berbulla Bela-Ong
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland, United Kingdom
| | - Hyoung Jun Kim
- WOAH Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Seong Bin Park
- Coastal Research and Extension Center, Mississippi State University, Pascagula, MS, 39567, USA
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea.
| |
Collapse
|
6
|
Ma Y, Li Y, Wu T, Li Y, Wang Q. Astragaloside IV Attenuates Programmed Death-Ligand 1-Mediated Immunosuppression during Liver Cancer Development via the miR-135b-5p/CNDP1 Axis. Cancers (Basel) 2023; 15:5048. [PMID: 37894415 PMCID: PMC10605108 DOI: 10.3390/cancers15205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Astragaloside IV (AS-IV) is a pivotal contributor to anti-tumour effects and has garnered extensive attention in research. Tumour cell immune suppression is closely related to the increase in Programmed Death-Ligand 1 (PD-L1). Hepatocellular carcinoma (HCC) is a malignant tumour originating from hepatic epithelial tissue, and the role of AS-IV in regulating PD-L1 in anti-HCC activity remains unclear. METHODS Various concentrations of AS-IV were administered to both human liver immortalised cells (THEL2) and HCC (Huh-7 and SMMC-7721), and cell growth was assessed using the CCK-8 assay. HCC levels and cell apoptosis were examined using flow cytometry. Mice were orally administered AS-IV at different concentrations to study its effects on HCC in vivo. Immunohistochemistry was employed to evaluate PD-L1 levels. Western blotting was employed to determine PD-L1 and CNDP1 protein levels. We carried out a qRT-PCR to quantify the levels of miR-135b-3p and CNDP1. Finally, a dual-luciferase reporter assay was employed to validate the direct interaction between miR-135b-3p and the 3'UTR of CNDP1. RESULTS AS-IV exhibited a dose-dependent inhibition of proliferation in Huh-7 and SMMC-7721 while inhibiting PD-L1 expression induced by interferon-γ (IFN-γ), thus attenuating PD-L1-mediated immune suppression. MiR-135b-5p showed significant amplification in HCC tissues and cells. AS-IV mitigated PD-L1-mediated immune suppression through miR-135b-5p. MiR-135b-5p targeted CNDP1, and AS-IV mitigated PD-L1-induced immunosuppression by modulating the miR-135b-5p/CNDP1 pathway. CONCLUSION AS-IV decreases cell surface PD-L1 levels and alleviates PD-L1-associated immune suppression via the miR-135b-5p/CNDP1 pathway. AS-IV may be a novel component for treating HCC.
Collapse
Affiliation(s)
- Yang Ma
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
| | - Yan Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Taotao Wu
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingshuai Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
| |
Collapse
|
7
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
8
|
Wang Z, Zhang T, Jia F, Ge C, He Y, Tian Y, Wang W, Yang G, Huang H, Wang J, Shi C, Yang W, Cao X, Zeng Y, Wang N, Qian A, Wang C, Jiang Y. Homologous Sequential Immunization Using Salmonella Oral Administration Followed by an Intranasal Boost with Ferritin-Based Nanoparticles Enhanced the Humoral Immune Response against H1N1 Influenza Virus. Microbiol Spectr 2023; 11:e0010223. [PMID: 37154735 PMCID: PMC10269571 DOI: 10.1128/spectrum.00102-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The influenza virus continues to pose a great threat to public health due to the frequent variations in RNA viruses. Vaccines targeting conserved epitopes, such as the extracellular domain of the transmembrane protein M2 (M2e), a nucleoprotein, and the stem region of hemagglutinin proteins, have been developed, but more efficient strategies, such as nanoparticle-based vaccines, are still urgently needed. However, the labor-intensive in vitro purification of nanoparticles is still necessary, which could hinder the application of nanoparticles in the veterinary field in the future. To overcome this limitation, we used regulated lysis Salmonella as an oral vector with which to deliver three copies of M2e (3M2e-H1N1)-ferritin nanoparticles in situ and evaluated the immune response. Then, sequential immunization using Salmonella-delivered nanoparticles followed by an intranasal boost with purified nanoparticles was performed to further improve the efficiency. Compared with 3M2e monomer administration, Salmonella-delivered in situ nanoparticles significantly increased the cellular immune response. Additionally, the results of sequential immunization showed that the intranasal boost with purified nanoparticles dramatically stimulated the activation of lung CD11b dendritic cells (DCs) and elevated the levels of effector memory T (TEM) cells in both spleen and lung tissues as well as those of CD4 and CD8 tissue-resident memory T (TRM) cells in the lungs. The increased production of mucosal IgG and IgA antibody titers was also observed, resulting in further improvements to protection against a virus challenge, compared with the pure oral immunization group. Salmonella-delivered in situ nanoparticles efficiently increased the cellular immune response, compared with the monomer, and sequential immunization further improved the systemic immune response, as shown by the activation of DCs, the production of TEM cells and TRM cells, and the mucosal immune response, thereby providing us with a novel strategy by which to apply nanoparticle-based vaccines in the future. IMPORTANCE Salmonella-delivered in situ nanoparticle platforms may provide novel nanoparticle vaccines for oral administration, which would be beneficial for veterinary applications. The combination of administering Salmonella-vectored, self-assembled nanoparticles and an intranasal boost with purified nanoparticles significantly increased the production of effector memory T cells and lung resident memory T cells, thereby providing partial protection against an influenza virus challenge. This novel strategy could open a novel avenue for the application of nanoparticle vaccines for veterinary purposes.
Collapse
Affiliation(s)
- Zhannan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tongyu Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Futing Jia
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chongbo Ge
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yingkai He
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yawen Tian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wenfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Akache B, Read AJ, Dudani R, Harrison BA, Williams D, Deschatelets L, Jia Y, Chandan V, Stark FC, Agbayani G, Makinen SR, Hemraz UD, Lam E, Régnier S, Zou W, Kirkland PD, McCluskie MJ. Sulfated Lactosyl Archaeol Archaeosome-Adjuvanted Vaccine Formulations Targeting Rabbit Hemorrhagic Disease Virus Are Immunogenic and Efficacious. Vaccines (Basel) 2023; 11:1043. [PMID: 37376432 DOI: 10.3390/vaccines11061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Vaccines play an important role in maintaining human and animal health worldwide. There is continued demand for effective and safe adjuvants capable of enhancing antigen-specific responses to a target pathogen. Rabbit hemorrhagic disease virus (RHDV) is a highly contagious calicivirus that often induces high mortality rates in rabbits. Herein, we evaluated the activity of an experimental sulfated lactosyl archaeol (SLA) archaeosome adjuvant when incorporated in subunit vaccine formulations targeting RHDV. The subunit antigens consisted of RHDV-CRM197 peptide conjugates or recombinant RHDV2 VP60. SLA was able to enhance antigen-specific antibody titers and cellular responses in mice and rabbits. Three weeks following immunization, antigen-specific antibody levels in rabbits vaccinated with RHDV2 VP60 + SLA were significantly higher than those immunized with antigen alone, with geomean titers of 7393 vs. 117. In addition, the SLA-adjuvanted VP60-based formulations were highly efficacious in a rabbit RHDV2 challenge model with up to 87.5% animals surviving the viral challenge. These findings demonstrate the potential utility of SLA adjuvants in veterinary applications and highlight its activity in different types of mammalian species.
Collapse
Affiliation(s)
- Bassel Akache
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Andrew J Read
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
| | - Renu Dudani
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Blair A Harrison
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Dean Williams
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Lise Deschatelets
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Yimei Jia
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Vandana Chandan
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Felicity C Stark
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Gerard Agbayani
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Shawn R Makinen
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Usha D Hemraz
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC H4P 2R2, Canada
| | - Edmond Lam
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC H4P 2R2, Canada
| | - Sophie Régnier
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC H4P 2R2, Canada
| | - Wei Zou
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Peter D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
10
|
Renner TM, Akache B, Stuible M, Rohani N, Cepero-Donates Y, Deschatelets L, Dudani R, Harrison BA, Baardsnes J, Koyuturk I, Hill JJ, Hemraz UD, Régnier S, Lenferink AEG, Durocher Y, McCluskie MJ. Tuning the immune response: sulfated archaeal glycolipid archaeosomes as an effective vaccine adjuvant for induction of humoral and cell-mediated immunity towards the SARS-CoV-2 Omicron variant of concern. Front Immunol 2023; 14:1182556. [PMID: 37122746 PMCID: PMC10140330 DOI: 10.3389/fimmu.2023.1182556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Liposomes composed of sulfated lactosyl archaeol (SLA) have been shown to be a safe and effective vaccine adjuvant with a multitude of antigens in preclinical studies. In particular, SLA-adjuvanted SARS-CoV-2 subunit vaccines based on trimeric spike protein antigens were shown to be immunogenic and efficacious in mice and hamsters. With the continued emergence of SARS-CoV-2 variants, we sought to evaluate next-generation vaccine formulations with an updated antigenic identity. This was of particular interest for the widespread Omicron variant, given the abundance of mutations and structural changes observed within its spike protein compared to other variants. An updated version of our resistin-trimerized SmT1 corresponding to the B.1.1.529 variant was successfully generated in our Chinese Hamster Ovary (CHO) cell-based antigen production platform and characterized, revealing some differences in protein profile and ACE2 binding affinity as compared to reference strain-based SmT1. We next evaluated this Omicron-based spike antigen for its immunogenicity and ability to generate robust antigen-specific immune responses when paired with SLA liposomes or AddaS03 (a mimetic of the AS03 oil-in-water emulsion adjuvant system found in commercialized SARS-CoV-2 protein vaccines). Immunization of mice with vaccine formulations containing this updated antigen with either adjuvant stimulated neutralizing antibody responses favouring Omicron over the reference strain. Cell-mediated responses, which play an important role in the neutralization of intracellular infections, were induced to a much higher degree with the SLA adjuvant relative to the AddaS03-adjuvanted formulations. As such, updated vaccines that are better capable of targeting towards SARS-CoV-2 variants can be generated through an optimized combination of antigen and adjuvant components.
Collapse
Affiliation(s)
- Tyler M. Renner
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Bassel Akache
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Matthew Stuible
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Nazanin Rohani
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | | | - Lise Deschatelets
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Renu Dudani
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Blair A. Harrison
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Jason Baardsnes
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Izel Koyuturk
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Jennifer J. Hill
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Usha D. Hemraz
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC, Canada
| | - Sophie Régnier
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC, Canada
| | - Anne E. G. Lenferink
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Yves Durocher
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Michael J. McCluskie
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
- *Correspondence: Michael J. McCluskie,
| |
Collapse
|
11
|
Jia Y, Agbayani G, Chandan V, Iqbal U, Dudani R, Qian H, Jakubek Z, Chan K, Harrison B, Deschatelets L, Akache B, McCluskie MJ. Evaluation of Adjuvant Activity and Bio-Distribution of Archaeosomes Prepared Using Microfluidic Technology. Pharmaceutics 2022; 14:2291. [PMID: 36365110 PMCID: PMC9697222 DOI: 10.3390/pharmaceutics14112291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/24/2023] Open
Abstract
Archaeosomes, composed of sulfated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. They have classically been prepared using a thin-film hydration method with an average particle size of 100-200 nm. In this study, we developed methods to generate SLA archaeosomes at different sizes, i.e., 30 nm and 100 nm, via microfluidic mixing technology and evaluated their physicochemical characteristics, as well as adjuvant activity and in vivo biodistribution in mice. Archaeosomes, prepared using thin-film and microfluidic mixing techniques, had similar nanostructures and physicochemical characteristics, with both appearing stable during the course of this study when stored at 4 °C or 37 °C. They also demonstrated similar adjuvant activity when admixed with ovalbumin antigen and used to immunize mice, generating equivalent antigen-specific immune responses. Archaeosomes, labeled with CellVueTM NIR815, had an equivalent biodistribution with both sizes, namely the highest signal at the injection site at 24 h post injection, followed by liver, spleen and inguinal lymph node. The presence of SLA archaeosomes of either size helped to retain OVA antigen (OVA-Cy5.5) longer at the injection site than unadjuvanted OVA. Overall, archaeosomes of two sizes (30 nm and 100 nm) prepared using microfluidic mixing maintained similar physicochemical properties, adjuvant activity and biodistribution of antigen, in comparison to those compared by the conventional thin film hydration method. This suggests that microfluidics based approaches could be applied to generate consistently sized archaeosomes for use as a vaccine adjuvant.
Collapse
Affiliation(s)
- Yimei Jia
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Umar Iqbal
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Hui Qian
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G2M9, Canada
| | - Zygmunt Jakubek
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Kenneth Chan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Blair Harrison
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| |
Collapse
|
12
|
Akache B, Agbayani G, Stark FC, Jia Y, Dudani R, Harrison BA, Deschatelets L, Chandan V, Lam E, Hemraz UD, Régnier S, Krishnan L, McCluskie MJ. Sulfated Lactosyl Archaeol Archaeosomes Synergize with Poly(I:C) to Enhance the Immunogenicity and Efficacy of a Synthetic Long Peptide-Based Vaccine in a Melanoma Tumor Model. Pharmaceutics 2021; 13:pharmaceutics13020257. [PMID: 33673382 PMCID: PMC7918940 DOI: 10.3390/pharmaceutics13020257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide. While novel treatments have improved survival outcomes for some patients, new treatment modalities/platforms are needed to combat a wider variety of tumor types. Cancer vaccines harness the power of the immune system to generate targeted tumor-specific immune responses. Liposomes composed of glycolipids derived from archaea (i.e., archaeosomes) have been shown to be potent adjuvants, inducing robust, long-lasting humoral and cell-mediated immune responses to a variety of antigens. Herein, we evaluated the ability of archaeosomes composed of sulfated lactosyl archaeol (SLA), a semi-synthetic archaeal glycolipid, to enhance the immunogenicity of a synthetic long peptide-based vaccine formulation containing the dominant CD8+ T cell epitope, SIINFEKL, from the weakly immunogenic model antigen ovalbumin. One advantage of immunizing with long peptides is the ability to include multiple epitopes, for example, the long peptide antigen was also designed to include the immediately adjacent CD4+ epitope, TEWTSSNVMEER. SLA archaeosomes were tested alone or in combination with the toll-like receptor 3 (TLR3) agonist Poly(I:C). Overall, SLA archaeosomes synergized strongly with Poly(I:C) to induce robust antigen-specific CD8+ T cell responses, which were highly functional in an in vivo cytolytic assay. Furthermore, immunization with this vaccine formulation suppressed tumor growth and extended mouse survival in a mouse melanoma tumor model. Overall, the combination of SLA archaeosomes and Poly(I:C) appears to be a promising adjuvant system when used along with long peptide-based antigens targeting cancer.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Felicity C. Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Yimei Jia
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Blair A. Harrison
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Edmond Lam
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Usha D. Hemraz
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Sophie Régnier
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
- Correspondence: ; Tel.: +1-613-993-9774
| |
Collapse
|
13
|
Abstract
Enzyme-linked immune absorbent spot (Elispot) is a quantitative method for measuring relevant parameters of T-cell activation. The sensitivity of Elispot allows the detection of low-frequency antigen-specific T-cells that secrete cytokines and effector molecules, such as granzyme B and perforin. Cytotoxic T-cell (CTL) studies have taken advantage with this high-throughput technology by providing insights of quantity and immune kinetics. Accuracy, sensitivity, reproducibility, and robustness of Elispot resulted in a wide range of applications in research as well as in diagnostic field. Actually, CTL monitoring by Elispot is a gold standard for the evaluation of antigen-specific T-cell immunity in clinical trials and vaccine candidates where the ability to detect rare antigen-specific T-cells is of relevance for immune diagnostic. The most utilized Elispot assay is the Interferon-gamma (IFN-γ) test, a marker for CD8+ CTL activation, but Elispot can be also used to distinguish different subsets of activated T-cells by using other cytokines such as T-helper (Th) 1 type cells (characterized by the production of IFN-γ, IL-2, IL-6, IL-12, IL-21 and TNF-α), Th2 (producing cytokines like IL-4, IL-5, IL-10 and IL-13), and Th17 (IL-17) cells.The reliability of Elispot generated data, by the evaluation of T-cell frequency recognizing individual antigen/peptide, is the core of this method currently applied widely to investigate specific immune responses in cancer, infections, allergies, and autoimmune diseases. The Elispot Assay is competing with other methods measuring single-cell cytokine production, e.g., intracellular cytokine by FACS or Milteny cytokine secretion assay. Other types of lymphocyte frequency and function assays include limiting dilution assay (LDA), cytotoxic T-cell assay (CTL), and tetramer staining. Compared with respect to sensitivity the Elispot Assay is outranking other methods to define frequency of antigen-specific lymphocytes. The method described herein would like to offer helpful and clear protocols for researchers that apply Elispot. IFN-γ and Perforin Elispot assays will be described.
Collapse
Affiliation(s)
- Elena Ranieri
- Center of Molecular Medicine, Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy.
| | - Giuseppe Stefano Netti
- Center of Molecular Medicine, Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| | - Margherita Gigante
- Center of Molecular Medicine, Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|