1
|
Hatamie A, He X, Ewing A, Rorsman P. From Insulin Measurement to Partial Exocytosis Model: Advances in Single Pancreatic Beta Cell Amperometry over Four Decades. ACS MEASUREMENT SCIENCE AU 2024; 4:629-637. [PMID: 39713028 PMCID: PMC11659994 DOI: 10.1021/acsmeasuresciau.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 12/24/2024]
Abstract
Single cell Amperometry (SCA) is a powerful, sensitive, high temporal resolution electrochemical technique used to quantify secreted molecular messengers from individual cells and vesicles. This technique has been extensively applied to study the process of exocytosis, and it has also been applied, albeit less frequently, to investigate insulin exocytosis from single pancreatic beta cells. Insufficient insulin release can lead to diabetes, a chronic lifestyle disorder that affects millions of people worldwide. This review aims to summarize and highlight electrochemical measurements of insulin via monitoring its secretion from beta cells by SCA with micro- and nanoelectrodes since the 1990s and to explain how and why serotonin is used as a proxy for monitoring insulin during exocytosis from single beta cells. Finally, we describe how the combination of SCA measurements with the intracellular vesicle impact electrochemical cytometry (IVIEC) technique has led to important findings regarding fractional release types in beta cells. These findings, reported recently, have opened a new window in the study of pore formation, exocytosis from single vesicles, and the mechanisms of insulin secretion. This sensitive cellular electroanalysis approach should help in the development of novel therapeutic strategies targeting diabetes in the future.
Collapse
Affiliation(s)
- Amir Hatamie
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO-Box 45195-1159, Zanjan, 45137-66731, Iran
| | - Xiulan He
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Andrew Ewing
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
| | - Patrik Rorsman
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
- Oxford
Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, U.K.
| |
Collapse
|
2
|
Kang F, Xie L, Qin T, Miao Y, Kang Y, Takahashi T, Liang T, Xie H, Gaisano HY. Plasma membrane flipping of Syntaxin-2 regulates its inhibitory action on insulin granule exocytosis. Nat Commun 2022; 13:6512. [PMID: 36316316 PMCID: PMC9622911 DOI: 10.1038/s41467-022-33986-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Enhancing pancreatic β-cell secretion is a primary therapeutic target for type-2 diabetes (T2D). Syntaxin-2 (Stx2) has just been identified to be an inhibitory SNARE for insulin granule exocytosis, holding potential as a treatment for T2D, yet its molecular underpinnings remain unclear. We show that excessive Stx2 recruitment to raft-like granule docking sites at higher binding affinity than pro-fusion syntaxin-1A effectively competes for and inhibits fusogenic SNARE machineries. Depletion of Stx2 in human β-cells improves insulin secretion by enhancing trans-SNARE complex assembly and cis-SNARE disassembly. Using a genetically-encoded reporter, glucose stimulation is shown to induce Stx2 flipping across the plasma membrane, which relieves its suppression of cytoplasmic fusogenic SNARE complexes to promote insulin secretion. Targeting the flipping efficiency of Stx2 profoundly modulates secretion, which could restore the impaired insulin secretion in diabetes. Here, we show that Stx2 acts to assist this precise tuning of insulin secretion in β-cells, including in diabetes.
Collapse
Affiliation(s)
- Fei Kang
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada ,grid.231844.80000 0004 0474 0428Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| | - Li Xie
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Tairan Qin
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Yifan Miao
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Youhou Kang
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Toshimasa Takahashi
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Tao Liang
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada ,grid.231844.80000 0004 0474 0428Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| | - Huanli Xie
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Herbert Y. Gaisano
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada ,grid.231844.80000 0004 0474 0428Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| |
Collapse
|