1
|
Yang Y, Ni WJ, Yang Y, Liao J, Yang Y, Li J, Zhu X, Guo C, Xie F, Leng XM. Research progress on N6-methyladenosine RNA modification in osteosarcoma: functions, mechanisms, and potential clinical applications. Med Oncol 2025; 42:55. [PMID: 39853585 DOI: 10.1007/s12032-024-02597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Osteosarcoma (OS) is the most commonly diagnosed primary malignant bone tumor in children and adolescents. Despite significant advancements in therapeutic strategies against OS over the past few decades, the prognosis for this disease remains poor, largely due to its high invasiveness and challenges associated with its treatment. N6-methyladenosine (m6A) modification is one of the most abundant epigenetic modifications of RNAs, and many studies have highlighted its crucial role in OS. This article provides a comprehensive summary and introduction to m6A regulators, including methyltransferases, demethylases, and binding proteins. The article emphasizes how regulated m6A modifications can either promote or inhibit OS. It also delves into the mechanisms by which m6A-modified messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs) participate in signaling pathways such as the Wnt/β-catenin, PI3K/AKT, and STAT3 pathways, and discusses these mechanisms in detail. Given the abnormal expression of m6A regulators in OS, the article also explores their potential applications as biomarkers or therapeutic targets in clinical settings. It is anticipated that this review will provide new insights into the diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Ying Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yadong Yang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Junnan Liao
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yuqian Yang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Jianwei Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Chun Guo
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China
- Department of Human Anatomy, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, People's Republic of China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
2
|
Chen Y, Li C, Wang X, Zhang CL, Ren ZG, Wang ZQ. Oral microbiota distinguishes patients with osteosarcoma from healthy controls. Front Cell Infect Microbiol 2024; 14:1383878. [PMID: 39055977 PMCID: PMC11269967 DOI: 10.3389/fcimb.2024.1383878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Objective The human microbiota plays a key role in cancer diagnosis, pathogenesis, and treatment. However, osteosarcoma-associated oral microbiota alterations have not yet been unraveled. The aim of this study was to explore the characteristics of oral microbiota in osteosarcoma patients compared to healthy controls, and to identify potential microbiota as a diagnostic tool for osteosarcoma. Methods The oral microbiota was analyzed in osteosarcoma patients (n = 45) and matched healthy controls (n = 90) using 16S rRNA MiSeq sequencing technology. Results The microbial richness and diversity of the tongue coat were increased in osteosarcoma patients as estimated by the abundance-based coverage estimator indices, the Chao, and observed operational taxonomy units (OTUs). Principal component analysis delineated that the oral microbial community was significant differences between osteosarcoma patients and healthy controls. 14 genera including Rothia, Halomonas, Rhodococcus, and Granulicatella were remarkably reduced, whereas Alloprevotella, Prevotella, Selenomonas, and Campylobacter were enriched in osteosarcoma. Eventually, the optimal four OTUs were identified to construct a microbial classifier by the random forest model via a fivefold cross-validation, which achieved an area under the curve of 99.44% in the training group (30 osteosarcoma patients versus 60 healthy controls) and 87.33% in the test group (15 osteosarcoma patients versus 30 healthy controls), respectively. Notably, oral microbial markers validated strong diagnostic potential distinguishing osteosarcoma patients from healthy controls. Conclusion This study comprehensively characterizes the oral microbiota in osteosarcoma and reveals the potential efficacy of oral microbiota-targeted biomarkers as a noninvasive biological diagnostic tool for osteosarcoma.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pathogen Biology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Chao Li
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chun Lei Zhang
- Department of Orthopaedic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhi Gang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Pathogen Biology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Trivedi J, Desai A, Saha P, Ajgaonkar S, Nabar S, Momin M, Muzumdar I, Nair S. Current Insights into Signature MicroRNA Networks and Signal Transduction in Osteosarcoma. CURRENT PHARMACOLOGY REPORTS 2024; 10:159-206. [DOI: 10.1007/s40495-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 01/06/2025]
|
4
|
Silver KI, Mannheimer JD, Saba C, Hendricks WPD, Wang G, Day K, Warrier M, Beck JA, Mazcko C, LeBlanc AK. Clinical, pathologic and molecular findings in 2 Rottweiler littermates with appendicular osteosarcoma. RESEARCH SQUARE 2024:rs.3.rs-4223759. [PMID: 38659878 PMCID: PMC11042397 DOI: 10.21203/rs.3.rs-4223759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Appendicular osteosarcoma was diagnosed and treated in a pair of littermate Rottweiler dogs, resulting in distinctly different clinical outcomes despite similar therapy within the context of a prospective, randomized clinical trial (NCI-COTC021/022). Histopathology, immunohistochemistry, mRNA sequencing, and targeted DNA hotspot sequencing techniques were applied to both dogs' tumors to define factors that could underpin their differential response to treatment. We describe the comparison of their clinical, histologic and molecular features, as well as those from a companion cohort of Rottweiler dogs, providing new insight into potential prognostic biomarkers for canine osteosarcoma.
Collapse
Affiliation(s)
| | | | | | - William P D Hendricks
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Guannan Wang
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Kenneth Day
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Manisha Warrier
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | | | | | | |
Collapse
|
5
|
Pendleton E, Ketner A, Ransick P, Ardekani D, Bodenstine T, Chandar N. Loss of Function of the Retinoblastoma Gene Affects Gap Junctional Intercellular Communication and Cell Fate in Osteoblasts. BIOLOGY 2024; 13:39. [PMID: 38248470 PMCID: PMC10813623 DOI: 10.3390/biology13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Loss of function of the Retinoblastoma gene (RB1) due to mutations is commonly seen in human osteosarcomas. One of the Rb1 gene functions is to facilitate cell fate from mesenchymal stem cells to osteoblasts and prevent adipocyte differentiations. In this study, we demonstrate that a stable reduction of Rb1 expression (RbKD) in murine osteoblasts causes them to express higher levels of PPAR-ɣ and other adipocyte-specific transcription factors while retaining high expression of osteoblast-specific transcription factors, Runx2/Cbfa1 and SP7/Osterix. Inhibition of gap junctional intercellular communication (GJIC) in osteoblasts is another mechanism that causes osteoblasts to transdifferentiate to adipocytes. We found that preosteoblasts exposed to osteoblast differentiating media (DP media) increased GJIC. RbKD cells showed reduced GJIC along with a reduction in expression of Cx43, the protein that mediates GJIC. Other membrane associated adhesion protein Cadherin 11 (Cad11) was also decreased. Since PPAR-ɣ is increased with Rb1 loss, we wondered if the reduction of this transcription factor would reverse the changes observed. Reduction of PPAR-ɣ in control osteoblasts slightly increased bone-specific expression and reduced adipocytic expression as expected along with an increase in Cad11 and Cx43 expression. GJIC remained high and was unaffected by a reduction in PPAR-ɣ in control cells. Knockdown of PPAR-ɣ in RbKD cells reduced adipocyte gene expression, while osteoblast-specific expression showed improvement. Cx43, Cad11 and GJIC remained unaffected by PPAR-ɣ reduction. Our observations suggest that increased PPAR-ɣ that happens with Rb1 loss only affects osteoblast-adipocyte-specific gene expression but does not completely reverse Cx43 gene expression or GJIC. Therefore, these effects may represent independent events triggered by Rb1loss and/or the differentiation process.
Collapse
Affiliation(s)
- Elisha Pendleton
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (E.P.); (A.K.); (T.B.)
| | - Anthony Ketner
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (E.P.); (A.K.); (T.B.)
| | - Phil Ransick
- Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA; (P.R.); (D.A.)
| | - Doug Ardekani
- Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA; (P.R.); (D.A.)
| | - Thomas Bodenstine
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (E.P.); (A.K.); (T.B.)
| | - Nalini Chandar
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (E.P.); (A.K.); (T.B.)
| |
Collapse
|
6
|
Cosci I, Del Fiore P, Mocellin S, Ferlin A. Gender Differences in Soft Tissue and Bone Sarcoma: A Narrative Review. Cancers (Basel) 2023; 16:201. [PMID: 38201628 PMCID: PMC10778120 DOI: 10.3390/cancers16010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Sarcomas, uncommon malignancies, stem from mesenchymal tissues, distinct from epithelial tissues, originating in the embryonic mesodermal layer. These sarcomas have been categorized as either bone or soft tissue sarcomas, depending on their originating tissue. The majority of sarcomas occur sporadically with their etiology being unknown, but there are several, well-established genetic predisposition syndromes and some environmental exposures associated with specific sarcomas. Recently, many studies have shown that sarcomas, in analogy with colorectal, skin, head and neck, esophageal, lung, and liver carcinomas, also have a male sex predilection. Significant gender differences have already been observed in childhood sarcomas. Among the tumors strongly associated with the male sex, childhood sarcomas have been identified as being particularly sensitive to the biological differences between the sexes, with special regard to soft tissue sarcomas. As the biological mechanisms underlying the sex differences in the incidence of soft tissue sarcomas remain largely unexplored, this review aims to highlight the factors underlying these differences to inform prevention and treatment.
Collapse
Affiliation(s)
- Ilaria Cosci
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy;
- Department of Medicine, University of Padova, 35128 Padova, Italy
| |
Collapse
|
7
|
Fellenberg J, Losch S, Tripel E, Lehner B, Melnik S. The Warburg Trap: A Novel Therapeutic Approach for Targeting Osteosarcoma. Cells 2023; 13:61. [PMID: 38201265 PMCID: PMC10778102 DOI: 10.3390/cells13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Although urgently needed, no significant improvements in osteosarcoma (OS) therapy have been achieved within the last decades. Here, we present a new therapeutic approach based on drug combinations consisting of mitochondrial complex I (MCI) inhibitors and ionophores that induce cancer cell-specific cell death based on a modulation of cellular energy metabolism and intracellular pH (pHi) named the Warburg Trap (WT). The effects of several drug combinations on intracellular pH, cell viability, colony-forming capacity and expression of WNT-target genes were analysed using OS cell lines and primary human osteoblasts (HOB). Tumour take rates and tumour volumes were analysed in vivo using a chicken chorioallantoic membrane assay (CAM). Several WT drug combinations induced the intracellular acidification and apoptotic cell death in OS cells, whereas HOBs tolerated the treatment. A significant inhibition of the colony-forming ability of OS cells and downregulation of WNT-target genes suggest that cancer stem cells (CSCs) are also targeted by the WT approach. In vivo, we observed a significant reduction in the tumour take rates in response to WT drug treatment. Our data suggest that the Warburg Trap is a promising approach for the development of a novel and effective OS therapy to replace or supplement the current OS chemotherapy.
Collapse
Affiliation(s)
- Joerg Fellenberg
- Department of Orthopaedics, University Hospital Heidelberg, 69118 Heidelberg, Germany; (S.L.); (E.T.); (B.L.); (S.M.)
| | | | | | | | | |
Collapse
|
8
|
Malik J, Swanson RJ, Okimoto R, Khaled S. Disturbance of Growth in Pediatric Patients Due to Osteomyelitis Caused by Growth Plate Infection. Cureus 2023; 15:e50631. [PMID: 38226077 PMCID: PMC10789496 DOI: 10.7759/cureus.50631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Osteomyelitis, a severe bone infection, poses a multifaceted challenge to healthcare professionals. While its pathophysiology and treatment have been extensively studied, the impact of osteomyelitis on skeletal growth, particularly in pediatric patients, is an area that warrants attention. This abstract highlights the significance of understanding and managing growth disturbances in osteomyelitis, providing key findings and recommendations for clinicians. Understanding growth disturbance in osteomyelitis is essential because it can lead to lifelong consequences for pediatric patients. The infection may affect the growth plate, leading to limb length discrepancies, angular deformities, and functional impairments. These complications not only diminish the quality of life but also pose a substantial economic burden on the healthcare system. Therefore, early recognition and intervention are crucial. Key findings indicate that the risk of growth disturbances in osteomyelitis is particularly high in pediatric patients due to the vulnerability of the growth plate. Timely diagnosis, appropriate management, and targeted interventions can mitigate the long-term sequelae of growth disturbances. These include utilizing advanced imaging techniques to assess the extent of growth plate involvement, optimizing antibiotic therapy, and employing surgical techniques like epiphysiodesis, guided growth, or corrective osteotomies. Additionally, fostering a multidisciplinary approach that involves orthopedic surgeons, infectious disease specialists, and pediatric endocrinologists is vital to achieving successful outcomes. Recommendations for managing growth disturbance in osteomyelitis encompass early detection, meticulous monitoring, and a tailored treatment plan. Healthcare providers should remain vigilant for signs of growth plate involvement in osteomyelitis patients, especially in the pediatric population. A thorough evaluation, including advanced imaging and clinical assessment, is essential for accurate diagnosis. Close collaboration between specialists to address the infection and its skeletal consequences is crucial. Furthermore, patient and family education plays a pivotal role in fostering compliance with the treatment regimen. In conclusion, understanding and managing growth disturbances in osteomyelitis is paramount, particularly in pediatric patients. The implications of growth plate involvement are significant, and timely intervention is essential to prevent lifelong consequences. By implementing a comprehensive approach that combines accurate diagnosis, multidisciplinary collaboration, and patient education, healthcare professionals can enhance the quality of life and well-being of those affected by this challenging condition.
Collapse
Affiliation(s)
- Jamal Malik
- Department of Research, Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - R James Swanson
- Department of Research, Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Richard Okimoto
- Department of Research, Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Syed Khaled
- Gastroenterology, North Kansas City Hospital, Kansas City, USA
| |
Collapse
|
9
|
Kathiresan N, Selvaraj C, Pandian S, Subbaraj GK, Alothaim AS, Safi SZ, Kulathaivel L. Proteomics and genomics insights on malignant osteosarcoma. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:275-300. [PMID: 38220428 DOI: 10.1016/bs.apcsb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Osteosarcoma is a malignant osseous neoplasm. Osteosarcoma is a primary bone malignancy capable of producing osteoid tissue or immature bones. A subsequent malignant degeneration of the primary bone pathology occurs less frequently in adults. The over-expression of several proteins, including Heat shock proteins, Cofilin, Annexins, Insulin-like growth factor, transforming growth factor-β, Receptor tyrosine kinase, Ezrin, Runx2, SATB2, ATF4, Annexins, cofilin, EGFR, VEGF, retinoblastoma 1 (Rb1) and secreted protein, has been associated to the development and progression of osteosarcoma. These proteins are involved in cell adhesion, migration, invasion, and the control of cell cycle and apoptosis. In genomic studies, osteosarcoma has been associated with several genetic abnormalities, including chromosomal rearrangements, gene mutations, and gene amplifications. These differentially expressed proteins could be used as early identification biomarkers or treatment targets. Proteomics and genomics play significant parts in enhancing our molecular understanding of osteosarcoma, and their integration provides essential insights into this aggressive bone cancer. This review will discuss the tumour biology that has assisted in helping us better understand the causes of osteosarcoma and how they could potentially be used to find new treatment targets and enhance the survival rate for osteosarcoma patients.
Collapse
Affiliation(s)
- Nachammai Kathiresan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- Computational and Structural Research in Drug Design Lab (CSRDD), Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India.
| | - Sangavi Pandian
- Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Gowtham Kumar Subbaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Old Mahabalipuram Road (OMR), Kelambakkam
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Langeswaran Kulathaivel
- Department of Biomedical Science, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
10
|
Zhang W, Shao Z. Research trends and hotspots in the immune microenvironment related to osteosarcoma and tumor cell aging: a bibliometric and visualization study. Front Endocrinol (Lausanne) 2023; 14:1289319. [PMID: 38027171 PMCID: PMC10663373 DOI: 10.3389/fendo.2023.1289319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background It is well known that cancers have a common feature that even if the environment is extremely poor in nutrients, they can still make good use of them to maintain viability as well as to produce new biomass, which is one of the reasons why tumor cells are powerfully less susceptible to senescence and death. The microenvironment has a profound impact on the senescence as well as the growth and development of tumor cells, and it is also the focus of scientists' research because it may even affect the discovery of the treatment and pathogenesis of cancer. And so the study of the microenvironment in the tumor cells is of great significance to the analysis of the tumor cells as well as to the impact of their senescence. Similarly, the microenvironment of osteosarcoma is also crucial for its impact, but to our knowledge, there is no bibliometric study that systematically analyzes and describes the trends and future hotspots in this field of research as we do, and we are going to fill this gap in this study. Methods We searched the Web Science Core Collection 2010-2023 in WOS on August 1, 2023. Based on the criteria needed for the search, we retained articles that matched the topic, excluded studies other than articles and reviews, and selected only studies whose language was English. We performed an intuitive visualization and bibliometric approach to analyze the research content in this field and a systematic visualization of global trends and hotspots in the research of osteosarcoma and the microenvironment, for which we used multiple specialized For this purpose, we used several specialized software packages, such as VOSviewer and the Bibliometrix package for R software. Because research in this area of osteosarcoma and the microenvironment has begun to gain popularity in the last 10 years or so, and is a very novel piece of research, there were almost no studies in this area prior to 2010 and they were not very informative, and in the end, we chose to look at studies from after 2010. Results Based on the criteria needed for the search, resulting in a final selection of 821 articles. In the research area related to osteosarcoma and microenvironment, we found that China in Asia and the United States in North America and Italy in Europe were the three countries or regions with the highest number of published articles. In addition, the institution that published the most research in this area was Shanghai Jiao Tong University. In terms of publications in the field of osteosarcoma and microenvironmental research, Baldini, Heymann, and Avnet are among the top 3 authors. The terms "cancer", "cells" and "expression" are found to be more commonly employed. Conclusion Using a variety of highly specialized software, we have undertaken a visual and bibliometric study of the current state of research and potential future hotspots in the field of osteosarcoma and microenvironment research. The microenvironment has a profound impact on the senescence and growth and development of cells in tumors, including osteosarcoma, and may even influence the discovery of cancer treatment and pathogenesis, and is also a hotspot and focus that scientists have begun to gradually study in recent years. This analysis and visualization will help guide future research in the field.
Collapse
Affiliation(s)
- Wenlong Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuce Shao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Jun L, Xuhong L, Hui L. Circ_SIPA1L1 Promotes Osteosarcoma Progression Via miR-379-5p/MAP3K9 Axis. Cancer Biother Radiopharm 2023; 38:604-618. [PMID: 32897735 DOI: 10.1089/cbr.2020.3891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Osteosarcoma (OS) is a common malignant bone tumor. Circular RNAs (circRNAs) exert important roles in the pathogenesis of human cancers, including OS. In this study, the authors focused on the role and mechanism of circRNA signal-induced proliferation-associated 1 like 1 (circ_SIPA1L1) in OS. Methods: The enrichment of SIPA1L1, circ_SIPA1L1, microRNA-379-5p (miR-379-5p), and mitogen-activated protein kinase kinase kinase 9 (MAP3K9) was assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The colony formation capacity was assessed through colony formation assay. Transwell assays were used to detect the migration and invasion abilities. Western blot assay was used to measure the expression of metastasis-related proteins and MAP3K9. The target interactions between the genes in circ_SIPA1L1/miR-379-5p/MAP3K9 axis were predicted by StarBase and confirmed by dual-luciferase reporter assay. The in vivo role of circ_SIPA1L1 was verified by murine xenograft assay. Results: Circ_SIPA1L1 abundance was aberrantly elevated in OS tissues and cell lines. Circ_SIPA1L1 accelerated the proliferation and metastasis abilities of OS cells. Circ_SIPA1L1 promoted the malignant behaviors of OS cells through elevating MAP3K9 level. MiR-379-5p directly bound to circ_SIPA1L1 and MAP3K9. MiR-379-5p interference rescued the abilities of proliferation and metastasis in OS cells, which were suppressed by the silencing of circ_SIPA1L1. Circ_SIPA1L1 promoted the development of OS via miR-379-5p/MAP3K9 in vivo. Conclusion: Circ_SIPA1L1 promoted the progression of OS via miR-379-5p/MAP3K9 axis.
Collapse
Affiliation(s)
- Liu Jun
- Department of Traumatic Orthopedics II Ward and Weifang People's Hospital, Weifang, China
| | - Li Xuhong
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| | - Liu Hui
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| |
Collapse
|
12
|
O'Neill DG, Edmunds GL, Urquhart-Gilmore J, Church DB, Rutherford L, Smalley MJ, Brodbelt DC. Dog breeds and conformations predisposed to osteosarcoma in the UK: a VetCompass study. Canine Med Genet 2023; 10:8. [PMID: 37365662 DOI: 10.1186/s40575-023-00131-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Osteosarcoma is a malignant bone neoplasia that has high welfare consequences for affected dogs. Awareness of breed and canine conformational risk factors for osteosarcoma can assist with earlier diagnosis and improved clinical management. Study of osteosarcoma in dogs also offers translational value for humans. Anonymised clinical data within VetCompass on dogs under primary veterinary care in the UK were searched for osteosarcoma cases. Descriptive statistics reported overall and breed-specific prevalence. Risk factor analysis used multivariable logistic regression modelling. RESULTS From 905,552 study dogs, 331 osteosarcoma cases were confirmed yielding a one-year period prevalence of 0.037% (95% CI: 0.033-0.041). Breeds with the highest annual prevalence were the Scottish Deerhound (3.28%, 95% CI 0.90-8.18), Leonberger (1.48%, 95% CI 0.41- 3.75), Great Dane (0.87%, 95% CI 0.43- 1.55) and Rottweiler (0.84%, 95% CI 0.64-1.07). The median age at diagnosis was 9.64 years (IQR: 7.97-11.41). Following multivariable modelling, 11 breeds showed increased odds of osteosarcoma compared with crossbred dogs. Breeds with the highest odds included Scottish Deerhound (OR 118.40, 95% CI 41.12-340.95), Leonberger (OR 55.79, 95% CI 19.68-158.15), Great Dane (OR 34.24, 95% CI 17.81-65.83) and Rottweiler (OR 26.67, 95% CI 18.57-38.29). Compared with breeds with mesocephalic skull conformation, breeds with dolichocephalic skull conformation (OR 2.72, 95% CI 2.06-3.58) had increased odds while breeds with brachycephalic skull conformation showed reduced odds (OR 0.50, 95% CI 0.32-0.80). Chondrodystrophic breeds had 0.10 times the odds (95% CI 0.06-0.15) compared with non-chondrodystrophic breeds. Increasing adult bodyweight was associated with increasing odds of osteosarcoma. CONCLUSIONS The current study cements the concept that breed, bodyweight and longer leg or longer skull length are all strong risk factors for osteosarcoma in dogs. With this awareness, veterinarians can update their clinical suspicion and judgement, breeders can select towards lower-risk animals, and researchers can robustly define more useful study populations for fundamental and translational bioscience.
Collapse
Affiliation(s)
- Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK.
| | - Grace L Edmunds
- School of Veterinary Sciences, University of Bristol and Langford Vets, Stock Lane, Langford, BS40 5DU, UK
| | - Jade Urquhart-Gilmore
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - David B Church
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Lynda Rutherford
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| |
Collapse
|
13
|
Xu Y, Zhang Y, Luo Y, Qiu G, Lu J, He M, Wang Y. Novel insights into the METTL3-METTL14 complex in musculoskeletal diseases. Cell Death Discov 2023; 9:170. [PMID: 37202385 DOI: 10.1038/s41420-023-01435-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
N6-methyladenosine (m6A) modification, catalyzed by methyltransferase complexes (MTCs), plays many roles in multifaceted biological activities. As the most important subunit of MTCs, the METTL3-METTL14 complex is reported to be the initial factor that catalyzes the methylation of adenosines. Recently, accumulating evidence has indicated that the METTL3-METTL14 complex plays a key role in musculoskeletal diseases in an m6A-dependent or -independent manner. Although the functions of m6A modifications in a variety of musculoskeletal diseases have been widely recognized, the critical role of the METTL3-METTL14 complex in certain musculoskeletal disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis and osteosarcoma, has not been systematically revealed. In the current review, the structure, mechanisms and functions of the METTL3-METTL14 complex and the mechanisms and functions of its downstream pathways in the aforementioned musculoskeletal diseases are categorized and summarized.
Collapse
Affiliation(s)
- Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Jie Lu
- Department of Cardiology, Shenyang Fourth People's Hospital, China Medical University, 110031, Shenyang, Liaoning, People's Republic of China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, People's Republic of China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
14
|
Sharin F, Pai A, Mair M. Management of osteosarcoma of the head and neck. Curr Opin Otolaryngol Head Neck Surg 2023:00020840-990000000-00066. [PMID: 37144500 DOI: 10.1097/moo.0000000000000900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW There is no clear consensus guideline that specifies the optimum course of treatment for adult head and neck osteosarcoma (HNO) because of its rarity. The review's goal is to examine the most recent research on the presentation, diagnosis, prognosis, and therapy of head and neck osteosarcoma. RECENT FINDINGS Due to overlapping symptoms with various benign disorders of the lower jaw and midface bone, these patients present with a noticeable delay. The greatest results for these malignancies can be achieved with surgery with sufficient margins. However, it may not be able to achieve sufficient margins in tumours of the midface and skull base, and the significance of adjuvant radiation/chemotherapy needs to be investigated. The use of adjuvant radiation in instances with an advanced stage, poor prognostic indicators, and inadequate resection is supported by evidence. Nonetheless, there are divergent opinions regarding the advantages of chemotherapy in adjuvant and neoadjuvant conditions, and further multicentric randomized control trials are required to provide robust evidence. SUMMARY Multimodality treatments seem to yield better results for advanced HNO with adverse features and incomplete resections.
Collapse
Affiliation(s)
| | | | - Manish Mair
- University hospital of Leicester, Leicester, UK
| |
Collapse
|
15
|
Shao Z, Li J, Liu Z, Bi S. Establishment and validation of systematic prognostic nomograms in patients over 60 years of age with osteosarcoma: A multicenter external verification study. Cancer Med 2023; 12:9589-9603. [PMID: 36992547 PMCID: PMC10166929 DOI: 10.1002/cam4.5736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The aim of this study was to develop and validate systematic nomograms to predict cancer specific survival (CSS) and overall survival (OS) in osteosarcoma patients aged over 60 years. METHODS We used data from the Surveillance, Epidemiology, and End Results (SEER) database and identified 982 patients with osteosarcoma over 60 years of age diagnosed between 2004 and 2015. Overall, 306 patients met the requirements for the training group. Next, we enrolled 56 patients who met the study requirements from multiple medical centers as the external validation group to validate and analyze our model. We collected all available variables and finally selected eight that were statistically associated with CSS and OS through Cox regression analysis. Integrating the identified variables, we constructed 3- and 5-year OS and CSS nomograms, respectively, which were further evaluated by calculating the C-index. A calibration curve was used to evaluate the accuracy of the model. Receiver operating characteristic (ROC) curves measured the predictive capacity of the nomograms. The Kaplan-Meier analysis was used for all patient-based variables to explore the influence of various factors on patient survival. Finally, a decision curve analysis (DCA) curve was used to analyze whether our model would be suitable for application in clinical practice. RESULTS Cox regression analysis of clinical variables identified age, sex, marital status, tumor grade, tumor laterality, tumor size, M-stage, and surgical treatment as prognostic factors. Nomograms showed good predictive capacity for OS and CSS. We calculated that the C-index of the OS nomogram of the training population was 0.827 (95% CI 0.778-0.876), while that of the CSS nomogram was 0.722 (95% CI 0.665-0.779). The C-index of the OS nomogram evaluated on the external validation population was 0.716 (95% CI 0.575-0.857), while that of the CSS nomogram was 0.642 (95% CI 0.50-0.788). Furthermore, the calibration curve of our prediction models indicated the nomograms could accurately predict patient outcome. CONCLUSIONS The constructed nomogram is a useful tool for accurately predicting OS and CSS at 3 and 5 years for patients over 60 years of age with osteosarcoma and can assist clinicians in making appropriate decisions in practice.
Collapse
Affiliation(s)
- Zhuce Shao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - JiaChen Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ze Liu
- Shanxi Province Cancer Hospital, Taiyuan, China
| | - Shuxiong Bi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
16
|
Ottaviani G. Prof Norman Jaffe, DSc, MD (1933-2022): The Osteosarcoma Giant. Cancer 2023; 129:819-821. [PMID: 36639827 DOI: 10.1002/cncr.34599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Giulia Ottaviani
- Lino Rossi Research Center, Department of Biomedical, Surgical, and Dental Sciences, Università degli Studi di Milano, Milan, Italy.,Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
17
|
Bielack SS, Lindner LH, Egerer G, Benzler K, Blattmann C, Grube M, Hahn D, Kager L, Kühne T, Mettmann V, Reichardt P, Hecker-Nolting S. Osteosarcomas in older adults: A report from the Cooperative Osteosarcoma Study Group. J Geriatr Oncol 2023; 14:101445. [PMID: 36842425 DOI: 10.1016/j.jgo.2023.101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/27/2023]
Abstract
INTRODUCTION Osteosarcoma is typically a disease of the young, but may affect any age. Little is known about the disease in older patients beyond retirement age. We aim to describe the characteristics, treatment, and outcomes of older adult patients registered with our cooperative group. MATERIALS AND METHODS The database of the Cooperative Osteosarcoma Study Group (COSS) was searched for osteosarcoma patients diagnosed from 1980 to 2020 who were aged 65 years or older at diagnosis. Affected individuals were analyzed for presenting factors, treatments employed, and outcomes. RESULTS Fifty-five eligible patients were detected (median age 68 [range: 65-84] years; male:female = 25:30). Among these patients, 15/55 (27%) tumors were secondary malignancies, 41/55 (75%) were high-grade central, 4/55 (7%) surface, and 10/55 (18%) extraosseous malignancies, and all but three high-grade. Primary metastases were present in 15/55 (27%) patients. Surgery was reported for 46/55 (84%) patients, radiotherapy for 6/54 (11%, 1 unknown), chemotherapy for 42/50 (84%, 5 unknown). A complete surgical remission was achieved in 31/55 (56%). There were two toxic deaths. With a median follow-up of 1.7 (range: 0.1-18.0) years for all 55 patients and 2.2 (0.1-12.4) years for 24 survivors, event-free and overall survival at 2/5 years were 39.6% (standard error: 6.8%) / 24.5% (6.5%) and 62.0% (7.1%) / 32.7% (7.5%), respectively. Tumor site, metastatic status, surgery, and a complete surgical remission were prognostic for event-free and/or overall survival. DISCUSSION Osteosarcomas can occur in older individuals. It is more often secondary, axially located, or extraosseous than in younger patients. However, the same treatment principles seem to apply, and selected patients may be cured. Multi-center cooperation is encouraged, thereby gathering expertise for such a rare disease presentation.
Collapse
Affiliation(s)
- Stefan S Bielack
- Cooperative Osteosarkom-Studiengruppe Gruppe COSS, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), Zentrum für Kinder-, Jugend- und Frauenmedizin, Stuttgart Cancer Center, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany; Klinik für Kinder- und Jugendmedizin, Pädiatrische Hämatologie und Onkologie, Universitätsklinikum Münster, Münster, Germany.
| | | | - Gerlinde Egerer
- Universitätsklinikum Heidelberg, Innere Medizin V: Hämatologie, Onkologie und Rheumatologie, Heidelberg, Germany
| | - Katrin Benzler
- Universitätsklinikum Tübingen; Innere Medizin II, Zentrum für Weichteilsarkome/GIST und Knochentumore, Tübingen, Germany
| | - Claudia Blattmann
- Cooperative Osteosarkom-Studiengruppe Gruppe COSS, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), Zentrum für Kinder-, Jugend- und Frauenmedizin, Stuttgart Cancer Center, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany
| | - Matthias Grube
- Universitätsklinikum Regensburg, Klinik und Poliklinik für Innere Medizin III, Regensburg, Germany
| | - Dennis Hahn
- Klinik für Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Stuttgart Cancer Center, Klinikum Stuttgart - Katharinenhospital, Stuttgart, Germany
| | - Leo Kager
- St. Anna Kinderspital, Universitätsklinik für Kinder- und Jugendheilkunde der Medizinischen Universität Wien, and St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Thomas Kühne
- Universitäts-Kinderspital beider Basel, Abteilung für Pädiatrische Onkologie / Hämatologie, Basel, Switzerland
| | - Vanessa Mettmann
- Cooperative Osteosarkom-Studiengruppe Gruppe COSS, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), Zentrum für Kinder-, Jugend- und Frauenmedizin, Stuttgart Cancer Center, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany
| | - Peter Reichardt
- Onkologie und Palliativmedizin, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Stefanie Hecker-Nolting
- Cooperative Osteosarkom-Studiengruppe Gruppe COSS, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), Zentrum für Kinder-, Jugend- und Frauenmedizin, Stuttgart Cancer Center, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany
| |
Collapse
|
18
|
The Prognostic Model Established by the Differential Expression Genes Based on CD8 + T Cells to Evaluate the Prognosis and the Response to Immunotherapy in Osteosarcoma. Mediators Inflamm 2023; 2023:6563609. [PMID: 36816742 PMCID: PMC9934978 DOI: 10.1155/2023/6563609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Osteosarcoma (OS) is a malignant tumor with an extremely poor prognosis, especially in progressive patients. Immunotherapy based on immune checkpoint inhibitors (ICIs) is considered to be a promising treatment option for OS. Due to tumor heterogeneity, only a minority of patients benefit from immunotherapy. Therefore, it is urgent to explore a model that can accurately assess the response of OS to immunotherapy. In this study, we obtained the single-cell RNA sequencing datasets of OS patients from public databases and defined 34 cell clusters by dimensional reduction and clustering analysis. PTPRC was applied to identify immune cell clusters and nonimmune cell clusters. Next, we performed clustering analysis on the immune cell clusters and obtained 25 immune cell subclusters. Immune cells were labeled with CD8A and CD8B to obtain CD8+ T cell clusters. Meanwhile, we extracted the differentially expressed genes (DEGs) of CD8+ T cell clusters and other immune cell clusters. Furthermore, we constructed a prognostic model (CD8-DEG model) based on the obtained DEGs of CD8+ T cells, and verified the excellent predictive ability of this model for the prognosis of OS. Moreover, we further investigated the value of the CD8-DEG model. The results indicated that the risk score of the CD8-DEG model was an independent risk factor for OS patients. Finally, we revealed that the risk score of the CD8-DEG model correlates with the immune profile of OS and can be used to evaluate the response of OS to immunotherapy. In conclusion, our study revealed the critical role of CD8 cells in OS. The risk score model based on CD8-DEGs can provide guidance for prognosis and immunotherapy of OS.
Collapse
|
19
|
Oka N, Hashimoto K, Nishimura S, Maenishi O, Akagi M. Secondary osteosarcoma associated with osteofibrous dysplasia: a case report. Skeletal Radiol 2023; 52:263-269. [PMID: 35939070 DOI: 10.1007/s00256-022-04122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/02/2023]
Abstract
Secondary osteosarcoma is a rare complication of primary malignancies and benign bone lesions. There are various types of diseases that cause secondary osteosarcoma. A 15-year-old male presented at our medical center complaining of pain and redness in the right lower leg. He had been diagnosed with osteofibrous dysplasia in the right tibia when he was 2 years old and since then had been followed up. Although he had a pathological fracture of the right tibia at the age of 7, his fracture healed with a plaster cast and did not require surgery. At the time of the patient's last visit, a radiograph revealed a periosteal reaction as well as erosion of the bone cortex. Magnetic resonance imaging revealed an infiltrative area in the soft tissue surrounding the osteofibrous dysplasia lesion in the tibia. Consequent to pathological examination (through bone biopsy), the patient was diagnosed with secondary osteosarcoma. The patient underwent chemotherapy and extensive resection with liquid nitrogen. He has been progressing satisfactorily after the operation. The present case is the first report of secondary osteosarcoma associated with osteofibrous dysplasia. During the long-term follow-up of osteofibrous dysplasia, oncologists should be aware of the possibility of secondary osteosarcoma.
Collapse
Affiliation(s)
- Naohiro Oka
- Department of Orthopaedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka, 589-8511, Japan.
| | - Kazuhiko Hashimoto
- Department of Orthopaedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka, 589-8511, Japan
| | - Shunji Nishimura
- Department of Orthopaedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka, 589-8511, Japan
| | - Osamu Maenishi
- Department of Pathology, Kindai University Hospital, Osaka-Sayama City, Osaka, 589-8511, Japan
| | - Masao Akagi
- Department of Orthopaedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka, 589-8511, Japan
| |
Collapse
|
20
|
Dai S, Shao X, Wei Q, Du S, Hou C, Li H, Jin D. Association of circulating tumor cells and IMP3 expression with metastasis of osteosarcoma. Front Oncol 2023; 13:819357. [PMID: 36937398 PMCID: PMC10021108 DOI: 10.3389/fonc.2023.819357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Background Circulating tumor cells (CTCs) have been identified as a prognostic biomarker of tumors such as breast cancer and nasopharyngeal carcinoma, because they are obtained through a simple and noninvasive blood draw or liquid biopsy, but its clinical significance in osteosarcoma is still unclear. In this study, we analyzed the relationship between CTCs and clinicopathological features and discussed whether CTCs could be used as a biomarker for metastasis in osteosarcoma. Methods We enrolled 50 osteosarcoma patients with Enneking Stage IIB and Stage III and detected CTCs in 5 ml of peripheral blood samples collected from patients using the Canpatrol® CTC detection platform. Subsequently, multiplex RNA in situ hybridization (RNA-ISH) based on various molecular markers was performed to identify and classify CTCs. The relationships between clinical pathological features and CTC counts, subtypes (epithelial type, E type; hybrid epithelial/mesenchymal type, H type; mesenchymal type, M type), and insulin-like growth factor mRNA-binding protein 3 (IMP3) expression in CTCs were analyzed. Results CTCs were detected in 86% (43/50) of the osteosarcoma patients. The CTC counts, especially the total CTCs and H-type CTCs, signifcantly differed between Enneking Stage IIB and Stage III patients (P < 0.05). No significant differences were observed between the CTC count or type and other clinicopathological features (P > 0.05). There were significant differences in the expression of IMP3 in different types of CTCs, and the IMP3 positive rates in E/H/M type CTCs were 38.4, 65.6, and 62.0%, respectively (P < 0.001). Receiver operating characteristic (ROC) curve analysis showed that IMP3-positive CTC count had the best performance for diagnostic metastasis, with the largest area under the curve of 0.873 and cutoff value of four cells/5ml blood (sensitivity = 87.5%; specificity = 82.4%). Serial CTC monitoring in one patient suggested that total CTCs and H-type CTCs were associated with disease progression. Conclusion This study demonstrates that the CTCs, especially the IMP3-positive CTCs and H/M-type CTCs, are related to the metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Shuangwu Dai
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinxin Shao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingzhu Wei
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shaohua Du
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Changhe Hou
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Haomiao Li
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Dadi Jin, ; Haomiao Li,
| | - Dadi Jin
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Dadi Jin, ; Haomiao Li,
| |
Collapse
|
21
|
Gao Q, Yao Y, Xu Q. Guideline and Implementation of Osteosarcoma Nursing Care for Children and Adolescents. Appl Bionics Biomech 2022; 2022:2021162. [PMID: 36267672 PMCID: PMC9578899 DOI: 10.1155/2022/2021162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical trials on pediatric oncology use therapeutic techniques with the overwhelming majority of children's cancer patients obtaining therapy via clinical investigation procedures. Medical treatment is scheduled according to a specific protocol for enrolled patients. These protocols often do not refer to nursing care. Nursing care, on the other hand, must complement the medical care specified in the medical research protocol. Safe treatment administration, assessment of treatment responses, patients' and families' education, and communication with the whole medical team are just a few of the critical nursing tasks that should be properly managed. Nursing care standards have been developed in this study to strike a good balance between the procedure for clinical research and the nursing care connected with it. These recommendations outline the nursing activities and considerations that must be made while caring for pediatric cancer patients who are engaged in a specific clinical investigation procedure. The objective of this study is to outline the procedure through which nursing care guidelines could be developed and evaluated. The goal of this study was to find out the involvement of nurses in the process of health education for osteosarcoma and family patients.
Collapse
Affiliation(s)
- Qian Gao
- Nursing Department, Department of Bone Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, China
| | - Yuhong Yao
- Nursing Department, Department of Bone Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, China
| | - Qi Xu
- Nursing Department, Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, China
| |
Collapse
|
22
|
Does Systemic Chemotherapy Influence Skeletal Growth of Young Osteosarcoma Patients as a Treatment-Related Late Adverse Effect? Curr Oncol 2022; 29:4081-4089. [PMID: 35735434 PMCID: PMC9221654 DOI: 10.3390/curroncol29060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the influence of systemic chemotherapy on the skeletal growth of young osteosarcoma patients as a treatment-related late adverse effect. We reviewed the height data of 20 osteosarcoma patients (13 males and 7 females) aged ≤18 years. The average (±SD) age at diagnosis was 14.5 (±3.3) years. The average follow-up interval was 89.6 months. After wide resection of the affected bones, reconstruction with tumor prostheses and auto-bone grafting was carried out in 11 and 9 cases, respectively. Pearson’s correlation coefficient was calculated to evaluate the association between actual and predicted (using Paley’s multiplier method) heights. Z-scores were used to compare the initial and final heights with the Japanese national growth curve. Actual and predicted heights were correlated according to Pearson’s correlation coefficient (R = 0.503). Z-analysis showed that statistical significance (p = 0.04) was noted for the height data Z-scores of patients between ≤10 years and >10 years at the final follow-up. Systemic chemotherapy did not reduce skeletal growth in young osteosarcoma patients as a late adverse effect based on two different evaluation methods. However, patients aged ≤10 years at diagnosis may develop a short stature after systemic chemotherapy.
Collapse
|
23
|
Beck J, Ren L, Huang S, Berger E, Bardales K, Mannheimer J, Mazcko C, LeBlanc A. Canine and murine models of osteosarcoma. Vet Pathol 2022; 59:399-414. [PMID: 35341404 PMCID: PMC9290378 DOI: 10.1177/03009858221083038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children. Despite efforts to develop and implement new therapies, patient outcomes have not measurably improved since the 1980s. Metastasis continues to be the main source of patient mortality, with 30% of cases developing metastatic disease within 5 years of diagnosis. Research models are critical in the advancement of cancer research and include a variety of species. For example, xenograft and patient-derived xenograft (PDX) mouse models provide opportunities to study human tumor cells in vivo while transgenic models have offered significant insight into the molecular mechanisms underlying OS development. A growing recognition of naturally occurring cancers in companion species has led to new insights into how veterinary patients can contribute to studies of cancer biology and drug development. The study of canine cases, including the use of diagnostic tissue archives and clinical trials, offers a potential mechanism to further canine and human cancer research. Advancement in the field of OS research requires continued development and appropriate use of animal models. In this review, animal models of OS are described with a focus on the mouse and tumor-bearing pet dog as parallel and complementary models of human OS.
Collapse
Affiliation(s)
| | - Ling Ren
- National Cancer Institute, Bethesda, MD
| | | | | | - Kathleen Bardales
- National Cancer Institute, Bethesda, MD
- University of Pennsylvania, Philadelphia, PA
| | | | | | | |
Collapse
|
24
|
Saraf R, Datta A, Sima C, Hua J, Lopes R, Bittner ML, Miller T, Wilson-Robles HM. In Silico Modeling of the Induction of Apoptosis by Cryptotanshinone in Osteosarcoma Cell Lines. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1683-1693. [PMID: 33180729 DOI: 10.1109/tcbb.2020.3037318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor of both children and pet canines. Its characteristic genomic instability and complexity coupled with the dearth of knowledge about its etiology has made improvement in the current treatment difficult. We use the existing literature about the biological pathways active in OS and combine it with the current research involving natural compounds to identify new targets and design more effective drug therapies. The key components of these pathways are modeled as a Boolean network with multiple inputs and multiple outputs. The combinatorial circuit is employed to theoretically predict the efficacies of various drugs in combination with Cryptotanshinone. We show that the action of the herbal drug, Cryptotanshinone on OS cell lines induces apoptosis by increasing sensitivity to TNF-related apoptosis-inducing ligand (TRAIL) through its multi-pronged action on STAT3, DRP1 and DR5. The Boolean framework is used to detect additional drug intervention points in the pathway that could amplify the action of Cryptotanshinone.
Collapse
|
25
|
Tang C, Wang D, Wu Y, Xu H, Zhang H. Surgery Has Positive Effects on Spinal Osteosarcoma Prognosis: A Population-Based Database Study. World Neurosurg 2022; 164:e367-e386. [PMID: 35504478 DOI: 10.1016/j.wneu.2022.04.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The treatment of osteosarcoma of the spine remains controversial. Our aim was to explore the treatment of patients with spinal osteosarcoma. METHODS We analyzed the data from 727 spinal osteosarcoma patients from the Surveillance, Epidemiology, and End Results database from 1973 to 2015. X-tile software was used to find the optimal cutoff values for age and economic income. The Kaplan-Meier estimator method was used to analyze overall survival and cancer-specific survival. Univariate and multivariate Cox analyses were used to identify the independent prognostic factors. Propensity score matching was used to reduce the possibility of selection bias. A logistic regression model was used to clarify the relevant factors affecting a patient's decision to undergo surgery. RESULTS Among 727 eligible spinal osteosarcoma patients, 370 (50.9%) had undergone surgery and 357 (49.1%) had not undergone surgery. Significant differences were found in the effects of patient age at diagnosis, Surveillance, Epidemiology, and End Results historical stage, and tumor grade on the patients' decision to undergo surgery (P < 0.05). Surgery was an independent prognostic factor for overall survival and cancer-specific survival of patients with spinal osteosarcoma. The same results were found after 1:1 propensity score matching. The surgery group had more favorable survival compared with the nonsurgery group. CONCLUSIONS Surgery can provide survival benefits for patients with osteosarcoma of the spine. The patients with spinal osteosarcoma who had undergone surgery experienced favorable survival benefits. Thus, surgery can be a suitable treatment for patients with spinal osteosarcoma.
Collapse
Affiliation(s)
- Chao Tang
- Orthopedic Department, People's Hospital of Putuo District, Tongji University School of Medicine, Shanghai, China; Pain Department, Pizhou City People's Hospital, Xuzhou Medical University, Xuzhou City, China
| | - Dongdong Wang
- Orthopedics Department, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuman Wu
- Fifth Clinical Medical College, Hubei University of Medicine, Hubei, China
| | - Hengyuan Xu
- Jiakou Community Health Service Center, Pizhou City People's Hospital, Xuzhou Medical University, Xuzhou City, China
| | - Hailong Zhang
- Orthopedic Department, People's Hospital of Putuo District, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Dana PM, Sadoughi F, Asemi Z, Yousefi B. Molecular signaling pathways as potential therapeutic targets in osteosarcoma. Curr Med Chem 2022; 29:4436-4444. [PMID: 35139778 DOI: 10.2174/0929867329666220209110009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Among primary bone malignancies, osteosarcoma (OS) is the most common form causing morbidity and mortality in both adults and children. The interesting point about this malignancy is that nearly 10-20% of its newly diagnosed cases have developed metastasis. This adds up to the fact that the survival rate of both metastatic and non-metastatic patients of osteosarcoma hasn't changed in the past 30 years and suggests that we need to revise our therapeutic options for OS. In recent years, diverse signaling pathways have drawn the attention of the scientific community since they can be great candidates for treating complicated diseases such as cancer. In this review, we have tried to explain the pathophysiology of osteosarcoma by the help of different signaling pathways taking part in its initiation/progression and investigate how this pathway can be targeted for providing more efficient methods.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Raimondi L, Gallo A, Cuscino N, De Luca A, Costa V, Carina V, Bellavia D, Bulati M, Alessandro R, Fini M, Conaldi PG, Giavaresi G. Potential Anti-Metastatic Role of the Novel miR-CT3 in Tumor Angiogenesis and Osteosarcoma Invasion. Int J Mol Sci 2022; 23:705. [PMID: 35054891 PMCID: PMC8775549 DOI: 10.3390/ijms23020705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor mainly occurring in young adults and derived from primitive bone-forming mesenchyme. OS develops in an intricate tumor microenvironment (TME) where cellular function regulated by microRNAs (miRNAs) may affect communication between OS cells and the surrounding TME. Therefore, miRNAs are considered potential therapeutic targets in cancer and one of the goals of research is to accurately define a specific signature of a miRNAs, which could reflect the phenotype of a particular tumor, such as OS. Through NGS approach, we previously found a specific molecular profile of miRNAs in OS and discovered 8 novel miRNAs. Among these, we deepen our knowledge on the fifth candidate renamed now miR-CT3. MiR-CT3 expression was low in OS cells when compared with human primary osteoblasts and healthy bone. Through TargetScan, VEGF-A was predicted as a potential biological target of miR-CT3 and luciferase assay confirmed it. We showed that enforced expression of miR-CT3 in two OS cell lines, SAOS-2 and MG-63, reduced expression of VEGF-A mRNA and protein, inhibiting tumor angiogenesis. Enforced expression of miR-CT3 also reduced OS cell migration and invasion as confirmed by soft agar colony formation assay. Interestingly, we found that miR-CT3 behaves inducing the activation of p38 MAP kinase pathway and modulating the epithelial-mesenchymal transition (EMT) proteins, in particular reducing Vimentin expression. Overall, our study highlights the novel role of miR-CT3 in regulating tumor angiogenesis and progression in OS cells, linking also to the modulation of EMT proteins.
Collapse
Affiliation(s)
- Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Alessia Gallo
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Nicola Cuscino
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Matteo Bulati
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (B.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Pier Giulio Conaldi
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| |
Collapse
|
28
|
LIM Kinases in Osteosarcoma Development. Cells 2021; 10:cells10123542. [PMID: 34944050 PMCID: PMC8699892 DOI: 10.3390/cells10123542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Tumorigenesis is a long-term and multistage process that often leads to the formation of metastases. During this pathological course, two major events appear to be crucial: primary tumour growth and metastatic expansion. In this context, despite research and clinical advances during the past decades, bone cancers remain a leading cause of death worldwide among paediatric cancer patients. Osteosarcomas are the most common malignant bone tumours in children and adolescents. Notwithstanding advances in therapeutic treatments, many patients succumb to these diseases. In particular, less than 30% of patients who demonstrate metastases at diagnosis or are poor responders to chemotherapy survive 5 years after initial diagnosis. LIM kinases (LIMKs), comprising LIMK1 and LIMK2, are common downstream effectors of several signalization pathways, and function as a signalling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. In recent decades, several reports have indicated that the functions of LIMKs are mainly implicated in the regulation of actin microfilament and the control of microtubule dynamics. Previous studies have thus identified LIMKs as cancer-promoting regulators in multiple organ cancers, such as breast cancer or prostate cancer. This review updates the current understanding of LIMK involvement in osteosarcoma progression.
Collapse
|
29
|
Lee CW, Chiang YC, Yu PA, Peng KT, Chi MC, Lee MH, Fang ML, Lee KH, Hsu LF, Liu JF. A Role of CXCL1 Drives Osteosarcoma Lung Metastasis via VCAM-1 Production. Front Oncol 2021; 11:735277. [PMID: 34760697 PMCID: PMC8573405 DOI: 10.3389/fonc.2021.735277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma, a common aggressive and malignant cancer, appears in the musculoskeletal system among young adults. The major cause of mortality in osteosarcoma was the recurrence of lung metastases. However, the molecular mechanisms of metastasis involved in osteosarcomas remain unclear. Recently, CXCL1 and CXCR2 have been crucial indicators for lung metastasis in osteosarcoma by paracrine releases, suggesting the involvement of directing neutrophils into tumor microenvironment. In this study, overexpression of CXCL1 has a positive correlation with the migratory and invasive activities in osteosarcoma cell lines. Furthermore, the signaling pathway, CXCR2/FAK/PI3K/Akt, is activated through CXCL1 by promoting vascular cell adhesion molecule 1 (VCAM-1) via upregulation of nuclear factor-kappa B (NF-κB) expression and nuclear translocation. The in vivo animal model further demonstrated that CXCL1 serves as a critical promoter in osteosarcoma metastasis to the lung. The correlated expression of CXCL1 and VCAM-1 was observed in the immunohistochemistry staining from human osteosarcoma specimens. Our findings demonstrate the cascade mechanism regulating the network in lung metastasis osteosarcoma, therefore indicating that the CXCL1/CXCR2 pathway is a worthwhile candidate to further develop treatment schemas.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Yao-Chang Chiang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Pei-An Yu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Sports Medicine Center, Chang Gung Memorial Hospital at Chia Yi, Chiayi, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Miao-Ching Chi
- Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hsueh Lee
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan.,Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| | - Kuan-Han Lee
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Mullard M, Lavaud M, Regnier L, Tesfaye R, Ory B, Rédini F, Verrecchia F. Ubiquitin-specific proteases as therapeutic targets in paediatric primary bone tumours? Biochem Pharmacol 2021; 194:114797. [PMID: 34678225 DOI: 10.1016/j.bcp.2021.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
In children and young adults, primary malignant bone tumours are mainly composed of osteosarcoma and Ewing's sarcoma. Despite advances in treatments, nearly 40% of patients succumb to these diseases. In particular, the clinical outcome of metastatic osteosarcoma or Ewing's sarcoma remains poor, with less than 30% of patients who develop metastases surviving five years after initial diagnosis. Over the last decade, the cancer research community has shown considerable interest in the processes of protein ubiquitination and deubiquitination. In particular, a growing number of studies show the relevance to target the ubiquitin-specific protease (USP) family in various cancers. This review provides an update on the current knowledge regarding the implication of these USPs in the progression of bone sarcoma: osteosarcoma and Ewing's sarcoma.
Collapse
Affiliation(s)
- Mathilde Mullard
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Mélanie Lavaud
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Laura Regnier
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Robel Tesfaye
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Benjamin Ory
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Françoise Rédini
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Franck Verrecchia
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France.
| |
Collapse
|
31
|
Zhang S, Ren H, Sun H, Cao S. Dieckol exerts anticancer activity in human osteosarcoma (MG-63) cells through the inhibition of PI3K/AKT/mTOR signaling pathway. Saudi J Biol Sci 2021; 28:4908-4915. [PMID: 34466065 PMCID: PMC8381078 DOI: 10.1016/j.sjbs.2021.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common malignant bone cancer with more metastasis and increased occurrence in children and teen-agers and being responsible for more number of morbidity and mortality worldwide. Objective The current exploration was planned study the in vitro anticancer actions of dieckol against human OS MG-63 cells via PI3K/AKT/mTOR signaling inhibition. Methodology The cytotoxicity of dieckol was scrutinized by MTT assay. Effects of dieckol on the ROS accumulation, apoptotic cell death, and MMP level in the MG-63 cells were studied by respective fluorescence staining assays. The levels of proliferative, inflammatory, and apoptotic markers in the dieckol treated MG-63 cells were scrutinized by marker specific kits. The expressions of PI3K, AKT, and mTOR was assayed by RT-PCR. Results The MTT assay revealed that the dieckol dose dependently prevented MG-63 cells viability and the IC50 was found at 15 µM. Dieckol treatment effectively reduced the MMP level and improved the ROS generation and apoptosis in MG-63 cells. Dieckol also regulated the proliferative (cyclin D1), inflammatory (COX-2, IL-6, TNF-α, and NF-κB), and apoptotic (caspase-3, Bax, Bcl-2) markers in the MG-63 cells. The PI3K/AKT/mTOR signaling in the MG-63 cells were effectively inhibited by the dieckol treatment. Conclusion In conclusion, our findings from this study recommends that the dieckol could be a talented anticancer candidate for the OS management in the future.
Collapse
Affiliation(s)
- Shouqiang Zhang
- Department of Orthopaedic & Trauma Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong 250033, China
| | - Hui Ren
- Department of Cardiothoracic Surgery, Xinwen Mining Group Central Hospital, Xintai City, Shandong Province 271200, China
| | - Hanting Sun
- Department of Orthopaedic Surgery, ZouPing Hospital of TCM, ZouPing City, Shandong Province 256200, China
| | - Songhua Cao
- Department of Hand Surgery/Foot & Ankle Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong 250033, China
| |
Collapse
|
32
|
Circulating Long Non-Coding RNAs as Novel Potential Biomarkers for Osteogenic Sarcoma. Cancers (Basel) 2021; 13:cancers13164214. [PMID: 34439367 PMCID: PMC8392488 DOI: 10.3390/cancers13164214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Circulating cell-free nucleic acids recently became attractive targets to develop non-invasive diagnostic tools for cancer detection. Along with DNA and mRNAs, transcripts lacking coding potential (non-coding RNAs, ncRNAs) directly involved in the process of tumor pathogenesis have been recently detected in liquid biopsies. Interestingly, circulating ncRNAs exhibit specific expression patterns associated with cancer and suggest their role as novel biomarkers. However, the potential of circulating long ncRNAs (c-lncRNAs) to be markers in osteosarcoma (OS) is still elusive. In this study we performed a systematic review to identify thirteen c-lncRNAs whose altered expression in blood associate with OS. We herein discuss the potential impact that these c-lncRNAs may have on clinical decision-making in the management of OS. Overall, we aimed to provide novel insights that can contribute to the development of future precision medicine in oncology.
Collapse
|
33
|
Yang JL, Yang MD, Chen JC, Lu KW, Huang YP, Peng SF, Chueh FS, Liu KC, Lin TS, Chen PY, Chen WJ. Ouabain Induces DNA Damage in Human Osteosarcoma U-2 OS Cells and Alters the Expression of DNA Damage and DNA Repair-associated Proteins. In Vivo 2021; 35:2687-2696. [PMID: 34410957 DOI: 10.21873/invivo.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Ouabain, isolated from natural plants, exhibits anticancer activities; however, no report has presented its mechanism of DNA damage induction in human osteosarcoma cancer cells in vitro. The aim of this study was to investigate whether ouabain induces DNA damage and repair, accompanied with molecular pathways in human osteosarcoma cancer U-2 OS cells in vitro. MATERIALS AND METHODS The percentage of viable cell number was measured by flow cytometric assay; DNA damage was assayed by DAPI staining, comet assay, and agarose gel electrophoresis. DNA damage and repair associated protein expressions were assayed by western blotting assays. RESULTS Ouabain reduced total cell viability, induced chromatin condensation, DNA fragmentation, and DNA damage in U-2 OS cells. Ouabain increased p-ATMSer1981, p-ATRSer428, and p53 at 2.5-10 μM, increased p-p53Ser15 at 10 μM; however, it decreased p-MDM2Ser166 at 2.5-10 μM. Ouabain increased p-H2A.XSer139, MDC-1, and PARP at 2.5-10 μM and BRCA1 at 5-10 μM; however, it decreased DNA-PK and MGMT at 2.5-10 μM in U-2 OS cells at 48 h treatment. Ouabain promoted expression and nuclear translocation of p-H2A.XSer139 in U-2 OS cells and this was confirmed by confocal laser microscopy. CONCLUSION Ouabain reduced total viable cell number through triggering DNA damage and altering the protein expression of DNA damage and repair system in U-2 OS cells in vitro.
Collapse
Affiliation(s)
- Jiun-Long Yang
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Yilan, Taiwan, R.O.C
| | - Mei-Due Yang
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Jaw-Chyun Chen
- Department of Medicinal Botany and Health Applications, Da-Yeh University, Changhua, Taiwan, R.O.C
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, R.O.C
| | - Tzu-Shun Lin
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Yilan, Taiwan, R.O.C.,Department of Pharmacy, Saint Mary's Hospital Luodong, Yilan, Taiwan, R.O.C
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.;
| | - Wei-Jen Chen
- Department of Orthopedics, Chang Bing Show-Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.; .,Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| |
Collapse
|
34
|
Wang T, Xu Y, Liu X, Zeng Y, Liu L. miR-96-5p is the tumor suppressor in osteosarcoma via targeting SYK. Biochem Biophys Res Commun 2021; 572:49-56. [PMID: 34343834 DOI: 10.1016/j.bbrc.2021.07.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/20/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Osteosarcoma is a multiple malignant tumor in adolescents. MicroRNAs (MiRNAs) have been found to express abnormally in OS tissues and are considered as potential targets for OS prognosis and treatment. METHODS MiR-96-5p and SYK expression in clinical samples, osteoblast and OS cell lines were detected. The changes of cell proliferation, apoptosis, adhesion and metastasis of OS cells were detected by CCK-8, BrdU, caspase-3 activity and transwell assay. Dual luciferase report analysis and RNA pull-down were used to confirm binding relation of miR-96-5p and SYK. RESULTS MiR-96-5p was increased in OS tissue and cells. Moreover, miR-96-5p inhibits proliferation, adhesion and migration of HOS and Saos-2 cells, and promotes cell apoptosis. SYK has been identified to be targeted by miR-96-5p. Overexpressed SYK inhibits the suppressive impact of miR-96-5 on OS cells. CONCLUSION MiR-96-5p may function as an effective target in OS treatment.
Collapse
Affiliation(s)
- Taiping Wang
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China.
| | - Yong Xu
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Xin Liu
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Yong Zeng
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Lei Liu
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| |
Collapse
|
35
|
Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit Rev Oncol Hematol 2021; 162:103340. [PMID: 33894338 DOI: 10.1016/j.critrevonc.2021.103340] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Bone sarcomas, although rare, are associated with significant morbidity and mortality. The most frequent primary bone cancers include osteosarcoma, chondrosarcoma and Ewing sarcoma. The treatment approaches are heterogeneous and mainly chosen based on precise tumour staging. Unfortunately, clinical outcome has not changed significantly in over 30 years and tumour grade is still the best prognosticator of metastatic disease and survival. An option to improve this scenario is to identify molecular biomarkers in the early stage of the disease, or even before the disease onset. Blood-based liquid biopsies are a promising, non-invasive way to achieve this goal and there are an increasing number of studies which investigate their potential application in bone cancer diagnosis, prognosis and personalised therapy. This review summarises the interplay between clinical and molecular aspects of the three main bone sarcomas, alongside biomarker discovery and promising applications of liquid biopsy in each tumour context.
Collapse
|
36
|
Sadoughi F, Maleki Dana P, Asemi Z, Yousefi B. DNA damage response and repair in osteosarcoma: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2021; 102:103105. [PMID: 33836418 DOI: 10.1016/j.dnarep.2021.103105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 01/03/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents which has the survival rate of 20% in its advanced stages. Osteosarcomas are mostly resistance to our common treatments. DNA damage response (DDR) is a specialized multistep process containing abundant proteins which are necessary for the survival of any cell and organism. DDR machinery detects a diversity of DNA lesions and inhibits the cell cycle progression if these lesions are not repairable. DDR is involved in aging, age-related diseases, and cancer. In recent years, DDR inhibitors have gained the attention of researches due to their potentials in offering novel therapeutic targets and improving the response of many cancers to either chemo- or radio-therapy. In this regard, we tried to gather a great body of evidence about the role of DDR ingredients in osteosarcoma's initiation/progression, prognosis, and treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Al-Hashimi MM, Warttan HA. Modelling count data with an excess of zero values applied to childhood bone tumour incidence in Iraq. GEOSPATIAL HEALTH 2021; 16. [PMID: 33733648 DOI: 10.4081/gh.2021.873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Bone tumours are rarely found in children and adolescents (0- 19 years old), but there are reports from some provinces in Iraq indicating possible increases in the incidence of childhood bone cancer. Since counts are very low and often zero, or near zero, we fitted zero-inflated Poisson, zero-inflated negative binomial, Poisson hurdle, and negative binomial hurdle regression models to investigate these changes. We used data covering the 2000-2015 period taking age, gender and province into account with the aim of identifying potential health disparities. The results indicate that the zero-inflated Poisson is the most appropriate approach. We also found that, the incidence rate ratio of bone tumours for age groups of 5-9, 10-14 and 15-19 years were 134%, 490% and 723% higher, respectively, compared to the 0-4 year olds. The incidence rate was higher by 49% higher in males compared to females. Compared to 2000-2004, the rate was higher during 2005-2009 and 2010-2015 by 23% and 50%, respectively. In addition, the provinces Al-Muthana and Al-Diwaniyah in the South were found to have a higher incidence rate than other provinces. Join point analysis showed that the age-adjusted incidence rate had a significant, increasing trend, with an average percentage change of 3.1% during 2000-2015. The study suggests that further research into childhood tumours, bone tumours in particular, is needed. Reference to the effect of environmental factors in this group of medical disorders would be of special interest.
Collapse
Affiliation(s)
| | - Hasmek Antranik Warttan
- Department of Business Management Techniques, Administrative Technical College, Northern Technical University, Mosul.
| |
Collapse
|
38
|
Zhang M, Liu Y, Kong D. Identifying biomolecules and constructing a prognostic risk prediction model for recurrence in osteosarcoma. J Bone Oncol 2021; 26:100331. [PMID: 33376666 PMCID: PMC7758551 DOI: 10.1016/j.jbo.2020.100331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Osteosarcoma is a high-morbidity bone cancer with an unsatisfactory prognosis. The aim of this study is to develop novel potential prognostic biomarkers and construct a prognostic risk prediction model for recurrence in osteosarcoma. METHODS By analyzing microarray data, univariate and multivariate Cox regression analyses were performed to screen prognostic RNA signatures and to build a prognostic model. The RNA signatures were validated using Kaplan-Meier curves. Then, we developed and validated a nomogram combining age, recurrence, metastatic, and Prognostic score (PS) models to predict the individual's overall survival at the 3- and 5-year points. Pathway enrichment of RNA was conducted based on the significant co-expressed RNAs. RESULTS A total of 319 mRNAs and 14 lncRNAs were identified in the microarray data. One lncRNA (LINC00957) and six mRNAs (METL1, CA9, B3GALT4, ALDH1A1, LAMB3, and ITGB4) were identified as RNA signatures and showed good performances in survival prediction for both the training and validation cohorts. Cox regression analysis showed that the seven RNA signatures could independently predict overall survival. Furthermore, age, recurrence, metastatic, and PS models were identified as independent prognostic factors via univariate and multivariate Cox analyses (P < 0.05) and included in the prognostic nomogram. The C-index values for the 3- and 5-year overall survival predictions of the nomogram were 0.809 and 0.740, respectively. CONCLUSIONS The current study provides the novel potential of seven RNA candidates as prognostic biomarkers. Nomograms were constructed to provide accurate and individualized survival prediction for recurrence in osteosarcoma patients.
Collapse
Affiliation(s)
- Minglei Zhang
- Departments of Orthopaedics, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin 130033, China
| | - Yang Liu
- Department of Radiological, The Second Clinical Hospital of Jilin University, NO.218, Ziqiang Street, Nanguan District, Changchun, Jilin 130000, China
| | - Daliang Kong
- Departments of Orthopaedics, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin 130033, China
| |
Collapse
|
39
|
Tran V, Slavin J. Bone Tumour Pathology. Sarcoma 2021. [DOI: 10.1007/978-981-15-9414-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Liu J, Yang L, Fu Q, Liu S. Emerging Roles and Potential Biological Value of CircRNA in Osteosarcoma. Front Oncol 2020; 10:552236. [PMID: 33251132 PMCID: PMC7673402 DOI: 10.3389/fonc.2020.552236] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs that are widely found in eukaryotic cells. They have been found to play a vital biological role in the development of human diseases. At present, circRNAs have been involved in the pathogenesis, diagnosis, and targeted treatment of multiple tumors. This article reviews the research progress of circRNAs in osteosarcoma (OSA) in recent years. The potential connection between circRNAs and OSA cell proliferation, apoptosis, metastasis, and chemotherapy sensitivity or resistance, as well as clinical values, is described in this review. Their categories and functions are generally summarized to facilitate a better understanding of OSA pathogenesis, and findings suggest novel circRNA-based methods may be used to investigate OSA and provide an outlook for viable biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiamei Liu
- Department of Pathology, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyu Yang
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengye Liu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Raimondi L, De Luca A, Gallo A, Costa V, Russelli G, Cuscino N, Manno M, Raccosta S, Carina V, Bellavia D, Conigliaro A, Alessandro R, Fini M, Conaldi PG, Giavaresi G. Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs. Carcinogenesis 2020; 41:666-677. [PMID: 31294446 DOI: 10.1093/carcin/bgz130] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/07/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023] Open
Abstract
Bone microenvironment provides growth and survival signals essential for osteosarcoma (OS) initiation and progression. OS cells regulate communications inside tumor microenvironment through different ways and, among all, tumor-derived exosomes support cancer progression and metastasis. To define the contribution of OS-derived exosomes inside the microenvironment, we investigated the effects induced in bone remodeling mechanism and tumor angiogenesis. We demonstrated that exosomes promoted osteoclasts differentiation and bone resorption activity. Furthermore, exosomes potentiated tube formation of endothelial cells and increased angiogenic markers expression. We therefore investigated the micro RNA (miRNA) cargo from exosomes and their parental cells by performing small RNA sequencing through NGS Illumina platform. Hierarchical clustering highlighted a unique molecular profile of exosomal miRNA; bioinformatic analysis by DIANA-mirPath revealed that miRNAs identified take part in various biological processes and carcinogenesis. Among these miRNAs, some were already known for their involvement in the tumor microenvironment establishment, as miR-148a and miR-21-5p. Enforced expression of miR-148a and miR-21-5p in Raw264.7 and hTert immortalized umbilical vein endothelial cells recapitulated the effects induced by exosomes. Overall, our study highlighted the importance of OS exosomes in tumor microenvironment also by a specific packaging of miRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mauro Manno
- National Research Council of Italy, Institute of Byophysics, Palermo, Italy
| | - Samuele Raccosta
- National Research Council of Italy, Institute of Byophysics, Palermo, Italy
| | | | | | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | | | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
42
|
MicroRNAs as Biomarkers in Canine Osteosarcoma: A New Future? Vet Sci 2020; 7:vetsci7040146. [PMID: 33008041 PMCID: PMC7711435 DOI: 10.3390/vetsci7040146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are frequent in dogs and canine species are excellent animal models for studying the human counterpart. However, osteosarcomas are a rare form of sarcoma with high death rates in humans and dogs. miRNAs are small endogenous RNAs that regulate gene expression post-transcriptionally. The discovery of miRNAs could give a contribute in the diagnosis and prognosis of different types of tumors in animal species, as already in humans. The differentiated expression of miRNAs is a frequent finding in cancers and is related to their pathogenesis in many cases. Most canine and human sarcomas show similar miRNA aberrations. Lower levels of miR-1 and miR-133b in canine osteosarcoma tissues were found to increase tumorigenesis through a higher expression of their target genes MET and MCL1. The overexpression of miR-9 promotes a metastatic phenotype in canine osteosarcomas and its capacity as a prognostic biomarker for the disease is currently being evaluated. MicroRNAs at the 14q32 locus could be used as prognostic biomarkers, since their decreased expression has been associated with poor prognosis in canine and human osteosarcomas. Furthermore, a decreased expression of miR-34a in osteosarcoma tumour cells has been associated with shorter disease-free survival times and its reintroduction as a synthetic prodrug shows good potential as a novel therapeutic target to fight the disease. Circulating miR-214 and miR-126 are significantly increased in a broad-spectrum cancer and have the ability to successfully predict the prognosis of dogs. However, further studies are needed to make the use of miRNAs as biomarkers a common practice.
Collapse
|
43
|
Yin MC, Wang HS, Yang X, Xu CQ, Wang T, Yan YJ, Fan ZX, Ma JM, Ye J, Mo W. A Bibliometric Analysis and Visualization of Current Research Trends in Chinese Medicine for Osteosarcoma. Chin J Integr Med 2020; 28:445-452. [PMID: 32876857 DOI: 10.1007/s11655-020-3429-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND To illustrate the research framework, overall knowledge structure, and development trends of Chinese medicine (CM) treatment for osteosarcoma (OS) by using a bibliometric analysis and newly developed visualization tools. METHODS Research datasets were acquired from the Web of Science (WOS) database from January 1, 1980 to September 30, 2019. VOS viewer and Citespace software was used to analyze the data and generate visualization knowledge maps. Annual trends of publications, distribution of institutes, distribution of journals, citation and H-index status, co-authorship status, research hotspots and co-citation status were analyzed. RESULTS A total of 223 publications in the WOS database met the requirement. The number of published articles showed a rise but the citation frequency and the H-index of China were relatively low. The cooperation between the countries, institutes and authors were relatively weak. Most publications were basic researches. Most of the previous researches focused on basic mechanisms of CM in treating OS, and therapy and improvement of dosage form may become a frontier in this research field. CONCLUSIONS Compared with other fields, the field of CM treatment for osteosarcome is still in infancy. The distribution of researches is imbalanced and cooperation between countries, institutions and authors remains to be strengthened. Furthermore, basic research occupies an absolute dominant position, and the exploration of the molecular mechanism of CM in preventing and treating OS may become a key point in the future.
Collapse
Affiliation(s)
- Meng-Chen Yin
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hong-Shen Wang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Division of Spine Surgery Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Xi Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chong-Qing Xu
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Tao Wang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yin-Jie Yan
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhao-Xiang Fan
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jun-Ming Ma
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jie Ye
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wen Mo
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
44
|
Xing L, Ebetino FH, Boeckman RK, Srinivasan V, Tao J, Sawyer TK, Li J, Yao Z, Boyce BF. Targeting anti-cancer agents to bone using bisphosphonates. Bone 2020; 138:115492. [PMID: 32585321 PMCID: PMC8485333 DOI: 10.1016/j.bone.2020.115492] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
The skeleton is affected by numerous primary and metastatic solid and hematopoietic malignant tumors, which can cause localized sites of osteolysis or osteosclerosis that can weaken bones and increase the risk of fractures in affected patients. Chemotherapeutic drugs can eliminate some tumors in bones or reduce their volume and skeletal-related events, but adverse effects on non-target organs can significantly limit the amount of drug that can be administered to patients. In these circumstances, it may be impossible to deliver therapeutic drug concentrations to tumor sites in bones. One attractive mechanism to approach this challenge is to conjugate drugs to bisphosphonates, which can target them to bone where they can be released at diseased sites. Multiple attempts have been made to do this since the 1990s with limited degrees of success. Here, we review the results of pre-clinical and clinical studies made to target FDA-approved drugs and other antineoplastic small molecules to bone to treat diseases affecting the skeleton, including osteoporosis, metastatic bone disease, multiple myeloma and osteosarcoma. Results to date are encouraging and indicate that drug efficacy can be increased and side effects reduced using these approaches. Despite these successes, challenges remain: no drugs have gone beyond small phase 2 clinical trials, and major pharmaceutical companies have shown little interest in the approach to repurpose any of their drugs or to embrace the technology. Nevertheless, interest shown by smaller biotechnology companies in the technology suggests that bone-targeting of drugs with bisphosphonates has a viable future.
Collapse
Affiliation(s)
- Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA; BioVinc, Pasadena, CA 91107, USA
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - Jianguo Tao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
45
|
Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M, Grieb P, Rutkowski P. Molecular Biology of Osteosarcoma. Cancers (Basel) 2020; 12:E2130. [PMID: 32751922 PMCID: PMC7463657 DOI: 10.3390/cancers12082130] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer in children and adolescents and the third most frequent in adults. Many inherited germline mutations are responsible for syndromes that predispose to osteosarcomas including Li Fraumeni syndrome, retinoblastoma syndrome, Werner syndrome, Bloom syndrome or Diamond-Blackfan anemia. TP53 is the most frequently altered gene in osteosarcoma. Among other genes mutated in more than 10% of OS cases, c-Myc plays a role in OS development and promotes cell invasion by activating MEK-ERK pathways. Several genomic studies showed frequent alterations in the RB gene in pediatric OS patients. Osteosarcoma driver mutations have been reported in NOTCH1, FOS, NF2, WIF1, BRCA2, APC, PTCH1 and PRKAR1A genes. Some miRNAs such as miR-21, -34a, -143, -148a, -195a, -199a-3p and -382 regulate the pathogenic activity of MAPK and PI3K/Akt-signaling pathways in osteosarcoma. CD133+ osteosarcoma cells have been shown to exhibit stem-like gene expression and can be tumor-initiating cells and play a role in metastasis and development of drug resistance. Although currently osteosarcoma treatment is based on adriamycin chemoregimens and surgery, there are several potential targeted therapies in development. First of all, activity and safety of cabozantinib in osteosarcoma were studied, as well as sorafenib and pazopanib. Finally, novel bifunctional molecules, of potential imaging and osteosarcoma targeting applications may be used in the future.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Wiktoria Firlej
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Pawel Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Interinstitute Laboratory of New Diagnostic Applications of MRI, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Pawel Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| |
Collapse
|
46
|
A nomogram for predicting cancer-specific survival in patients with osteosarcoma as secondary malignancy. Sci Rep 2020; 10:12817. [PMID: 32732990 PMCID: PMC7393122 DOI: 10.1038/s41598-020-69740-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
The prognostic factors for survival among patients with secondary osteosarcoma remain unclear. The aim of this study was to develop a practical nomogram for predicting cancer-specific survival (CSS) in patients with osteosarcoma as a secondary malignancy. The surveillance, epidemiology, and end results database was used for the identification of osteosarcoma cases. The total sample comprised 5860 cases of primary osteosarcoma and 268 cases of secondary osteosarcoma during the period from 1973 to 2015. The CSS and overall survival (OS) of primary and secondary osteosarcomas were analyzed. The predictors of CSS for secondary osteosarcoma were identified and integrated to build a nomogram. Validation of the nomogram was performed using concordance index (C-index) and calibration plots. The results indicated that patients with secondary osteosarcoma had poorer CSS and OS than patients with primary osteosarcoma. The nomogram model exhibited high discriminative accuracy in the training cohort (C-index = 0.826), which was confirmed in the internal validation cohort (C-index = 0.791). In addition, the calibration plots confirmed good concordance for prediction of CSS at 3, 5, and 10 years. In conclusion, we developed a practical nomogram that provided individual predictions of CSS for patients with secondary osteosarcoma. This nomogram may help clinicians with prognostic evaluations and with the development of individualized therapies for this aggressive disease.
Collapse
|
47
|
Zhao S, Xiong W, Xu K. MiR-663a, regulated by lncRNA GAS5, contributes to osteosarcoma development through targeting MYL9. Hum Exp Toxicol 2020; 39:1607-1618. [PMID: 32633150 DOI: 10.1177/0960327120937330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is characterized by high malignancy and high metastasis rate, resulting in high mortality and disability. MiR-663a has been reported in a variety of tumors to promote tumorigenesis. However, miR-663a has not been reported in the pathogenesis of osteosarcoma. Bioinformatics analysis and experiments including real-time quantitative polymerase chain reaction (RT-qPCR), luciferase reporter, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, RNA immunoprecipitation, and flow cytometry assay were applied to explore the function and mechanism of miR-663a in MG63, U2OS, Saos-2, SF-86, and hFOB1.19 cells. In this study, we found that miR-663a is highly expressed in osteosarcoma. At the same time, we discovered that miR-663a facilitates cell proliferation and migration, whereas suppresses cell apoptosis in osteosarcoma. Through a series of biological experiments, it was found that miR-663a regulates the cellular process in osteosarcoma by modulating the expression of MYL9. In addition, we also found that long noncoding RNA (lncRNA) GAS5 serves as a molecular sponge for miR-663a and regulates the progression of osteosarcoma via the ceRNA mechanism. We uncover that miR-663a promotes osteosarcoma development through targeting MYL9, which was regulated by lncRNA GAS5.
Collapse
Affiliation(s)
- S Zhao
- Department of Orthopaedics, Ningbo Hwa Mei Hospital, 74519University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - W Xiong
- Department of Orthopaedics, Ningbo Hwa Mei Hospital, 74519University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - K Xu
- Department of Orthopaedics, Ningbo Hwa Mei Hospital, 74519University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
48
|
Luo X, Tang J, Xuan H, Liu J, Li X. Identification and Validation of a Potent Multi-miRNA Signature for Prediction of Prognosis of Osteosarcoma Patients. Med Sci Monit 2020; 26:e919272. [PMID: 32098942 PMCID: PMC7060510 DOI: 10.12659/msm.919272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Osteosarcoma, the most common solid malignancy, has high incidence and mortality rates. We constructed a miRNA-based signature that can be used to assess the prognosis of osteosarcoma patients. Material/Methods The miRNA profile was derived from the Gene Expression Omnibus (GEO) website, with matched clinical records. The miRNA-based overall survival (OS)-predicting signature was established by LASSO Cox regression analysis. Receiver operating characteristic (ROC) curve and Kaplan-Meier (K-M) analyses were performed to examine the stability and discriminatory ability of the OS-predicting signatures. Pathway enrichment analyses were performed to uncover potential mechanisms. Results Three miRNAs (miR-153, miR-212, and miR-591) independently related to the OS were extracted to build a risk score formula. The ROC curve and K-M analyses revealed good discrimination ability of the OS signature for osteosarcoma patients in both the training cohort (P=0.00015, AUC=0.962) and the validation cohort (P=0.0065, AUC=0.793). As shown in multivariate analysis, the classifier showed favorable predictive accuracy similar to the recurrence status to be an independent risk factor for osteosarcoma. Furthermore, the nomogram showed a synergistic effect by combining the clinicopathological features with our classifier. Also, the enrichment analyses of the target genes may contribute to improved treatment of osteosarcoma. Conclusions The 3-miRNA-based classifier serves as an effective prognosis-predicting signature for osteosarcoma patients.
Collapse
Affiliation(s)
- Xinle Luo
- Department of Trauma and Joint Orthopedics, The People's Hospital of Longhua, Shenzhen, Guangdong, China (mainland)
| | - Jiuyang Tang
- Department of Trauma and Joint Orthopedics, The People's Hospital of Longhua, Shenzhen, Guangdong, China (mainland)
| | - Huabing Xuan
- Department of Trauma and Joint Orthopedics, The People's Hospital of Longhua, Shenzhen, Guangdong, China (mainland)
| | - Jianlin Liu
- Department of Trauma and Joint Orthopedics, The People's Hospital of Longhua, Shenzhen, Guangdong, China (mainland)
| | - Xi Li
- Department of Trauma and Joint Orthopedics, The People's Hospital of Longhua, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
49
|
Xu N, Kang Y, Wang W, Zhou J. The prognostic role of CD133 expression in patients with osteosarcoma. Clin Exp Med 2020; 20:261-267. [PMID: 32048073 DOI: 10.1007/s10238-020-00607-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Osteosarcoma (OS), a malignant bone tumor, mainly occurs in adolescents. Cluster of differentiation 133 (CD133) is one of the most common tumor stem cell biomarkers. The prognostic significance of CD133 in OS has been reported, while the conclusions of these study were inconsistent. This study was conducted to investigate the association between CD133 expression and OS. We performed a search using several database including NCBI PubMed, Springer, CNKI, Web of Science and Wanfang for relevant papers about the prognostic value of CD133 on OS published before October 19, 2019. Pooled odds ratio (OR) and 95% CI were used to evaluate the outcomes. Seven reports including 498 OS patients were used for evaluating the association between CD133 positive expression and OS clinicopathological features. CD133 positive expression was not related to the age, gender, tumor size, tumor location and pathological type of OS. The expression of CD133 was significantly associated with high ennecking stage of OS (OR 9.67, 95% CI 5.56-16.80, P < 0.05) and OS local recurrence (OR 3.02, 95% CI 1.84-4.94, P < 0.05). In addition, the expressions of CD133 predict metastasis (OR 7.64, 95% CI 4.93-11.85, P < 0.05). Moreover, this study indicated that CD133 expression was correlated to lower 5-year overall survival in OS with the pooled OR of 5.85 (95% CI 3.30-10.37, P < 0.05). Our reported shown that positive expression of CD133 is significantly correlated with ennecking stage, local recurrence, metastasis and low 5-year overall survival rate of OS patients.
Collapse
Affiliation(s)
- Nuo Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yijun Kang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
50
|
Sung IH, Son HJ, Park JS, Song YS, Park KC. Extraskeletal osteosarcoma misdiagnosed as heterotopic ossification after periprosthetic femoral fracture: A case report. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2020; 54:118-123. [PMID: 32175906 DOI: 10.5152/j.aott.2020.01.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extraskeletal osteosarcoma is a malignant tumor of soft tissue characterized by osteoid production and has a very low prevalence, comprising approximately 4% of all osteosarcomas and about 1% of all soft tissue sarcomas, and a total of about 350 cases have been reported until now. Heterotopic ossification is a pathological finding of bony tissue in soft tissue regions such as muscle, skin and subcutaneous tissue. We report a case of an 86-year-old woman with a history of total hip arthroplasty (THA), in which open reduction and internal fixation were done for periprosthetic femoral Fracture. The ossified lesion misdiagnosed as heterotopic ossification initially was diagnosed as extraskeletal osteosarcoma at 6 months after the surgery. Both extraskeletal osteosarcoma and heterotopic ossification have no definite symptoms, but show radiopaque shadows on simple radiograph. Therefore, careful attention and thorough evaluation with multiple imaging tests may be necessary for the differential diagnosis of these entities.
Collapse
Affiliation(s)
- Il-Hoon Sung
- Department of Orthopedic Surgery, Hanyang University, College of Medicine, Seoul Hospital, Seoul, Korea
| | - Hee-Jung Son
- Department of Orthopedic Surgery, Hanyang University, College of Medicine, Guri Hospital, Gyeonggi, Korea
| | - Jin-Sung Park
- Department of Orthopedic Surgery, Hanyang University, College of Medicine, Guri Hospital, Gyeonggi, Korea
| | - Young-Sik Song
- Department of Orthopedic Surgery, Hanyang University, College of Medicine, Guri Hospital, Gyeonggi, Korea
| | - Ki-Chul Park
- Department of Orthopedic Surgery, Hanyang University, College of Medicine, Guri Hospital, Gyeonggi, Korea
| |
Collapse
|