1
|
Zihni C. Phagocytosis by the retinal pigment epithelium: New insights into polarized cell mechanics. Bioessays 2025; 47:e2300197. [PMID: 39663766 DOI: 10.1002/bies.202300197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
The retinal pigment epithelium (RPE) is a specialized epithelium at the back of the eye that carries out a variety of functions essential for visual health. Recent studies have advanced our molecular understanding of one of the major functions of the RPE; phagocytosis of spent photoreceptor outer segments (POS). Notably, a mechanical link, formed between apical integrins bound to extracellular POS and the intracellular actomyosin cytoskeleton, is proposed to drive the internalization of POS. The process may involve a "nibbling" action, as an initial step, to sever outer segment tips. These insights have led us to hypothesize an "integrin adhesome-like" network, atypically assembled at apical membrane RPE-POS contacts. I propose that this hypothetical network orchestrates the complex membrane remodeling events required for particle internalization. Therefore, its analysis and characterization will likely lead to a more comprehensive understanding of the molecular mechanisms that control POS phagocytosis.
Collapse
Affiliation(s)
- Ceniz Zihni
- Faculty of Health & Life Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Elefant N, Rouni G, Arapatzi C, Oz-Levi D, Sion-Sarid R, Edwards WJ, Ball NJ, Yanovsky-Dagan S, Cowell AR, Meiner V, Vainstein V, Grammenoudi S, Lancet D, Goult BT, Harel T, Kostourou V. Talin1 dysfunction is genetically linked to systemic capillary leak syndrome. JCI Insight 2024; 9:e173664. [PMID: 39704176 DOI: 10.1172/jci.insight.173664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Systemic capillary leak syndrome (SCLS) is a rare life-threatening disorder due to profound vascular leak. The trigger and the cause of the disease are currently unknown and there is no specific treatment. Here, we identified a rare heterozygous splice-site variant in the TLN1 gene in a familial SCLS case, suggestive of autosomal dominant inheritance with incomplete penetrance. Talin1 has a key role in cell adhesion by activating and linking integrins to the actin cytoskeleton. This variant causes in-frame skipping of exon 54 and is predicted to affect talin's C-terminal actin-binding site (ABS3). Modeling the SCLS-TLN1 variant in TLN1-heterozygous endothelial cells (ECs) disturbed the endothelial barrier function. Similarly, mimicking the predicted actin-binding disruption in TLN1-heterozygous ECs resulted in disorganized endothelial adherens junctions. Mechanistically, we established that the SCLS-TLN1 variant, through the disruption of talin's ABS3, sequestrates talin's interacting partner, vinculin, at cell-extracellular matrix adhesions, leading to destabilization of the endothelial barrier. We propose that pathogenic variants in TLN1 underlie SCLS, providing insight into the molecular mechanism of the disease that can be explored for future therapeutic interventions.
Collapse
Affiliation(s)
- Naama Elefant
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Georgia Rouni
- Institute of BioInnovation, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Athens, Greece
- Department of Biology, University of Patras, Patras, Greece
| | - Christina Arapatzi
- Institute of BioInnovation, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Athens, Greece
| | - Danit Oz-Levi
- Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - William Js Edwards
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Neil J Ball
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | | - Alana R Cowell
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vladimir Vainstein
- Department of Hematology, Hadassah Medical Organization, Jerusalem, Israel
| | - Sofia Grammenoudi
- Institute of BioInnovation, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Athens, Greece
| | - Doron Lancet
- Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vassiliki Kostourou
- Institute of BioInnovation, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Athens, Greece
| |
Collapse
|
3
|
Azizi L, Otani Y, Mykuliak VV, Goult BT, Hytönen VP, Turkki P. Talin-1 variants associated with spontaneous coronary artery dissection (SCAD) highlight how even subtle changes in multi-functional scaffold proteins can manifest in disease. Hum Mol Genet 2024; 33:1846-1857. [PMID: 39163585 PMCID: PMC11540920 DOI: 10.1093/hmg/ddae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Variants of talin-1 (TLN1) have recently been linked with spontaneous coronary artery dissection (SCAD) a condition where a tear can form in the wall of a heart artery necessitating immediate medical care. One talin-1 variant, A2013T, has an extensive familial pedigree of SCAD, which led to the screening for, and identification of, further talin-1 variants in SCAD patients. Here we evaluated these variants with commonly used pathogenicity prediction tools and found it challenging to reliably classify SCAD-associated variants, even A2013T where the evidence of a causal role is strong. Using biochemical and cell biological methods, we show that SCAD-associated variants in talin-1, which would typically be classified as non-pathogenic, still cause a measurable impact on protein structure and cell behaviour, including cell movement and wound healing capacity. Together, this indicates that even subtle variants in central mechanosensitive adapter proteins, can give rise to significant health impacts at the individual level, suggesting the need for a possible re-evaluation of the scoring criteria for pathogenicity prediction for talin variants.
Collapse
Affiliation(s)
- Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
| | - Yasumi Otani
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United States
| | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
| | - Benjamin T Goult
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United States
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Paula Turkki
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, 33520 Tampere, Finland
| |
Collapse
|
4
|
Ellis C, Ward NL, Rice M, Ball NJ, Walle P, Najdek C, Kilinc D, Lambert JC, Chapuis J, Goult BT. The structure of an amyloid precursor protein/talin complex indicates a mechanical basis of Alzheimer's disease. Open Biol 2024; 14:240185. [PMID: 39591990 PMCID: PMC11597407 DOI: 10.1098/rsob.240185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Misprocessing of amyloid precursor protein (APP) is one of the major causes of Alzheimer's disease. APP comprises a large extracellular region, a single transmembrane helix and a short cytoplasmic tail containing an NPxY motif (normally referred to as the YENPTY motif). Talins are synaptic scaffold proteins that connect the cytoskeletal machinery to the plasma membrane via binding NPxY motifs in the cytoplasmic tail of integrins. Here, we report the crystal structure of an APP/talin1 complex identifying a new way to couple the cytoskeletal machinery to synaptic sites through APP. Proximity ligation assay (PLA) confirmed the close proximity of talin1 and APP in primary neurons, and talin1 depletion had a dramatic effect on APP processing in cells. Structural modelling reveals APP might form an extracellular meshwork that mechanically couples the cytoskeletons of the pre- and post-synaptic compartments. We propose APP processing represents a mechanical signalling pathway whereby under tension, the cleavage sites in APP have varying accessibility to cleavage by secretases. This leads us to propose a new hypothesis for Alzheimer's, where misregulated APP dynamics result in loss of the mechanical integrity of the synapse, corruption and loss of mechanical binary data, and excessive generation of toxic plaque-forming Aβ42 peptide.
Collapse
Affiliation(s)
- Charles Ellis
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
| | - Natasha L. Ward
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
| | - Matthew Rice
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
| | - Neil J. Ball
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Pauline Walle
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Chloé Najdek
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Devrim Kilinc
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Julien Chapuis
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
5
|
Kang M, Otani Y, Guo Y, Yan J, Goult BT, Howe AK. The focal adhesion protein talin is a mechanically-gated A-kinase anchoring protein (AKAP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554038. [PMID: 37645895 PMCID: PMC10462126 DOI: 10.1101/2023.08.20.554038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cAMP-dependent protein kinase (Protein Kinase A; PKA) is a ubiquitous, promiscuous kinase whose activity is focused and specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to the extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), intracellular complexes coupling ECM-bound integrins to the actin cytoskeleton, suggesting the existence of one or more FA AKAPs. Using a combination of a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1-R13. Direct binding assays and nuclear magnetic resonance spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Finally, single-molecule experiments with talin1 and PKA, and experiments in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. These observations identify the first mechanically-gated anchoring protein for PKA, a new force-dependent binding partner for talin1, and thus a new mechanism for coupling cellular tension and signal transduction.
Collapse
|
6
|
Gallego-Paez LM, Edwards WJS, Chanduri M, Guo Y, Koorman T, Lee CY, Grexa N, Derksen P, Yan J, Schwartz MA, Mauer J, Goult BT. TLN1 contains a cancer-associated cassette exon that alters talin-1 mechanosensitivity. J Cell Biol 2023; 222:213923. [PMID: 36880935 PMCID: PMC9997659 DOI: 10.1083/jcb.202209010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/08/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Talin-1 is the core mechanosensitive adapter protein linking integrins to the cytoskeleton. The TLN1 gene is comprised of 57 exons that encode the 2,541 amino acid TLN1 protein. TLN1 was previously considered to be expressed as a single isoform. However, through differential pre-mRNA splicing analysis, we discovered a cancer-enriched, non-annotated 51-nucleotide exon in TLN1 between exons 17 and 18, which we refer to as exon 17b. TLN1 is comprised of an N-terminal FERM domain, linked to 13 force-dependent switch domains, R1-R13. Inclusion of exon 17b introduces an in-frame insertion of 17 amino acids immediately after Gln665 in the region between R1 and R2 which lowers the force required to open the R1-R2 switches potentially altering downstream mechanotransduction. Biochemical analysis of this isoform revealed enhanced vinculin binding, and cells expressing this variant show altered adhesion dynamics and motility. Finally, we showed that the TGF-β/SMAD3 signaling pathway regulates this isoform switch. Future studies will need to consider the balance of these two TLN1 isoforms.
Collapse
Affiliation(s)
| | | | - Manasa Chanduri
- Departments of Internal Medicine (Cardiology) and Yale Cardiovascular Research Center , New Haven, CT, USA
| | - Yanyu Guo
- Mechanobiology Institute, National University of Singapore , Singapore, Singapore
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht , Utrecht, Netherlands
| | | | - Nina Grexa
- Biomed X Institute (GmbH) , Heidelberg, Germany
| | - Patrick Derksen
- Department of Pathology, University Medical Center Utrecht , Utrecht, Netherlands
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore , Singapore, Singapore.,Department of Physics, National University of Singapore , Singapore, Singapore
| | - Martin A Schwartz
- Departments of Internal Medicine (Cardiology) and Yale Cardiovascular Research Center , New Haven, CT, USA.,Departments of Cell Biology and Biomedical Engineering, Yale School of Medicine , New Haven, CT, USA
| | - Jan Mauer
- Biomed X Institute (GmbH) , Heidelberg, Germany.,Department of Immunology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
7
|
Azizi L, Varela L, Turkki P, Mykuliak VV, Korpela S, Ihalainen TO, Church J, Hytönen VP, Goult BT. Talin variant P229S compromises integrin activation and associates with multifaceted clinical symptoms. Hum Mol Genet 2022; 31:4159-4172. [PMID: 35861643 PMCID: PMC9759328 DOI: 10.1093/hmg/ddac163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023] Open
Abstract
Adhesion of cells to the extracellular matrix (ECM) must be exquisitely coordinated to enable development and tissue homeostasis. Cell-ECM interactions are regulated by multiple signalling pathways that coordinate the activation state of the integrin family of ECM receptors. The protein talin is pivotal in this process, and talin's simultaneous interactions with the cytoplasmic tails of the integrins and the plasma membrane are essential to enable robust, dynamic control of integrin activation and cell-ECM adhesion. Here, we report the identification of a de novo heterozygous c.685C>T (p.Pro229Ser) variant in the TLN1 gene from a patient with a complex phenotype. The mutation is located in the talin head region at the interface between the F2 and F3 domains. The characterization of this novel p.P229S talin variant reveals the disruption of adhesion dynamics that result from disturbance of the F2-F3 domain interface in the talin head. Using biophysical, computational and cell biological techniques, we find that the variant perturbs the synergy between the integrin-binding F3 and the membrane-binding F2 domains, compromising integrin activation, adhesion and cell migration. Whilst this remains a variant of uncertain significance, it is probable that the dysregulation of adhesion dynamics we observe in cells contributes to the multifaceted clinical symptoms of the patient and may provide insight into the multitude of cellular processes dependent on talin-mediated adhesion dynamics.
Collapse
Affiliation(s)
| | | | | | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Korpela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joseph Church
- To whom correspondence should be addressed. (Benjamin T. Goult), (Vesa P. Hytönen), (Joe Church)
| | - Vesa P Hytönen
- To whom correspondence should be addressed. (Benjamin T. Goult), (Vesa P. Hytönen), (Joe Church)
| | - Benjamin T Goult
- To whom correspondence should be addressed. (Benjamin T. Goult), (Vesa P. Hytönen), (Joe Church)
| |
Collapse
|
8
|
Gough RE, Jones MC, Zacharchenko T, Le S, Yu M, Jacquemet G, Muench SP, Yan J, Humphries JD, Jørgensen C, Humphries MJ, Goult BT. Talin mechanosensitivity is modulated by a direct interaction with cyclin-dependent kinase-1. J Biol Chem 2021; 297:100837. [PMID: 34118235 PMCID: PMC8260872 DOI: 10.1016/j.jbc.2021.100837] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Talin (TLN1) is a mechanosensitive component of adhesion complexes that directly couples integrins to the actin cytoskeleton. In response to force, talin undergoes switch-like behavior of its multiple rod domains that modulate interactions with its binding partners. Cyclin-dependent kinase-1 (CDK1) is a key regulator of the cell cycle, exerting its effects through synchronized phosphorylation of a large number of protein targets. CDK1 activity maintains adhesion during interphase, and its inhibition is a prerequisite for the tightly choreographed changes in cell shape and adhesion that are required for successful mitosis. Using a combination of biochemical, structural, and cell biological approaches, we demonstrate a direct interaction between talin and CDK1 that occurs at sites of integrin-mediated adhesion. Mutagenesis demonstrated that CDK1 contains a functional talin-binding LD motif, and the binding site within talin was pinpointed to helical bundle R8. Talin also contains a consensus CDK1 phosphorylation motif centered on S1589, a site shown to be phosphorylated by CDK1 in vitro. A phosphomimetic mutant of this site within talin lowered the binding affinity of the cytoskeletal adaptor KANK and weakened the response of this region to force as measured by single molecule stretching, potentially altering downstream mechanotransduction pathways. The direct binding of the master cell cycle regulator CDK1 to the primary integrin effector talin represents a coupling of cell proliferation and cell adhesion machineries and thereby indicates a mechanism by which the microenvironment can control cell division in multicellular organisms.
Collapse
Affiliation(s)
| | - Matthew C Jones
- Faculty of Biology, Medicine & Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Thomas Zacharchenko
- Faculty of Biology, Medicine & Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Shimin Le
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Miao Yu
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Guillaume Jacquemet
- Faculty of Science and Engineering, Cell Biology Department, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ste P Muench
- School of Biomedical Sciences, Astbury Centre for Structural Biology, University of Leeds, Leeds, UK
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physics, National University of Singapore, Singapore
| | - Jonathan D Humphries
- Faculty of Biology, Medicine & Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Claus Jørgensen
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Martin J Humphries
- Faculty of Biology, Medicine & Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent, UK.
| |
Collapse
|