1
|
Mesonzhnik N, Belushenko A, Novikova P, Kukharenko A, Afonin M. Enhanced N-Glycan Profiling of Therapeutic Monoclonal Antibodies through the Application of Upper-Hinge Middle-Up Level LC-HRMS Analysis. Antibodies (Basel) 2024; 13:66. [PMID: 39189237 PMCID: PMC11348383 DOI: 10.3390/antib13030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are crucial in modern medicine due to their effectiveness in treating various diseases. However, the structural complexity of mAbs, particularly their glycosylation patterns, presents challenges for quality control and biosimilarity assessment. This study explores the use of upper-hinge middle-up (UHMU)-level ultra-high-performance liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis to improve N-glycan profiling of mAbs. Two specific enzymes, known as IgG degradation enzymes (IGDEs), were used to selectively cleave therapeutic mAbs above the hinge region to separate antibody subunits for further Fc glycan analysis by means of the UHMU/LC-HRMS workflow. The complexity of the mass spectra of IGDEs-digested mAbs was significantly reduced compared to the intact MS level, enabling reliable assignment and relative quantitation of paired Fc glycoforms. The results of the UHMU/LC-HRMS analysis of nine approved therapeutics highlight the significance of this approach for in-depth glycoform profiling.
Collapse
Affiliation(s)
- Natalia Mesonzhnik
- Resource Centre of Analytical Methods, Laboratory Complex, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (P.N.); (M.A.)
| | - Anton Belushenko
- Federal Hygienic and Epidemiological Center of Rospotrebnadzor, Varshavskoe Highway 19a, 117105 Moscow, Russia;
| | - Polina Novikova
- Resource Centre of Analytical Methods, Laboratory Complex, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (P.N.); (M.A.)
| | - Alexey Kukharenko
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, 8/2 Trubetskaya, 119991 Moscow, Russia
| | - Mikhail Afonin
- Resource Centre of Analytical Methods, Laboratory Complex, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (P.N.); (M.A.)
| |
Collapse
|
2
|
Alizadeh Zeinabad H, Yeoh WJ, Arif M, Lomora M, Banz Y, Riether C, Krebs P, Szegezdi E. Natural killer cell-mimic nanoparticles can actively target and kill acute myeloid leukemia cells. Biomaterials 2023; 298:122126. [PMID: 37094524 DOI: 10.1016/j.biomaterials.2023.122126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
Natural killer (NK) cells play a crucial role in recognizing and killing emerging tumor cells. However, tumor cells develop mechanisms to inactivate NK cells or hide from them. Here, we engineered a modular nanoplatform that acts as NK cells (NK cell-mimics), carrying the tumor-recognition and death ligand-mediated tumor-killing properties of an NK cell, yet without being subject to tumor-mediated inactivation. NK cell mimic nanoparticles (NK.NPs) incorporate two key features of activated NK cells: cytotoxic activity via the death ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and an adjustable tumor cell recognition feature based on functionalization with the NK cell Fc-binding receptor (CD16, FCGR3A) peptide, enabling the NK.NPs to bind antibodies targeting tumor antigens. NK.NPs showed potent in vitro cytotoxicity against a broad panel of cancer cell lines. Upon functionalizing the NK.NPs with an anti-CD38 antibody (Daratumumab), NK.NPs effectively targeted and eliminated CD38-positive patient-derived acute myeloid leukemia (AML) blasts ex vivo and were able to target and kill CD38-positive AML cells in vivo, in a disseminated AML xenograft system and reduced AML burden in the bone marrow compared to non-targeted, TRAIL-functionalized liposomes. Taken together, NK.NPs are able to mimicking key antitumorigenic functions of NK cells and warrant their development into nano-immunotherapeutic tools.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland; Cell Stress Discoveries, University of Galway Business Innovation Centre, Galway, Ireland
| | - Wen Jie Yeoh
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Maryam Arif
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Mihai Lomora
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland; CÚRAM, Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Eva Szegezdi
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland; CÚRAM, Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Koehler C, Sauter PF, Klasen B, Waldmann C, Pektor S, Bausbacher N, Lemke EA, Miederer M. Genetic Code Expansion for Site-Specific Labeling of Antibodies with Radioisotopes. ACS Chem Biol 2023; 18:443-448. [PMID: 36889678 PMCID: PMC10029752 DOI: 10.1021/acschembio.2c00634] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Due to their target specificity, antibody-drug conjugates─monoclonal antibodies conjugated to a cytotoxic moiety─are efficient therapeutics that can kill malignant cells overexpressing a target gene. Linking an antibody with radioisotopes (radioimmunoconjugates) enables powerful diagnostics and/or closely related therapeutic applications, depending on the isotope. To generate site-specific radioimmunoconjugates, we utilized genetic code expansion and subsequent conjugation by inverse electron-demand Diels-Alder cycloaddition reactions. We show that, using this approach, site-specific labeling of trastuzumab with either zirconium-89 (89Zr) for diagnostics or lutetium-177 (177Lu) for therapeutics yields efficient radioimmunoconjugates. Positron emission tomography imaging revealed a high accumulation of site-specifically 89Zr-labeled trastuzumab in tumors after 24 h and low accumulation in other organs. The corresponding 177Lu-trastuzumab radioimmunoconjugates were comparably distributed in vivo.
Collapse
Affiliation(s)
- Christine Koehler
- VERAXA
Biotech GmbH, Carl-Friedrich
Gauß-Ring 5, 69124 Heidelberg, Germany
- Structural
and Computational Biology Unit, European
Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paul F. Sauter
- VERAXA
Biotech GmbH, Carl-Friedrich
Gauß-Ring 5, 69124 Heidelberg, Germany
- Structural
and Computational Biology Unit, European
Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Benedikt Klasen
- Department
of Chemistry, TRIGA site, Johannes Gutenberg
University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - Christopher Waldmann
- Department
of Nuclear Medicine, University Medical
Center, Johannes Gutenberg University Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stefanie Pektor
- Department
of Nuclear Medicine, University Medical
Center, Johannes Gutenberg University Langenbeckstraße 1, 55131 Mainz, Germany
| | - Nicole Bausbacher
- Department
of Nuclear Medicine, University Medical
Center, Johannes Gutenberg University Langenbeckstraße 1, 55131 Mainz, Germany
| | - Edward A. Lemke
- BIOCENTER, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- IMB
Institute
of Molecular Biology, gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Miederer
- Department
of Nuclear Medicine, University Medical
Center, Johannes Gutenberg University Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
4
|
Khatib SE, Salla M. The mosaic puzzle of the therapeutic monoclonal antibodies and antibody fragments - A modular transition from full-length immunoglobulins to antibody mimetics. Leuk Res Rep 2022; 18:100335. [PMID: 35832747 PMCID: PMC9272380 DOI: 10.1016/j.lrr.2022.100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/09/2022] [Accepted: 06/25/2022] [Indexed: 01/07/2023] Open
Abstract
The use of monoclonal antibodies represents an important and efficient diagnostic and therapeutic tool in disease management and modern science but remains limited by several factors including the uneven distribution in diseased tissues as well as undesired activation of side immune reactions. Major scientific advancements including Recombinant DNA Technology, Hybridoma Technology, and Polymerase Chain Reaction have considerably impacted the use of monoclonal antibodies providing technical and effective solutions to overcome the shortcomings encountered with conventional antibodies. Initially, the introduction of antibody fragments allowed a more uniform and deeper penetration of the targeted tissue and reduced unwanted activation of Fc-mediated immune reactions. On another level, the immunogenicity of murine-derived antibodies was overcome by humanizing their encoding genes with specific sequences of human origin andtransgenic mice able to synthesize fully human antibodies were successfully created. Moreover, the advancement of genetic engineering techniques supported by the modular structure of antibody coding genes paved the way for the development of a new generation of antibody fragments with a wide spectrum of monospecific and bispecific agents. These later could be monovalent, bivalent, or multivalent, and either expressed as a single chain, assembled in multimeric forms or stringed in tandem. This has conferred improved affinity, stability, and solubility to antibody targetting. Lately, a new array of monoclonal antibody fragments was introduced with the engineering of nanobody and antibody mimetics as non-immunoglobulin-derived fragments with promising diagnostic and therapeutic applications. In this review, we decipher the molecular basis of monoclonal antibody engineering with a detailed screening of the antibody derivatives that provides new perspectives to expand the use of monoclonal fragments into previously unexplored fields.
Collapse
Affiliation(s)
- Sami El Khatib
- Lebanese International University, Department of Biomedical Sciences, Bekaa Campus, Khiyara, West Bekaa, Lebanon
| | - Mohamed Salla
- University of Alberta. Biochemistry Department, Faculty of Medicine and Dentistry,116St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
5
|
Pérez de la Lastra JM, Anand U, González-Acosta S, López MR, Dey A, Bontempi E, Morales delaNuez A. Antimicrobial Resistance in the COVID-19 Landscape: Is There an Opportunity for Anti-Infective Antibodies and Antimicrobial Peptides? Front Immunol 2022; 13:921483. [PMID: 35720330 PMCID: PMC9205220 DOI: 10.3389/fimmu.2022.921483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Although COVID-19 has captured most of the public health attention, antimicrobial resistance (AMR) has not disappeared. To prevent the escape of resistant microorganisms in animals or environmental reservoirs a "one health approach" is desirable. In this context of COVID-19, AMR has probably been affected by the inappropriate or over-use of antibiotics. The increased use of antimicrobials and biocides for disinfection may have enhanced the prevalence of AMR. Antibiotics have been used empirically in patients with COVID-19 to avoid or prevent bacterial coinfection or superinfections. On the other hand, the measures to prevent the transmission of COVID-19 could have reduced the risk of the emergence of multidrug-resistant microorganisms. Since we do not currently have a sterilizing vaccine against SARS-CoV-2, the virus may still multiply in the organism and new mutations may occur. As a consequence, there is a risk of the appearance of new variants. Nature-derived anti-infective agents, such as antibodies and antimicrobial peptides (AMPs), are very promising in the fight against infectious diseases, because they are less likely to develop resistance, even though further investigation is still required.
Collapse
Affiliation(s)
- José M. Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Sergio González-Acosta
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| | - Manuel R. López
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Elza Bontempi
- National Interuniversity Consortium of Materials Science and Technology (INSTM) and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Antonio Morales delaNuez
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| |
Collapse
|
6
|
Development and Functional Characterization of a Versatile Radio-/Immunotheranostic Tool for Prostate Cancer Management. Cancers (Basel) 2022; 14:cancers14081996. [PMID: 35454902 PMCID: PMC9027777 DOI: 10.3390/cancers14081996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In previous studies, we described a modular Chimeric Antigen Receptor (CAR) T cell platform which we termed UniCAR. In contrast to conventional CARs, the interaction of UniCAR T cells does not occur directly between the CAR T cell and the tumor cell but is mediated via bispecific adaptor molecules so-called target modules (TMs). Here we present the development and functional characterization of a novel IgG4-based TM, directed to the tumor-associated antigen (TAA) prostate stem cell antigen (PSCA), which is overexpressed in prostate cancer (PCa). We show that this anti-PSCA IgG4-TM cannot only be used for (i) redirection of UniCAR T cells to PCa cells but also for (ii) positron emission tomography (PET) imaging, and (iii) alpha particle-based endoradiotherapy. For radiolabeling, the anti-PSCA IgG4-TM was conjugated with the chelator DOTAGA. PET imaging was performed using the 64Cu-labeled anti-PSCA IgG4-TM. According to PET imaging, the anti-PSCA IgG4-TM accumulates with high contrast in the PSCA-positive tumors of experimental mice without visible uptake in other organs. For endoradiotherapy the anti-PSCA IgG4-TM-DOTAGA conjugate was labeled with 225Ac3+. Targeted alpha therapy resulted in tumor control over 60 days after a single injection of the 225Ac-labeled TM. The favorable pharmacological profile of the anti-PSCA IgG4-TM, and its usage for (i) imaging, (ii) targeted alpha therapy, and (iii) UniCAR T cell immunotherapy underlines the promising radio-/immunotheranostic capabilities for the diagnostic imaging and treatment of PCa. Abstract Due to its overexpression on the surface of prostate cancer (PCa) cells, the prostate stem cell antigen (PSCA) is a potential target for PCa diagnosis and therapy. Here we describe the development and functional characterization of a novel IgG4-based anti-PSCA antibody (Ab) derivative (anti-PSCA IgG4-TM) that is conjugated with the chelator DOTAGA. The anti-PSCA IgG4-TM represents a multimodal immunotheranostic compound that can be used (i) as a target module (TM) for UniCAR T cell-based immunotherapy, (ii) for diagnostic positron emission tomography (PET) imaging, and (iii) targeted alpha therapy. Cross-linkage of UniCAR T cells and PSCA-positive tumor cells via the anti-PSCA IgG4-TM results in efficient tumor cell lysis both in vitro and in vivo. After radiolabeling with 64Cu2+, the anti-PSCA IgG4-TM was successfully applied for high contrast PET imaging. In a PCa mouse model, it showed specific accumulation in PSCA-expressing tumors, while no uptake in other organs was observed. Additionally, the DOTAGA-conjugated anti-PSCA IgG4-TM was radiolabeled with 225Ac3+ and applied for targeted alpha therapy. A single injection of the 225Ac-labeled anti-PSCA IgG4-TM was able to significantly control tumor growth in experimental mice. Overall, the novel anti-PSCA IgG4-TM represents an attractive first member of a novel group of radio-/immunotheranostics that allows diagnostic imaging, endoradiotherapy, and CAR T cell immunotherapy.
Collapse
|
7
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|