1
|
Wang X. The Potential of mRNA Vaccines to Fight Against Viruses. Viral Immunol 2024; 37:383-391. [PMID: 39418074 DOI: 10.1089/vim.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Vaccines have always been a critical tool in preventing infectious diseases. However, the development of traditional vaccines often takes a long time and may struggle to address the challenge of rapidly mutating viruses. The emergence of mRNA technology has brought revolutionary changes to vaccine development, particularly in rapidly responding to the threat of emerging viruses. The global promotion of mRNA vaccines against severe acute respiratory syndrome coronavirus 2 has demonstrated the importance of mRNA technology. Also, mRNA vaccines targeting viruses such as influenza, respiratory syncytial virus, and Ebola are under development. These vaccines have shown promising preventive effects and safety profiles in clinical trials, although the duration of immune protection is still under evaluation. However, the development of mRNA vaccines also faces many challenges, such as stability, efficacy, and individual differences in immune response. Researchers adopt various strategies to address these challenges. Anyway, mRNA vaccines have shown enormous potential in combating viral diseases. With further development and technological maturity, mRNA vaccines are expected to have a profound impact on public health and vaccine equity. This review discussed the potential of mRNA vaccines to fight against viruses, current progress in clinical trials, challenges faced, and future prospects, providing a comprehensive scientific basis and reference for future research.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Clinical Laboratory, National Clinical Research Center for Child Health Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Tokunoh N, Tamiya S, Watanabe M, Okamoto T, Anindita J, Tanaka H, Ono C, Hirai T, Akita H, Matsuura Y, Yoshioka Y. A nasal vaccine with inactivated whole-virion elicits protective mucosal immunity against SARS-CoV-2 in mice. Front Immunol 2023; 14:1224634. [PMID: 37720231 PMCID: PMC10500122 DOI: 10.3389/fimmu.2023.1224634] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Vaccinations are ideal for reducing the severity of clinical manifestations and secondary complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, SARS-CoV-2 continues to cause morbidity and mortality worldwide. In contrast to parenteral vaccines such as messenger RNA vaccines, nasal vaccines are expected to be more effective in preventing viral infections in the upper respiratory tract, the primary locus for viral infection and transmission. In this study, we examined the prospects of an inactivated whole-virion (WV) vaccine administered intranasally against SARS-CoV-2. Methods Mice were immunized subcutaneously (subcutaneous vaccine) or intranasally (nasal vaccine) with the inactivated WV of SARS-CoV-2 as the antigen. Results The spike protein (S)-specific IgA level was found to be higher upon nasal vaccination than after subcutaneous vaccination. The level of S-specific IgG in the serum was also increased by the nasal vaccine, although it was lower than that induced by the subcutaneous vaccine. The nasal vaccine exhibited a stronger defense against viral invasion in the upper respiratory tract than the subcutaneous vaccine and unimmunized control; however, both subcutaneous and nasal vaccines provided protection in the lower respiratory tract. Furthermore, we found that intranasally administered inactivated WV elicited robust production of S-specific IgA in the nasal mucosa and IgG in the blood of mice previously vaccinated with messenger RNA encoding the S protein. Discussion Overall, these results suggest that a nasal vaccine containing inactivated WV can be a highly effective means of protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nagisa Tokunoh
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shigeyuki Tamiya
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Masato Watanabe
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Jessica Anindita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Science, Chiba University, Chiba-shi, Chiba, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshiro Hirai
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| | - Yasuo Yoshioka
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Ciarambino T, Crispino P, Buono P, Giordano V, Trama U, Iodice V, Leoncini L, Giordano M. Efficacy and Safety of Vaccinations in Geriatric Patients: A Literature Review. Vaccines (Basel) 2023; 11:1412. [PMID: 37766089 PMCID: PMC10537287 DOI: 10.3390/vaccines11091412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
With the progressive lengthening of the average age of the population, especially in some countries such as Italy, vaccination of the elderly is a fixed point on which most of the public health efforts are concentrating as epidemic infectious diseases, especially those of the winter, have a major impact on the progression of severe disease, hospitalization, and death. The protection of the elderly against acute infectious diseases should not only limit mortality but also have a positive impact on the fragility of these people in terms of less disability and fewer care needs. However, vaccination of the elderly population differs in efficacy and safety compared to that of other population categories since aging and the consequent loss of efficiency of the immune system lead to a reduction in the immunogenicity of vaccines without achieving a lasting antibody coverage. There are various strategies to avoid the failure of immunization by vaccines such as resorting to supplementary doses with adjuvant vaccines, increasing the dosage of the antigen used, or choosing to inoculate the serum relying on various routes of administration of the vaccine. Vaccination in the elderly is also an important factor in light of growing antibiotic resistance because it can indirectly contribute to combating antibiotic resistance, reducing theoretically the use of those agents. Furthermore, vaccination in old age reduces mortality from infectious diseases preventable with vaccines and reduces the same rate of resistance to antibiotics. Given the importance and complexity of the topic, in this review, we will deal with the main aspects of vaccination in the elderly and how it can influence mortality and healthcare costs, especially in those countries where population aging is more evident. Therefore, we conducted a systematic literature search in PubMed to identify all types of studies published up to 31 May 2023 that examined the association between vaccination and the elderly. Data extraction and quality assessment were conducted by two reviewers (PC and TC) who independently extracted the following data and assessed the quality of each study.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, ASL Caserta, 81031 Caserta, Italy
- Direzione di Staff Direzione Generale Tutela per la Salute Regione Campania, 80143 Naples, Italy; (P.B.); (U.T.)
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, ASL Latina, 04100 Latina, Italy;
| | - Pietro Buono
- Direzione di Staff Direzione Generale Tutela per la Salute Regione Campania, 80143 Naples, Italy; (P.B.); (U.T.)
| | | | - Ugo Trama
- Direzione di Staff Direzione Generale Tutela per la Salute Regione Campania, 80143 Naples, Italy; (P.B.); (U.T.)
| | - Vincenzo Iodice
- ASL Caserta, Direttore Sanitario Aziendale, 81100 Caserta, Italy
| | - Laura Leoncini
- ASL Caserta, Direttore Sanitario, P.O. Marcianise, 81025 Marcianise, Italy
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Science, University of Campania, L. Vanvitelli, 81100 Naples, Italy;
| |
Collapse
|
4
|
Luo J, Zhang Z, Zhao S, Gao R. A Comparison of Etiology, Pathogenesis, Vaccinal and Antiviral Drug Development between Influenza and COVID-19. Int J Mol Sci 2023; 24:ijms24076369. [PMID: 37047339 PMCID: PMC10094131 DOI: 10.3390/ijms24076369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Influenza virus and coronavirus, two kinds of pathogens that exist widely in nature, are common emerging pathogens that cause respiratory tract infections in humans. In December 2019, a novel coronavirus SARS-CoV-2 emerged, causing a severe respiratory infection named COVID-19 in humans, and raising a global pandemic which has persisted in the world for almost three years. Influenza virus, a seasonally circulating respiratory pathogen, has caused four global pandemics in humans since 1918 by the emergence of novel variants. Studies have shown that there are certain similarities in transmission mode and pathogenesis between influenza and COVID-19, and vaccination and antiviral drugs are considered to have positive roles as well as several limitations in the prevention and control of both diseases. Comparative understandings would be helpful to the prevention and control of these diseases. Here, we review the study progress in the etiology, pathogenesis, vaccine and antiviral drug development for the two diseases.
Collapse
|
5
|
Tarim EA, Anil Inevi M, Ozkan I, Kecili S, Bilgi E, Baslar MS, Ozcivici E, Oksel Karakus C, Tekin HC. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions. Biomed Microdevices 2023; 25:10. [PMID: 36913137 PMCID: PMC10009869 DOI: 10.1007/s10544-023-00649-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
The COVID-19 pandemic has posed significant challenges to existing healthcare systems around the world. The urgent need for the development of diagnostic and therapeutic strategies for COVID-19 has boomed the demand for new technologies that can improve current healthcare approaches, moving towards more advanced, digitalized, personalized, and patient-oriented systems. Microfluidic-based technologies involve the miniaturization of large-scale devices and laboratory-based procedures, enabling complex chemical and biological operations that are conventionally performed at the macro-scale to be carried out on the microscale or less. The advantages microfluidic systems offer such as rapid, low-cost, accurate, and on-site solutions make these tools extremely useful and effective in the fight against COVID-19. In particular, microfluidic-assisted systems are of great interest in different COVID-19-related domains, varying from direct and indirect detection of COVID-19 infections to drug and vaccine discovery and their targeted delivery. Here, we review recent advances in the use of microfluidic platforms to diagnose, treat or prevent COVID-19. We start by summarizing recent microfluidic-based diagnostic solutions applicable to COVID-19. We then highlight the key roles microfluidics play in developing COVID-19 vaccines and testing how vaccine candidates perform, with a focus on RNA-delivery technologies and nano-carriers. Next, microfluidic-based efforts devoted to assessing the efficacy of potential COVID-19 drugs, either repurposed or new, and their targeted delivery to infected sites are summarized. We conclude by providing future perspectives and research directions that are critical to effectively prevent or respond to future pandemics.
Collapse
Affiliation(s)
- E Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Muge Anil Inevi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Ilayda Ozkan
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Seren Kecili
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Eyup Bilgi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - M Semih Baslar
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | | | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey.
- METU MEMS Center, Ankara, Turkey.
| |
Collapse
|
6
|
Fernandes MDCR, Vasconcelos GS, de Melo ACL, Matsui TC, Caetano LF, de Carvalho Araújo FM, Fonseca MHG. Influence of age, gender, previous SARS-CoV-2 infection, and pre-existing diseases in antibody response after COVID-19 vaccination: A review. Mol Immunol 2023; 156:148-155. [PMID: 36921489 PMCID: PMC9998295 DOI: 10.1016/j.molimm.2023.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Vaccines induce specific long-term immunological memory against pathogens, preventing the worsening of diseases. The COVID-19 health emergency has caused more than 6 million deaths and started a race for vaccine development. Antibody response to COVID-19 vaccines has been investigated primarily in healthcare workers. The heterogeneity of immune responses and the behavior of this response in particular groups were still very little explored. In this review, we discuss whether antibody responses after vaccination are influenced by age, gender, previous SARS-CoV-2 infection, or pre-existing diseases.
Collapse
|