1
|
Zhu M, Yi Y, Jiang K, Liang Y, Li L, Zhang F, Zheng X, Yin H. Single-cell combined with transcriptome sequencing to explore the molecular mechanism of cell communication in idiopathic pulmonary fibrosis. J Cell Mol Med 2024; 28:e18499. [PMID: 38887981 PMCID: PMC11184282 DOI: 10.1111/jcmm.18499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common, chronic, and progressive lung disease that severely impacts human health and survival. However, the intricate molecular underpinnings of IPF remains elusive. This study aims to delve into the nuanced molecular interplay of cellular interactions in IPF, thereby laying the groundwork for innovative therapeutic approaches in the clinical field of IPF. Sophisticated bioinformatics methods were employed to identify crucial biomarkers essential for the progression of IPF. The GSE122960 single-cell dataset was obtained from the Gene Expression Omnibus (GEO) compendium, and intercellular communication potentialities were scrutinized via CellChat. The random survival forest paradigm was established using the GSE70866 dataset. Quintessential genes were selected through Kaplan-Meier (KM) curves, while immune infiltration examinations, functional enrichment critiques and nomogram paradigms were inaugurated. Analysis of intercellular communication revealed an intimate potential connections between macrophages and various cell types, pinpointing five cardinal genes influencing the trajectory and prognosis of IPF. The nomogram paradigm, sculpted from these seminal genes, exhibits superior predictive prowess. Our research meticulously identified five critical genes, confirming their intimate association with the prognosis, immune infiltration and transcriptional governance of IPF. Interestingly, we discerned these genes' engagement with the EPITHELIAL_MESENCHYMAL_TRANSITION signalling pathway, which may enhance our understanding of the molecular complexity of IPF.
Collapse
Affiliation(s)
- Minggao Zhu
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yuhu Yi
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Kui Jiang
- Department of NephrologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yongzhi Liang
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Lijun Li
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Feng Zhang
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Xinglong Zheng
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Haiyan Yin
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
2
|
Saarimäki LA, Morikka J, Pavel A, Korpilähde S, del Giudice G, Federico A, Fratello M, Serra A, Greco D. Toxicogenomics Data for Chemical Safety Assessment and Development of New Approach Methodologies: An Adverse Outcome Pathway-Based Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203984. [PMID: 36479815 PMCID: PMC9839874 DOI: 10.1002/advs.202203984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Indexed: 05/25/2023]
Abstract
Mechanistic toxicology provides a powerful approach to inform on the safety of chemicals and the development of safe-by-design compounds. Although toxicogenomics supports mechanistic evaluation of chemical exposures, its implementation into the regulatory framework is hindered by uncertainties in the analysis and interpretation of such data. The use of mechanistic evidence through the adverse outcome pathway (AOP) concept is promoted for the development of new approach methodologies (NAMs) that can reduce animal experimentation. However, to unleash the full potential of AOPs and build confidence into toxicogenomics, robust associations between AOPs and patterns of molecular alteration need to be established. Systematic curation of molecular events to AOPs will create the much-needed link between toxicogenomics and systemic mechanisms depicted by the AOPs. This, in turn, will introduce novel ways of benefitting from the AOPs, including predictive models and targeted assays, while also reducing the need for multiple testing strategies. Hence, a multi-step strategy to annotate AOPs is developed, and the resulting associations are applied to successfully highlight relevant adverse outcomes for chemical exposures with strong in vitro and in vivo convergence, supporting chemical grouping and other data-driven approaches. Finally, a panel of AOP-derived in vitro biomarkers for pulmonary fibrosis (PF) is identified and experimentally validated.
Collapse
Affiliation(s)
- Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Jack Morikka
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Alisa Pavel
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Seela Korpilähde
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Antonio Federico
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Michele Fratello
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Angela Serra
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
- Tampere Institute for Advanced StudyTampere UniversityKalevantie 4Tampere33100Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
- Institute of BiotechnologyUniversity of HelsinkiP.O.Box 56HelsinkiUusimaa00014Finland
| |
Collapse
|
4
|
Pavel A, Saarimäki LA, Möbus L, Federico A, Serra A, Greco D. The potential of a data centred approach & knowledge graph data representation in chemical safety and drug design. Comput Struct Biotechnol J 2022; 20:4837-4849. [PMID: 36147662 PMCID: PMC9464643 DOI: 10.1016/j.csbj.2022.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Big Data pervades nearly all areas of life sciences, yet the analysis of large integrated data sets remains a major challenge. Moreover, the field of life sciences is highly fragmented and, consequently, so is its data, knowledge, and standards. This, in turn, makes integrated data analysis and knowledge gathering across sub-fields a demanding task. At the same time, the integration of various research angles and data types is crucial for modelling the complexity of organisms and biological processes in a holistic manner. This is especially valid in the context of drug development and chemical safety assessment where computational methods can provide solutions for the urgent need of fast, effective, and sustainable approaches. At the same time, such computational methods require the development of methodologies suitable for an integrated and data centred Big Data view. Here we discuss Knowledge Graphs (KG) as a solution to a data centred analysis approach for drug and chemical development and safety assessment. KGs are knowledge bases, data analysis engines, and knowledge discovery systems all in one, allowing them to be used from simple data retrieval, over meta-analysis to complex predictive and knowledge discovery systems. Therefore, KGs have immense potential to advance the data centred approach, the re-usability, and informativity of data. Furthermore, they can improve the power of analysis, and the complexity of modelled processes, all while providing knowledge in a natively human understandable network data model.
Collapse
Affiliation(s)
- Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Laura A Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Lena Möbus
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Serra A, Saarimäki LA, Pavel A, del Giudice G, Fratello M, Cattelani L, Federico A, Laurino O, Marwah VS, Fortino V, Scala G, Sofia Kinaret PA, Greco D. Nextcast: A software suite to analyse and model toxicogenomics data. Comput Struct Biotechnol J 2022; 20:1413-1426. [PMID: 35386103 PMCID: PMC8956870 DOI: 10.1016/j.csbj.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022] Open
Abstract
The recent advancements in toxicogenomics have led to the availability of large omics data sets, representing the starting point for studying the exposure mechanism of action and identifying candidate biomarkers for toxicity prediction. The current lack of standard methods in data generation and analysis hampers the full exploitation of toxicogenomics-based evidence in regulatory risk assessment. Moreover, the pipelines for the preprocessing and downstream analyses of toxicogenomic data sets can be quite challenging to implement. During the years, we have developed a number of software packages to address specific questions related to multiple steps of toxicogenomics data analysis and modelling. In this review we present the Nextcast software collection and discuss how its individual tools can be combined into efficient pipelines to answer specific biological questions. Nextcast components are of great support to the scientific community for analysing and interpreting large data sets for the toxicity evaluation of compounds in an unbiased, straightforward, and reliable manner. The Nextcast software suite is available at: ( https://github.com/fhaive/nextcast).
Collapse
Affiliation(s)
- Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Giusy del Giudice
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Michele Fratello
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Luca Cattelani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | | | - Veer Singh Marwah
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Giovanni Scala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Pia Anneli Sofia Kinaret
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|