1
|
Wu Y, Du Y, Zhang Y, Ye M, Wang D, Zhou L. Transcriptome-derived evidence reveals the regulatory network in the skeletal muscle of the fast-growth mstnb -/- male tilapia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 54:101405. [PMID: 39729946 DOI: 10.1016/j.cbd.2024.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Myostatin (Mstn) negatively regulates muscle growth and Mstn deficiency induced "double-skeletal muscle" development in vertebrates, including tilapias. In this study, we performed a transcriptomic analysis of skeletal muscle from both wild-type and mstnb-/- males to investigate the molecular mechanisms underlying skeletal muscle hypertrophy in mstnb-/- mutants. We identified 4697 differentially expressed genes (DEGs), 113 differentially expressed long non-coding RNAs (DE lncRNAs), 211 differentially expressed circular RNAs (DE circRNAs), and 98 differentially expressed microRNAs (DE miRNAs). The DEGs were significantly enriched in proteasome and ubiquitin-mediated proteolysis pathways. Cis- and trans-targeting genes of DE lncRNAs were also notably enriched in the above two pathways. The putative host genes of DE circRNAs linked to myofibrils, contractile fibers, and so on. Additionally, DE miRNAs were associated with ubiquitin-mediated proteolysis and key signaling pathways, including AMPK, FoxO, and mTOR. Furthermore, the core competing endogenous RNA (ceRNA) network was constructed comprising 31 DEGs, 37 DE miRNAs, 14 DE circRNAs, and 45 DE lncRNAs. The key roles of ubiquitin-proteasome system were highlighted in the ceRNA network. Taken together, this study provides a novel perspective on muscle mass increase in Mstn mutants through the repression of protein degradation and facilitates our understanding of the molecular mechanisms of skeletal muscle hypertrophy in fish.
Collapse
Affiliation(s)
- You Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Yiyun Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Yanbin Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Maolin Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China.
| | - Linyan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Kwon DH, Gim GM, Yum SY, Jang G. Current status and future of gene engineering in livestock. BMB Rep 2024; 57:50-59. [PMID: 38053297 PMCID: PMC10828428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
The application of gene engineering in livestock is necessary for various reasons, such as increasing productivity and producing disease resistance and biomedicine models. Overall, gene engineering provides benefits to the agricultural and research aspects, and humans. In particular, productivity can be increased by producing livestock with enhanced growth and improved feed conversion efficiency. In addition, the application of the disease resistance models prevents the spread of infectious diseases, which reduces the need for treatment, such as the use of antibiotics; consequently, it promotes the overall health of the herd and reduces unexpected economic losses. The application of biomedicine could be a valuable tool for understanding specific livestock diseases and improving human welfare through the development and testing of new vaccines, research on human physiology, such as human metabolism or immune response, and research and development of xenotransplantation models. Gene engineering technology has been evolving, from random, time-consuming, and laborious methods to specific, time-saving, convenient, and stable methods. This paper reviews the overall trend of genetic engineering technologies development and their application for efficient production of genetically engineered livestock, and provides examples of technologies approved by the United States (US) Food and Drug Administration (FDA) for application in humans. [BMB Reports 2024; 57(1): 50-59].
Collapse
Affiliation(s)
- Dong-Hyeok Kwon
- Laboratory of Theriogenology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Korea
| | | | | | - Goo Jang
- Laboratory of Theriogenology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Korea
- LARTBio Inc., Gwangmyeong 14322, Korea
| |
Collapse
|
3
|
Dos Santos-Neto PC, Cuadro F, Souza-Neves M, Crispo M, Menchaca A. Refinements in embryo manipulation applied to CRISPR technology in livestock. Theriogenology 2023; 208:142-148. [PMID: 37329588 DOI: 10.1016/j.theriogenology.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
The implementation of CRISPR technology in large animals requires further improvements in embryo manipulation and transfer to be applied with commercial purposes. In this study we report (a) developmental competence of CRISPR/Cas microinjected zygotes subjected to in vitro culture in large scale programs in sheep; (b) pregnancy outcomes after early-stage (2-8-cell) embryo transfer into the oviduct or the uterine horn; and (c) embryo survival and birth rate after vitrification/warming of CRISPR/Cas microinjected zygotes. Experiment 1 consisted of a retrospective analysis to evaluate embryo developmental rate of in vitro produced zygotes subjected to CRISPR/Cas microinjection (n = 7,819) compared with a subset of non-microinjected zygotes (n = 701). Development rates to blastocyst on Day 6 were 20.0% for microinjected zygotes and 44.9% for non-injected zygotes (P < 0.05). In Experiment 2, CRISPR/Cas microinjected zygotes were transferred on Day 2 after in vitro fertilization (2-8 cell embryos) into the oviductal ampulla (n = 262) or into the uterine horn (n = 276) in synchronized recipient ewes at prefixed time (i.e., approximately two days after ovulation). Pregnant/transferred recipients (24.0% vs. 25.0%), embryo survival/transferred embryos (6.9% vs. 6.2%), and born lambs/pregnant embryos (72.2% vs. 100.0%) did not differ significantly in the two groups. In Experiment 3, CRISPR/Cas microinjected zygotes were maintained under in vitro culture until blastocyst stage (Day 6), and subjected to vitrification/warming via the Cryotop method (n = 474), while a subset of embryos were left fresh as control group (n = 75). Embryos were transferred into the uterine horn of recipient females at prefixed time 8.5 days after the estrous synchronization treatment (i.e., approximately six days after ovulation). Pregnancy rate (30.8% vs. 48.0%), embryo survival rate (14.8% vs. 21.3%), and birth rate (85.7% vs. 75.0%) were not different (PNS) between vitrified and fresh embryos, respectively. In conclusion, the current study in sheep embryos reports (a) suitable developmental rate after CRISPR/Cas microinjection (i.e., 20%), even though it was lower than non-microinjected zygotes; (b) similar outcomes when Day 2-embryos were placed into the uterine horn instead of the oviduct, avoiding both time-consuming and invasive oviduct manipulation, and extended in vitro culture during one week; (c) promising pregnancy and birth rates obtained with vitrification of CRISPR/Cas microinjected embryos. This knowledge on in vitro embryo development, timing of embryo transfer, and cryopreservation of CRISPR/Cas microinjected zygotes have practical implications for the implementation of genome editing technology in large animals.
Collapse
Affiliation(s)
- P C Dos Santos-Neto
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - F Cuadro
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - M Souza-Neves
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay; Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Uruguay
| | - M Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Uruguay
| | - A Menchaca
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay; Plataforma de Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay.
| |
Collapse
|
4
|
Kalds P, Zhou S, Huang S, Gao Y, Wang X, Chen Y. When Less Is More: Targeting the Myostatin Gene in Livestock for Augmenting Meat Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4216-4227. [PMID: 36862946 DOI: 10.1021/acs.jafc.2c08583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How to increase meat production is one of the main questions in animal breeding. Selection for improved body weight has been made and, due to recent genomic advances, naturally occurring variants that are responsible for controlling economically relevant phenotypes have been revealed. The myostatin (MSTN) gene, a superstar gene in animal breeding, was discovered as a negative controller of muscle mass. In some livestock species, natural mutations in the MSTN gene could generate the agriculturally desirable double-muscling phenotype. However, some other livestock species or breeds lack these desirable variants. Genetic modification, particularly gene editing, offers an unprecedented opportunity to induce or mimic naturally occurring mutations in livestock genomes. To date, various MSTN-edited livestock species have been generated using different gene modification tools. These MSTN gene-edited models have higher growth rates and increased muscle mass, suggesting the high potential of utilizing MSTN gene editing in animal breeding. Additionally, post-editing investigations in most livestock species support the favorable influence of targeting the MSTN gene on meat quantity and quality. In this Review, we provide a collective discussion on targeting the MSTN gene in livestock to further encourage its utilization opportunities. It is expected that, shortly, MSTN gene-edited livestock will be commercialized, and MSTN-edited meat will be on the tables of ordinary customers.
Collapse
Affiliation(s)
- Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Shiwei Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yawei Gao
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|