1
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024. [PMID: 39268652 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E Edgar
- The London School of Hygiene and Tropical Medicine, London, UK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
2
|
Xiao L, Zhang L, Guo C, Xin Q, Gu X, Jiang C, Wu J. "Find Me" and "Eat Me" signals: tools to drive phagocytic processes for modulating antitumor immunity. Cancer Commun (Lond) 2024; 44:791-832. [PMID: 38923737 PMCID: PMC11260773 DOI: 10.1002/cac2.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Phagocytosis, a vital defense mechanism, involves the recognition and elimination of foreign substances by cells. Phagocytes, such as neutrophils and macrophages, rapidly respond to invaders; macrophages are especially important in later stages of the immune response. They detect "find me" signals to locate apoptotic cells and migrate toward them. Apoptotic cells then send "eat me" signals that are recognized by phagocytes via specific receptors. "Find me" and "eat me" signals can be strategically harnessed to modulate antitumor immunity in support of cancer therapy. These signals, such as calreticulin and phosphatidylserine, mediate potent pro-phagocytic effects, thereby promoting the engulfment of dying cells or their remnants by macrophages, neutrophils, and dendritic cells and inducing tumor cell death. This review summarizes the phagocytic "find me" and "eat me" signals, including their concepts, signaling mechanisms, involved ligands, and functions. Furthermore, we delineate the relationships between "find me" and "eat me" signaling molecules and tumors, especially the roles of these molecules in tumor initiation, progression, diagnosis, and patient prognosis. The interplay of these signals with tumor biology is elucidated, and specific approaches to modulate "find me" and "eat me" signals and enhance antitumor immunity are explored. Additionally, novel therapeutic strategies that combine "find me" and "eat me" signals to better bridge innate and adaptive immunity in the treatment of cancer patients are discussed.
Collapse
Affiliation(s)
- Lingjun Xiao
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Louqian Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Ciliang Guo
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| |
Collapse
|
3
|
Wen J, Zhao Y, Fang CX, Wu XH. Association between serum baseline C1q and IgG levels and the efficacy of combined immunotherapy in patients with esophageal squamous cell carcinoma: a retrospective study. Immunopharmacol Immunotoxicol 2023; 45:83-88. [PMID: 35997274 DOI: 10.1080/08923973.2022.2115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND To assess the clinical value of serum complement component 1q (C1q) and immunoglobulin G (IgG) levels in predicting the response to combined immunotherapy in patients with esophageal squamous cell carcinoma. METHODS We conducted a retrospective study of 44 patients with esophageal squamous cell carcinoma who received combined immunotherapy in our hospital. Serum IgG and C1q levels were collected before and three weeks after immunotherapy treatment, together with other data on clinical and demographic characteristics. RESULTS Twenty seven patients (61.4%) showed partial response (PR), 13 (29.5%) stable disease (SD), and 4 (9.1%) progressive disease (PD). None of the patients presented complete response (CR). The PR group displayed lower IgG and higher C1q levels both before and after immunotherapy than patients showing SD or PD. The IgG reduction (59.3%) and C1q increment (70.3%) in the PR group three weeks post-treatment were significantly larger than those in patients showing SD or PD. Moreover, the pretreatment C1q level and the post-treatment change of C1q levels were strongly associated with the immunotherapy response. CONCLUSIONS High pre- and post-treatment C1q levels and reduced post-treatment IgG levels correlate with efficacy of combined immunotherapy in patients with esophageal squamous cell carcinoma. Serum baseline C1q level may predict immunotherapy response in such patients.
Collapse
Affiliation(s)
- Jing Wen
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Yi Zhao
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Cheng-Xiang Fang
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Xue-Hu Wu
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| |
Collapse
|
4
|
Zhang Y, Zhang S, Liu J, Zhang Y, Liu Y, Shen S, Tian F, Yan G, Gao Y, Qin X. Identification of serum glycobiomarkers for Hepatocellular Carcinoma using lectin microarrays. Front Immunol 2022; 13:973993. [PMID: 36341438 PMCID: PMC9634732 DOI: 10.3389/fimmu.2022.973993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is the sixth most commonly occurring cancer and ranks third in mortality among all malignant tumors; as a result, HCC represents a major human health issue. Although aberrant glycosylation is clearly implicated in HCC, changes in serum immunoglobulin (Ig)G and IgM glycosylation have not been comprehensively characterized. In this study, we used lectin microarrays to evaluate differences in serum IgG and IgM glycosylation among patients with HCC, hepatitis B cirrhosis (HBC), or chronic hepatitis B (CHB), and healthy normal controls (NC) and aimed to establish a model to improve the diagnostic accuracy of HCC. Methods In total, 207 serum samples collected in 2019–2020 were used for lectin microarray analyses, including 97 cases of HCC, 50 cases of HBC, 30 cases of CHB, and 30 cases of NC. Samples were randomly divided into training and validation groups at a 2:1 ratio. Training group data were used to investigate the diagnostic value of the relative signal intensity for the lectin probe combined with alpha-fetoprotein (AFP). The efficacy of models for HCC diagnosis were analyzed by receiver operating characteristic (ROC) curves. Results In terms of IgG, a model combining three lectins and AFP had good diagnostic accuracy for HCC. The area under the ROC curve was 0.96 (P < 0.05), the sensitivity was 82.54%, and the specificity was 100%. In terms of IgM, a model including one lectin combined with AFP had an area under the curve of 0.90 (P < 0.05), sensitivity of 75.41%, and specificity of 100%. Conclusion Estimation of serum IgG and IgM glycosylation could act as complementary techniques to improve diagnosis and shed light on the occurrence and development of the HCC
Collapse
Affiliation(s)
- Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Sihua Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yunli Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanjie Liu
- Department of Laboratory Medicine, Chaoyang Central Hospital, Chaoyang, China
| | - Shuang Shen
- Department of Laboratory Medicine, Huludao Central Hospital, Huludao, China
| | - Fangfang Tian
- Department of Laboratory Medicine, Fuxin Central Hospital, Fuxin, China
| | - Gaobo Yan
- Department of Laboratory Medicine, Dandong Central Hospital, Dandong, China
| | - Yongqing Gao
- Department of Laboratory Medicine, Tieling Central Hospital, Tieling, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
- *Correspondence: Xiaosong Qin,
| |
Collapse
|
5
|
Fleming A, Castro‐Dopico T, Clatworthy MR. B cell class switching in intestinal immunity in health and disease. Scand J Immunol 2022; 95:e13139. [PMID: 34978077 PMCID: PMC9285483 DOI: 10.1111/sji.13139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract is colonized by trillions of commensal microorganisms that collectively form the microbiome and make essential contributions to organism homeostasis. The intestinal immune system must tolerate these beneficial commensals, whilst preventing pathogenic organisms from systemic spread. Humoral immunity plays a key role in this process, with large quantities of immunoglobulin (Ig)A secreted into the lumen on a daily basis, regulating the microbiome and preventing bacteria from encroaching on the epithelium. However, there is an increasing appreciation of the role of IgG antibodies in intestinal immunity, including beneficial effects in neonatal immune development, pathogen and tumour resistance, but also of pathological effects in driving chronic inflammation in inflammatory bowel disease (IBD). These antibody isotypes differ in effector function, with IgG exhibiting more proinflammatory capabilities compared with IgA. Therefore, the process that leads to the generation of different antibody isotypes, class-switch recombination (CSR), requires careful regulation and is orchestrated by the immunological cues generated by the prevalent local challenge. In general, an initiating signal such as CD40 ligation on B cells leads to the induction of activation-induced cytidine deaminase (AID), but a second cytokine-mediated signal determines which Ig heavy chain is expressed. Whilst the cytokines driving intestinal IgA responses are well-studied, there is less clarity on how IgG responses are generated in the intestine, and how these cues might become dysfunctional in IBD. Here, we review the key mechanisms regulating class switching to IgA vs IgG in the intestine, processes that could be therapeutically manipulated in infection and IBD.
Collapse
Affiliation(s)
- Aaron Fleming
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
| | - Tomas Castro‐Dopico
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- The Francis Crick InstituteLondonUK
| | - Menna R. Clatworthy
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- Cellular GeneticsWellcome Trust Sanger InstituteHinxtonUK
- NIHR Cambridge Biomedical Research CentreCambridgeUK
| |
Collapse
|
6
|
Cheng HD, Dowell KG, Bailey-Kellogg C, Goods BA, Love JC, Ferrari G, Alter G, Gach J, Forthal DN, Lewis GK, Greene K, Gao H, Montefiori DC, Ackerman ME. Diverse antiviral IgG effector activities are predicted by unique biophysical antibody features. Retrovirology 2021; 18:35. [PMID: 34717659 PMCID: PMC8557579 DOI: 10.1186/s12977-021-00579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The critical role of antibody Fc-mediated effector functions in immune defense has been widely reported in various viral infections. These effector functions confer cellular responses through engagement with innate immune cells. The precise mechanism(s) by which immunoglobulin G (IgG) Fc domain and cognate receptors may afford protection are poorly understood, however, in the context of HIV/SHIV infections. Many different in vitro assays have been developed and utilized to measure effector functions, but the extent to which these assays capture distinct antibody activities has not been fully elucidated. RESULTS In this study, six Fc-mediated effector function assays and two biophysical antibody profiling assays were performed on a common set of samples from HIV-1 infected and vaccinated subjects. Biophysical antibody profiles supported robust prediction of diverse IgG effector functions across distinct Fc-mediated effector function assays. While a number of assays showed correlated activities, supervised machine learning models indicated unique antibody features as primary contributing factors to the associated effector functions. Additional experiments established the mechanistic relevance of relationships discovered using this unbiased approach. CONCLUSIONS In sum, this study provides better resolution on the diversity and complexity of effector function assays, offering a clearer perspective into this family of antibody mechanisms of action to inform future HIV-1 treatment and vaccination strategies.
Collapse
Affiliation(s)
- Hao D. Cheng
- grid.254880.30000 0001 2179 2404Thayer School of Engineering, Dartmouth College, Hanover, NH USA ,grid.254880.30000 0001 2179 2404Molecular and Cellular Biology Program, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755 USA
| | - Karen G. Dowell
- grid.254880.30000 0001 2179 2404Department of Computer Science, Dartmouth College, Hanover, 03755 USA
| | - Chris Bailey-Kellogg
- grid.254880.30000 0001 2179 2404Department of Computer Science, Dartmouth College, Hanover, 03755 USA
| | - Brittany A. Goods
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Koch Institute at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - J. Christopher Love
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Koch Institute at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Guido Ferrari
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA ,grid.189509.c0000000100241216Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27719 USA
| | - Galit Alter
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139 USA
| | - Johannes Gach
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, Irvine School of Medicine, University California, Irvine, CA 92697 USA
| | - Donald N. Forthal
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, Irvine School of Medicine, University California, Irvine, CA 92697 USA
| | - George K. Lewis
- grid.411024.20000 0001 2175 4264Division of Vaccine Research, Institute of Human Virology, University Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Kelli Greene
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - Hongmei Gao
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - David C. Montefiori
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA ,grid.189509.c0000000100241216Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27719 USA
| | - Margaret E. Ackerman
- grid.254880.30000 0001 2179 2404Thayer School of Engineering, Dartmouth College, Hanover, NH USA ,grid.254880.30000 0001 2179 2404Molecular and Cellular Biology Program, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755 USA
| |
Collapse
|
7
|
Wang B, Duan A, Xie S, Zhang J, Yuan L, Cao Q. The molecular imprinting of magnetic nanoparticles with boric acid affinity for the selective recognition and isolation of glycoproteins. RSC Adv 2021; 11:25524-25529. [PMID: 35478904 PMCID: PMC9036988 DOI: 10.1039/d1ra00716e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/18/2021] [Indexed: 11/21/2022] Open
Abstract
A strategy was designed for the molecular imprinting of magnetic nanoparticles with boric acid affinity (MNPs@MIP) which were then used for the selective recognition and isolation of glycoproteins. Fe3O4 nanoparticles were prepared by a solvothermal method and direct silanization by the condensation polymerization of aminopropyltriethoxysilane (APTES). Subsequently, phenylboric acid was functionalized by reductive amination between 2,3-difluoro-4-formyl phenylboric acid (DFFPBA) and the amido group. The resultant Fe3O4@SiO2–DFFPBA was then used for the selective adsorption of a glycoprotein template. Finally, a molecularly imprinted layer was covered on the surface nanoparticles by the condensation polymerization of tetraethyl orthosilicate (TEOS). The adsorption capacities of the resultant MNPs@MIP–HRP and MNPs@MIP–OVA to horseradish peroxidase (HRP) or ovalbumin (OVA) were significantly higher than non-imprinted particles (MNPs@NIP). Moreover, the adsorption capacities of MNPs@MIP–HRP and MNPs@MIP–OVA on non-template protein and non-glycoprotein bovine serum albumin (BSA) were significantly lower than those of their respective template proteins, thus indicating that both of the prepared MNPs@MIP exhibited excellent selectivity. A strategy was designed for the preparation of molecular imprinting of magnetic nanoparticles with boric acid affinity (MNPs@MIP), and the resultant MNPs@MIP exhibited excellent selectivity for template glycoproteins.![]()
Collapse
Affiliation(s)
- Bangjin Wang
- Department of Chemistry, Yunnan Normal University Kunming 650500 China
| | - Aihong Duan
- Department of Chemistry, Yunnan Normal University Kunming 650500 China
| | - Shengming Xie
- Department of Chemistry, Yunnan Normal University Kunming 650500 China
| | - Junhui Zhang
- Department of Chemistry, Yunnan Normal University Kunming 650500 China
| | - Liming Yuan
- Department of Chemistry, Yunnan Normal University Kunming 650500 China
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| |
Collapse
|
8
|
Balola AHA, Mayer B, Bartolmäs T, Salama A. A fluorometric erythrophagocytosis assay using differentiated monocytic THP-1 cells to assess the clinical significance of antibodies to red blood cells. Vox Sang 2021; 116:1106-1116. [PMID: 33942922 DOI: 10.1111/vox.13105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES The significance of antibodies to red blood cells (RBCs) is variable and cannot be predicted solely by serological testing. A flow cytometry-based erythrophagocytosis assay was established using phorbol 12-myristate 13-acetate (PMA)-treated THP-1 cells and RBCs labelled with PKH26 to assess allo- and autoantibodies to RBCs. MATERIALS AND METHODS THP-1 cells were differentiated into macrophage-like cells by treatment with PMA. RBC samples coated with alloantibodies or autoantibodies were obtained from 16 patients with autoimmune haemolytic anaemia of warm type (wAIHA) as well as from five pregnant women with warm autoantibodies. RBCs from healthy blood donors were used as controls. RBCs were labelled with the red lipophilic fluorescent dye PKH26 and incubated with PMA-treated THP-1 cells. After removal of nonadherent RBCs by washing and haemolysis of adherent RBCs, erythrophagocytosis was quantified by flow cytometry. RESULTS We observed significant phagocytosis of RBCs coated with clinically relevant alloantibodies (i.e. anti-D and anti-K) or autoantibodies from patients with active wAIHA, but not of those coated with alloantibodies (anti-Ch) or autoantibodies from patients and pregnant women without haemolysis. CONCLUSION The flow cytometry-based erythrophagocytosis test described here is quantitative, highly reliable, and may be helpful for the assessment of the clinical significance of antibodies to RBCs.
Collapse
Affiliation(s)
- Abdelwahab Hassan Ahmed Balola
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Beate Mayer
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thilo Bartolmäs
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Abdulgabar Salama
- Department of Gynecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
9
|
Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell-cell interactions and communication from gene expression. Nat Rev Genet 2021; 22:71-88. [PMID: 33168968 PMCID: PMC7649713 DOI: 10.1038/s41576-020-00292-x] [Citation(s) in RCA: 545] [Impact Index Per Article: 181.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Cell-cell interactions orchestrate organismal development, homeostasis and single-cell functions. When cells do not properly interact or improperly decode molecular messages, disease ensues. Thus, the identification and quantification of intercellular signalling pathways has become a common analysis performed across diverse disciplines. The expansion of protein-protein interaction databases and recent advances in RNA sequencing technologies have enabled routine analyses of intercellular signalling from gene expression measurements of bulk and single-cell data sets. In particular, ligand-receptor pairs can be used to infer intercellular communication from the coordinated expression of their cognate genes. In this Review, we highlight discoveries enabled by analyses of cell-cell interactions from transcriptomic data and review the methods and tools used in this context.
Collapse
Affiliation(s)
- Erick Armingol
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Adam Officer
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA
| | - Olivier Harismendy
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Ilinykh PA, Santos RI, Gunn BM, Kuzmina NA, Shen X, Huang K, Gilchuk P, Flyak AI, Younan P, Alter G, Crowe JE, Bukreyev A. Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathog 2018; 14:e1007204. [PMID: 30138408 PMCID: PMC6107261 DOI: 10.1371/journal.ppat.1007204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/08/2018] [Indexed: 01/24/2023] Open
Abstract
Recent studies suggest that some monoclonal antibodies (mAbs) specific for ebolavirus glycoprotein (GP) can protect experimental animals against infections. Most mAbs isolated from ebolavirus survivors appeared to target the glycan cap or the stalk region of the viral GP, which is the envelope protein and the only antigen inducing virus-neutralizing antibody response. Some of the mAbs were demonstrated to be protective in vivo. Here, a panel of mAbs from four individual survivors of ebolavirus infection that target the glycan cap or stem region were selected for investigation of the mechanisms of their antiviral effect. Comparative characterization of the inhibiting effects on multiple steps of viral replication was performed, including attachment, post-attachment, entry, binding at low pH, post-cleavage neutralization of virions, viral trafficking to endosomes, cell-to-cell transmission, viral egress, and inhibition when added early at various time points post-infection. In addition, Fc-domain related properties were characterized, including activation and degranulation of NK cells, antibody-dependent cellular phagocytosis and glycan content. The two groups of mAbs (glycan cap versus stem) demonstrated very different profiles of activities suggesting usage of mAbs with different epitope specificity could coordinate inhibition of multiple steps of filovirus infection through Fab- and Fc-mediated mechanisms, and provide a reliable therapeutic approach.
Collapse
Affiliation(s)
- Philipp A. Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Bronwyn M. Gunn
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Natalia A. Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Xiaoli Shen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Andrew I. Flyak
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Patrick Younan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States of America
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| |
Collapse
|
11
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
12
|
Cymer F, Beck H, Rohde A, Reusch D. Therapeutic monoclonal antibody N-glycosylation – Structure, function and therapeutic potential. Biologicals 2018; 52:1-11. [DOI: 10.1016/j.biologicals.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022] Open
|
13
|
Abstract
Perhaps because they are such commonly used tools, many researchers view antibodies one-dimensionally: Antibody Y binds antigen X. Although few techniques require a comprehensive understanding of any particular antibody's characteristics, well-executed experiments do require a basic appreciation of what is known and, equally as important, what is not known about the antibody being used. Ignorance of the relevant antibody characteristics critical for a particular assay can easily lead to loss of precious resources (time, money, and limiting amounts of sample) and, in worst-case scenarios, erroneous conclusions. Here, we describe various antibody characteristics to provide a more well-rounded perspective of these critical reagents. With this information, it will be easier to make informed decisions on how best to choose and use the available antibodies, as well as knowing when it is essential and how to determine a particular as yet-undefined characteristic.
Collapse
|
14
|
Tian X, Wei F, Wang L, Yu W, Zhang N, Zhang X, Han Y, Yu J, Ren X. Herceptin Enhances the Antitumor Effect of Natural Killer Cells on Breast Cancer Cells Expressing Human Epidermal Growth Factor Receptor-2. Front Immunol 2017; 8:1426. [PMID: 29163501 PMCID: PMC5670328 DOI: 10.3389/fimmu.2017.01426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/13/2017] [Indexed: 11/13/2022] Open
Abstract
Optimal adoptive cell therapy (ACT) should contribute to effective cancer treatment. The unique ability of natural killer (NK) cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2) monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim) cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Limei Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Naining Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xinwei Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ying Han
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jinpu Yu
- National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
15
|
Abstract
The antiviral activity of antibodies reflects the bifunctional properties of these molecules. While the Fab domains mediate highly specific antigenic recognition to block virus entry, the Fc domain interacts with diverse types of Fcγ receptors (FcγRs) expressed on the surface of effector leukocytes to induce the activation of distinct immunomodulatory pathways. Fc-FcγR interactions are tightly regulated to control IgG-mediated inflammation and immunity and are largely determined by the structural heterogeneity of the IgG Fc domain, stemming from differences in the primary amino acid sequence of the various subclasses, as well as the structure and composition of the Fc-associated N-linked glycan. Engagement of specific FcγR types on effector leukocytes has diverse consequences that affect several aspects of innate and adaptive immunity. In this review, we provide an overview of the complexity of FcγR-mediated pathways, discussing their role in the in vivo protective activity of anti-HIV-1 antibodies. We focus on recent studies on broadly neutralizing anti-HIV-1 antibodies that revealed that Fc-FcγR interactions are required to achieve full therapeutic activity through clearance of IgG-opsonized virions and elimination of HIV-infected cells. Manipulation of Fc-FcγR interactions to specifically activate distinct FcγR-mediated pathways has the potential to affect downstream effector responses, influencing thereby the in vivo protective activity of anti-HIV-1 antibodies; a strategy that has already been successfully applied to other IgG-based therapeutics, substantially improving their clinical efficacy.
Collapse
Affiliation(s)
- Stylianos Bournazos
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
16
|
Abstract
A key determinant for the survival of organisms is their capacity to recognize and respond efficiently to foreign antigens. This is largely accomplished by the orchestrated activity of the innate and adaptive branches of the immune system. Antibodies are specifically generated in response to foreign antigens, facilitating thereby the specific recognition of antigens of almost infinite diversity. Receptors specific for the Fc domain of antibodies, Fc receptors, are expressed on the surface of the various myeloid leukocyte populations and mediate the binding and recognition of antibodies by innate leukocytes. By directly linking the innate and the adaptive components of immunity, Fc receptors play a central role in host defense and the maintenance of tissue homeostasis through the induction of diverse proinflammatory, anti-inflammatory, and immunomodulatory processes that are initiated upon engagement by the Fc domain. In this chapter, we discuss the mechanisms that regulate Fc domain binding to the various types of Fc receptors and provide an overview of the astonishing diversity of effector functions that are mediated through Fc-FcR interactions on myeloid cells. Lastly, we discuss the impact of FcR-mediated interactions in the context of IgG-mediated inflammation, autoimmunity, susceptibility to infection, and responsiveness to antibody-based therapeutics.
Collapse
|
17
|
Bournazos S, Ravetch JV. Diversification of IgG effector functions. Int Immunol 2017; 29:303-310. [PMID: 28472280 PMCID: PMC5890892 DOI: 10.1093/intimm/dxx025] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
IgG is the major immunoglobulin class produced during an immune response against foreign antigens and efficiently provides protection through its bifunctional nature. While the Fab domains confer highly specific recognition of the antigen, the Fc domain mediates a wide range of effector functions that modulate several aspects of innate and adaptive immunity. Engagement of the various types of Fcγ receptors (FcγRs) by an IgG Fc domain can activate distinct immunomodulatory pathways with pleiotropic functional consequences for several leukocyte types. Fc effector functions are not limited to phagocytosis and cytotoxicity of IgG-opsonized targets but exhibit remarkable diversity and include modulation of leukocyte activity and survival, cytokine and chemokine expression, maturation of antigen-presenting cells, antigen processing and presentation, B-cell selection and IgG affinity maturation, as well as regulation of IgG production. These functions are initiated upon specific interactions of the Fc domain with the various types of FcγRs-a process that is largely determined by the structural heterogeneity of the IgG Fc domain. Modulation of the Fc-associated glycan structure and composition along with differences in the primary amino acid sequence among the IgG subclasses represent the two main diversification mechanisms of the Fc domain that generate a spectrum of Fc domain phenotypes with distinct affinity for the various FcγR types and differential capacity to activate immunomodulatory pathways.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
18
|
Ercan A, Kohrt WM, Cui J, Deane KD, Pezer M, Yu EW, Hausmann JS, Campbell H, Kaiser UB, Rudd PM, Lauc G, Wilson JF, Finkelstein JS, Nigrovic PA. Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2017; 2:e89703. [PMID: 28239652 DOI: 10.1172/jci.insight.89703] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The immunologic potency of IgG is modulated by glycosylation, but mechanisms regulating this process are undefined. A role for sex hormones is suggested by differences in IgG glycans between women and men, most prominently with respect to galactose. We therefore assessed IgG galactosylation in 713 healthy adults from 2 cohorts as well as in 159 subjects from 4 randomized controlled studies of endocrine manipulation: postmenopausal women receiving conjugated estrogens, raloxifene, or placebo; premenopausal women deprived of gonadal hormones with leuprolide and treated with estradiol or placebo; men deprived of gonadal hormones with goserelin and given testosterone or placebo; and men deprived of gonadal hormones with goserelin and given testosterone or placebo together with anastrozole to block conversion of testosterone to estradiol. Menopause was associated with an increase in agalactosylated IgG glycans, particularly in the most abundant fucosylated nonbisected (G0F) glycoform. Conjugated estrogens and raloxifene reduced G0F glycans in postmenopausal women, while in premenopausal women leuprolide increased G0F glycans in a manner reversed by estradiol. Among men, goserelin increased G0F glycans, an effect blocked by testosterone through conversion to estradiol. These results establish estrogens as an in vivo modulator of IgG galactosylation in both women and men, defining a pathway by which sex modulates immunity.
Collapse
Affiliation(s)
- Altan Ercan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA.,UtopicPharma LLC, Odessa, Florida, USA
| | | | - Jing Cui
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Marija Pezer
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Elaine W Yu
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jonathan S Hausmann
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pauline M Rudd
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - James F Wilson
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Joel S Finkelstein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Roucka M, Zimmermann K, Fido M, Nechansky A. Application of Lectin Array Technology for Biobetter Characterization: Its Correlation with FcγRIII Binding and ADCC. MICROARRAYS 2016; 6:microarrays6010001. [PMID: 28029136 PMCID: PMC5374361 DOI: 10.3390/microarrays6010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022]
Abstract
Lectin microarray technology was applied to compare the glycosylation pattern of the monoclonal antibody MB311 expressed in SP2.0 cells to an antibody-dependent cellular cytotoxic effector function (ADCC)-optimized variant (MB314). MB314 was generated by a plant expression system that uses genetically modified moss protoplasts (Physcomitrella patens) to generate a de-fucosylated version of MB311. In contrast to MB311, no or very low interactions of MB314 with lectins Aspergillus oryzae l-fucose (AOL), Pisum sativum agglutinin (PSA), Lens culinaris agglutinin (LCA), and Aleuria aurantia lectin (AAL) were observed. These lectins are specific for mono-/biantennary N-glycans containing a core fucose residue. Importantly, this fucose indicative lectin-binding pattern correlated with increased MB314 binding to CD16 (FcγRIII; receptor for the constant region of an antibody)—whose affinity is mediated through core fucosylation—and stronger ADCC. In summary, these results demonstrate that lectin microarrays are useful orthogonal methods during antibody development and for characterization.
Collapse
Affiliation(s)
- Markus Roucka
- Vela Labs GmbH, Brunner Str. 69/ Obj. 3, 1230 Vienna, Austria.
| | | | - Markus Fido
- Vela Labs GmbH, Brunner Str. 69/ Obj. 3, 1230 Vienna, Austria.
| | - Andreas Nechansky
- Vela Labs GmbH, Brunner Str. 69/ Obj. 3, 1230 Vienna, Austria.
- JHL Biotech, Zhubei City, Hsinchu County 302, Taiwan.
| |
Collapse
|
20
|
Abstract
In the current era, one of the major factors limiting graft survival is chronic antibody-mediated rejection (ABMR), whilst patient survival is impacted by the effects of immunosuppression on susceptibility to infection, malignancy and atherosclerosis. IgG antibodies play a role in all of these processes, and many of their cellular effects are mediated by Fc gamma receptors (FcγRs). These surface receptors are expressed by most immune cells, including B cells, natural killer cells, dendritic cells and macrophages. Genetic variation in FCGR genes is likely to affect susceptibility to ABMR and to modulate the physiological functions of IgG. In this review, we discuss the potential role played by FcγRs in determining outcomes in solid organ transplantation, and how genetic polymorphisms in these receptors may contribute to variations in transplant outcome.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH UK
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH UK
| |
Collapse
|
21
|
Abstract
Autoimmune diseases are characterized by adaptive immune responses against self-antigens, including humoral responses resulting in the production of autoantibodies. Autoantibodies generate inflammation by activating complement and engaging Fcγ receptors (FcγRs). The inhibitory receptor FcγRIIB plays a central role in regulating the generation of autoantibodies and their effector functions, which include activation of innate immune cells and the cellular arm of the adaptive immune system, via effects on antigen presentation to CD4 T cells. Polymorphisms in FcγRIIB have been associated with susceptibility to autoimmunity but protection against infections in humans and mice. In the last few years, new mechanisms by which FcγRIIB controls the adaptive immune response have been described. Notably, FcγRIIB has been shown to regulate germinal center B cells and dendritic cell migration, with potential impact on the development of autoimmune diseases. Recent work has also highlighted the implication of FcγRIIB on the regulation of the innate immune system, via inhibition of Toll-like receptor- and complement receptor-mediated activation. This review will provide an update on the role of FcγRIIB in adaptive immune responses in autoimmunity, and then focus on their emerging function in innate immunity.
Collapse
Affiliation(s)
- Marion Espéli
- Inserm UMR_S996, LabEx LERMIT, Université Paris-Sud, Paris, France
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Menna R Clatworthy
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
22
|
Longoria TC, Tewari KS. Evaluation of the pharmacokinetics and metabolism of pembrolizumab in the treatment of melanoma. Expert Opin Drug Metab Toxicol 2016; 12:1247-53. [PMID: 27485741 DOI: 10.1080/17425255.2016.1216976] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Advanced melanoma is a devastating disease that has propelled research in therapeutics beyond chemotherapy and radiotherapy. Being highly immunogenic, melanoma is a model tumor for immunotherapy and has highlighted the therapeutic potential of the immune checkpoint inhibitors. AREAS COVERED This review discusses the pharmacologic properties, clinical efficacy, and safety profile of pembrolizumab, an IgG4-kappa humanized monoclonal antibody against the programmed cell death protein 1 (PD-1) receptor, for the treatment of unresectable or metastatic melanoma. EXPERT OPINION Pembrolizumab was the first PD-1 inhibitor to be approved by the U.S. Food and Drug Administration (FDA). Remarkably, this accelerated approval for the treatment of advanced, heavily pretreated melanoma was based on response rates alone from a phase I trial. As anticipated, pembrolizumab confirmed a survival advantage in phase II and III trials and has led the way for the study of other drugs that share its mechanism of action. Defining disease and patient characteristics associated with a response remains amongst the most pressing priorities.
Collapse
Affiliation(s)
- Teresa C Longoria
- a University of California , Irvine Medical Center , Orange , CA , USA
| | | |
Collapse
|
23
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
24
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
25
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
26
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
27
|
Mahan AE, Jennewein MF, Suscovich T, Dionne K, Tedesco J, Chung AW, Streeck H, Pau M, Schuitemaker H, Francis D, Fast P, Laufer D, Walker BD, Baden L, Barouch DH, Alter G. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination. PLoS Pathog 2016; 12:e1005456. [PMID: 26982805 PMCID: PMC4794126 DOI: 10.1371/journal.ppat.1005456] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo. .
Collapse
Affiliation(s)
- Alison E. Mahan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Madeleine F. Jennewein
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Todd Suscovich
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kendall Dionne
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jacquelynne Tedesco
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Amy W. Chung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Hendrik Streeck
- Military HIV Research Program, Walter Reed Medical Research Institute, Bethesda, Maryland, United States of America
| | | | - Hanneke Schuitemaker
- Crucell, Leiden, Netherlands
- Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Don Francis
- Global Solutions for Infectious Diseases, South San Francisco, California, United States of America
| | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Dagna Laufer
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Lindsey Baden
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Dan H. Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Pabst M, Benešová I, Fagerer SR, Jacobsen M, Eyer K, Schmidt G, Steinhoff R, Krismer J, Wahl F, Preisler J, Zenobi R. Differential Isotope Labeling of Glycopeptides for Accurate Determination of Differences in Site-Specific Glycosylation. J Proteome Res 2015; 15:326-31. [DOI: 10.1021/acs.jproteome.5b00899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Pabst
- Department
of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Iva Benešová
- Department
of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Department
of Chemistry, Masaryk University, 625 00 Brno, Czech Republic
| | - Stephan R. Fagerer
- Department
of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Mathias Jacobsen
- Department
of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Klaus Eyer
- Department
of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Gregor Schmidt
- Department
of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Robert Steinhoff
- Department
of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jasmin Krismer
- Department
of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Fabian Wahl
- Sigma-Aldrich Chemie GmbH, 9470 Buchs, Switzerland
| | - Jan Preisler
- Department
of Chemistry, Masaryk University, 625 00 Brno, Czech Republic
- Central
European Institute of Technology (CEITEC), Masaryk University, 625
00 Brno, Czech Republic
| | - Renato Zenobi
- Department
of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
29
|
Scapin G, Yang X, Prosise WW, McCoy M, Reichert P, Johnston JM, Kashi RS, Strickland C. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat Struct Mol Biol 2015; 22:953-8. [DOI: 10.1038/nsmb.3129] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/26/2015] [Indexed: 01/18/2023]
|
30
|
Abstract
IgG antibodies are actively produced in response to antigenic challenge or passively administered as an effective form of immunotherapy to confer immunity against foreign antigens. Their protective activity is mediated through their bifunctional nature: a variable Fab domain mediates antigen-binding specificity, whereas the constant Fc domain engages Fcγ receptors (FcγRs) expressed on the surface of leukocytes to mediate effector functions. While traditionally considered the invariant domain of an IgG molecule, the Fc domain displays remarkable structural heterogeneity determined primarily by differences in the amino acid sequence of the various IgG subclasses and by the composition of the complex, Fc-associated biantennary N-linked glycan. These structural determinants regulate the conformational flexibility of the IgG Fc domain and affect its capacity to interact with distinct types of FcγRs (type I or type II FcγRs). FcγR engagement activates diverse downstream immunomodulatory pathways with pleiotropic functional consequences including cytotoxicity and phagocytosis of IgG-coated targets, differentiation and activation of antigen presenting cells, modulation of T-cell activation, plasma cell survival, and regulation of antibody responses. These functions highlight the importance of FcγR-mediated pathways in the modulation of adaptive immune responses and suggest a central role for IgG-FcγR interactions during active and passive immunization.
Collapse
Affiliation(s)
- Stylianos Bournazos
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Ave, New York, NY 10065
| | - Jeffrey V. Ravetch
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Ave, New York, NY 10065
| |
Collapse
|
31
|
Schwab I, Lux A, Nimmerjahn F. Pathways Responsible for Human Autoantibody and Therapeutic Intravenous IgG Activity in Humanized Mice. Cell Rep 2015; 13:610-620. [PMID: 26456831 DOI: 10.1016/j.celrep.2015.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/30/2015] [Accepted: 09/03/2015] [Indexed: 02/04/2023] Open
Abstract
Immunoglobulin G (IgG) antibodies are major drivers of autoimmune pathology, but they are also used in the form of intravenous IgG (IVIg) therapy to suppress autoantibody activity. To identify the pathways underlying human autoantibody and IVIg activity, we established a humanized mouse model of an autoantibody-dependent autoimmune disease responding to treatment with IVIg preparations. We show that the human IgG subclass strongly impacts autoantibody activity and that the Fc-receptor genotype of the human donor immune system further modulates autoantibody activity. Human mononuclear phagocytes were responsible for autoantibody activity, and IVIg therapy was able to suppress disease pathology in an Fc-fragment-dependent manner. While highly sialylated IgG glycovariants were essential for IVIg activity, it was independent of the Fc-receptor genotype and did not result in a general block of activating or the neonatal Fc-receptor. These findings may help in the development of strategies to block autoantibody and enhance therapeutic IVIg activity in humans.
Collapse
Affiliation(s)
- Inessa Schwab
- Institute of Genetics at the Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erwin-Rommel-Straβe 3, 91058 Erlangen, Germany
| | - Anja Lux
- Institute of Genetics at the Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erwin-Rommel-Straβe 3, 91058 Erlangen, Germany
| | - Falk Nimmerjahn
- Institute of Genetics at the Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erwin-Rommel-Straβe 3, 91058 Erlangen, Germany.
| |
Collapse
|
32
|
Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B, Wang LX, Münz C, Nimmerjahn F, Dalakas MC, Lünemann JD. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest 2015; 125:4160-70. [PMID: 26436649 DOI: 10.1172/jci82695] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
IgG molecules exert both pro- and antiinflammatory effector functions based on the composition of the fragment crystallizable (Fc) domain glycan. Sialylated IgG Fc domains have antiinflammatory properties that are attributed to their ability to increase the activation threshold of innate effector cells to immune complexes by stimulating the upregulation of the inhibitory Fcγ receptor IIB (FcγRIIB). Here, we report that IgG Fc sialylation of human monoclonal IgG1 molecules impairs their efficacy to induce complement-mediated cytotoxicity (CDC). Fc sialylation of a CD20-targeting antibody had no impact on antibody-dependent cellular cytotoxicity and did not change the affinity of the antibody for activating Fcγ receptors. In contrast, the presence of sialic acid abrogated the increased binding of C1q to Fc-galactosylated IgG1 and resulted in decreased levels of C3b deposition on the cell surface. Similar to monoclonal antibodies, sialic acid inhibited the increased C1q binding to galactosylated Fc fragments in human polyclonal IgG. In sera derived from patients with chronic inflammatory demyelinating polyneuropathy, an autoimmune disease of the peripheral nervous system in which humoral immune responses mediate tissue damage, induction of IgG Fc sialylation was associated with clinical disease remission. Thus, impairment of CDC represents an FcγR-independent mechanism by which Fc-sialylated glycovariants might limit proinflammatory IgG effector functions.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity
- Antigens, CD20/immunology
- B-Lymphocytes/immunology
- Burkitt Lymphoma/pathology
- Cell Line, Tumor
- Complement C1q/immunology
- Complement C1q/metabolism
- Complement Pathway, Classical
- Complement System Proteins/immunology
- Cytotoxicity, Immunologic
- Glycosylation
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Immunoglobulin gamma-Chains/chemistry
- Immunoglobulin gamma-Chains/immunology
- Immunoglobulins, Intravenous/therapeutic use
- Killer Cells, Natural/immunology
- Lymphocyte Depletion
- Mice
- Myelin-Oligodendrocyte Glycoprotein/immunology
- N-Acetylneuraminic Acid/chemistry
- Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology
- Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/therapy
- Protein Processing, Post-Translational
- Receptors, IgG/immunology
- Rituximab/chemistry
- Rituximab/immunology
Collapse
|
33
|
Könitzer JD, Müller MM, Leparc G, Pauers M, Bechmann J, Schulz P, Schaub J, Enenkel B, Hildebrandt T, Hampel M, Tolstrup AB. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation. Biotechnol J 2015. [PMID: 26212696 DOI: 10.1002/biot.201400652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality.
Collapse
Affiliation(s)
- Jennifer D Könitzer
- Division Research Germany, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach/Riß, Germany
| | - Markus M Müller
- BP Process Development Germany, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach/Riß, Germany.
| | - Germán Leparc
- Division Research Germany, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach/Riß, Germany
| | - Martin Pauers
- BP Process Development Germany, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach/Riß, Germany
| | - Jan Bechmann
- BP Process Development Germany, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach/Riß, Germany
| | - Patrick Schulz
- BP Process Development Germany, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach/Riß, Germany
| | - Jochen Schaub
- BP Process Development Germany, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach/Riß, Germany
| | - Barbara Enenkel
- Division Research Germany, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach/Riß, Germany
| | - Tobias Hildebrandt
- BP Process Development Germany, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach/Riß, Germany
| | - Martin Hampel
- BP Process Development Germany, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach/Riß, Germany
| | | |
Collapse
|
34
|
Hanson QM, Barb AW. A perspective on the structure and receptor binding properties of immunoglobulin G Fc. Biochemistry 2015; 54:2931-42. [PMID: 25926001 DOI: 10.1021/acs.biochem.5b00299] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recombinant antibodies spurred a revolution in medicine that saw the introduction of powerful therapeutics for treating a wide range of diseases, from cancers to autoimmune disorders and transplant rejection, with more applications looming on the horizon. Many of these therapeutic monoclonal antibodies (mAbs) are based on human immunoglobulin G1 (IgG1) or contain at least a portion of the molecule. Most mAbs require interactions with cell surface receptors for efficacy, including the Fc γ receptors. High-resolution structural models of antibodies and antibody fragments have been available for nearly 40 years; however, a thorough description of the structural features that determine the affinity with which antibodies interact with human receptors has not been published. In this review, we will cover the relevant history of IgG-related literature and how recent developments have changed our view of critical antibody-cell interactions at the atomic level with a nod to outstanding questions in the field and future prospects.
Collapse
Affiliation(s)
- Quinlin M Hanson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, Iowa 50011, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, Iowa 50011, United States
| |
Collapse
|
35
|
Wuhrer M, Stavenhagen K, Koeleman CAM, Selman MHJ, Harper L, Jacobs BC, Savage COS, Jefferis R, Deelder AM, Morgan M. Skewed Fc Glycosylation Profiles of Anti-proteinase 3 Immunoglobulin G1 Autoantibodies from Granulomatosis with Polyangiitis Patients Show Low Levels of Bisection, Galactosylation, and Sialylation. J Proteome Res 2015; 14:1657-65. [DOI: 10.1021/pr500780a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Division
of BioAnalytical Chemistry, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department
of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | - Kathrin Stavenhagen
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Division
of BioAnalytical Chemistry, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Carolien A. M. Koeleman
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Maurice H. J. Selman
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Lorraine Harper
- School
of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, U.K
| | - Bart C. Jacobs
- Department
of Immunology and Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Caroline O. S. Savage
- School
of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, U.K
| | - Roy Jefferis
- School
of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, U.K
| | - André M. Deelder
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Matthew Morgan
- School
of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, U.K
| |
Collapse
|
36
|
The perfect storm: HLA antibodies, complement, FcγRs, and endothelium in transplant rejection. Trends Mol Med 2015; 21:319-29. [PMID: 25801125 DOI: 10.1016/j.molmed.2015.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
The pathophysiology of antibody-mediated rejection (AMR) in solid organ transplants is multifaceted and predominantly caused by antibodies directed against polymorphic donor human leukocyte antigens (HLAs). Despite the clearly detrimental impact of HLA antibodies (HLA-Abs) on graft function and survival, the prevention, diagnosis, and treatment of AMR remain a challenge. The histological manifestations of AMR reflect the signatures of HLA-Ab-triggered injury, specifically endothelial changes, recipient leukocytic infiltrate, and complement deposition. We review the interconnected mechanisms of HLA-Ab-mediated injury that might synergize in a 'perfect storm' of inflammation. Characterization of antibody features that are critical for effector functions may help to identify HLA-Abs that are more likely to cause rejection. We also highlight recent advances that may pave the way for new, more effective therapies.
Collapse
|
37
|
Deyev SM, Lebedenko EN, Petrovskaya LE, Dolgikh DA, Gabibov AG, Kirpichnikov MP. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4459] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Yuan S, Li Q, Zhang Y, Huang C, Wu H, Li Y, Liu Y, Yu N, Zhang H, Lu G, Gao Y, Gao Y, Guo X. Changes in anti-thyroglobulin IgG glycosylation patterns in Hashimoto's thyroiditis patients. J Clin Endocrinol Metab 2015; 100:717-24. [PMID: 25380293 PMCID: PMC4318900 DOI: 10.1210/jc.2014-2921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Sera of Hashimoto's thyroiditis (HT) patients are known to exhibit elevated levels of anti-thyroglobulin IgG (TgAb IgG). Therefore, TgAb IgG represents a hallmark of this debilitating autoimmune disease. The aim of our study was to investigate the differential expression of specific glycosylation patterns of TgAb IgG from HT patients and healthy blood donors. METHODS HT patients (n = 32) were divided into two subgroups, medium level group (mHT, n = 15) and high level group (hHT, n = 17), according to the serum levels of TgAb detected by electrochemiluminescence immunoassay. TgAb IgG was purified by affinity chromatography from the sera of the HT group and control group (n = 15). MALDI-QIT-TOF-MS/MS spectrometry was performed to identify the glycosylation profiles of purified TgAb IgG. Lectin microarray technology was used to compare the abundance of different glycans found on TgAb IgG between HT patients and controls, and between the mHT and hHT groups. RESULTS The results by MALDI-QIT-TOF-MS/MS showed that the glycosylation profiles of TgAb IgG were similar between the mHT, hHT, and control groups. Furthermore, the lectin microarray showed that compared to the control group (all P < .001), there were higher levels present of (1) mannose (detected as lectin LCA, VFA, and MNA-M); (2) terminal sialic acid (detected as SNA-I and PSA); (3) core fucose (detected as LcH); and (4) Gal(β1-4)GlcNAc(β1-2)Man glycans (detected as PHA-L) on TgAb IgG from the HT group. A similar trend was observed between the hHT and mHT group, with elevated levels of mannose, terminal sialic acid, core fucose, and Gal(β1-4)GlcNAc(β1-2)Man glycans on TgAb IgG found in the hHT group compared with the mHT group (all P < .05). CONCLUSIONS TgAb IgG of HT patients exhibits higher glycosylation levels than those observed for TgAb IgG of healthy controls. Our results provide new clues for exploring the role of TgAb in the pathogenesis of HT.
Collapse
Affiliation(s)
- Shanshan Yuan
- Department of Endocrinology (S.Y., Y.Z., Yal.L., N.Y., H.Z., G.L., Ya.G., Yi.G., X.G.), Peking University First Hospital, Beijing 100034, China; Institute of Biophysics (Q.L., C.H., H.W., Yan.L.), Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Euler Z, Alter G. Exploring the potential of monoclonal antibody therapeutics for HIV-1 eradication. AIDS Res Hum Retroviruses 2015; 31:13-24. [PMID: 25385703 DOI: 10.1089/aid.2014.0235] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The HIV field has seen an increased interest in novel cure strategies. In particular, new latency reversal agents are in development to reverse latency to flush the virus out of its hiding place. Combining these efforts with immunotherapeutic approaches may not only drive the virus out of latency, but allow for the rapid elimination of these infected cells in a "shock and kill" approach. Beyond cell-based approaches, growing interest lies in the potential use of functionally enhanced "killer" monoclonal therapeutics to purge the reservoir. Here we discuss prospects for a monoclonal therapeutic-based "shock and kill" strategy that may lead to the permanent elimination of replication-competent virus, making a functional cure a reality for all patients afflicted with HIV worldwide.
Collapse
Affiliation(s)
- Zelda Euler
- Ragon Institute of MGH, MIT, and Harvard University , Cambridge, Massachusetts
| | | |
Collapse
|
40
|
Tebbey PW, Varga A, Naill M, Clewell J, Venema J. Consistency of quality attributes for the glycosylated monoclonal antibody Humira® (adalimumab). MAbs 2015; 7:805-11. [PMID: 26230301 PMCID: PMC4622832 DOI: 10.1080/19420862.2015.1073429] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 01/19/2023] Open
Abstract
Humira® (adalimumab) is a recombinant human IgG1 monoclonal antibody (mAb) glycoprotein consisting of 1330 amino acids that is specific for human tumor necrosis factor (TNF). The biological activity and clinical profile of mAb therapeutics, including adalimumab, is influenced by their protein structure and glycosylation patterns, which can be affected by the expression system, cell culture conditions and purification process methodology. While clinical outcome cannot yet be attributed to many of the individual structural features that constitute a mAb, it is evident that detailed structural attribute analysis is necessary if structural contributions to function are to be comprehensively defined. Adalimumab product quality data generated from over a decade of manufacturing across multiple production sites and through a series of manufacturing scale changes are presented here. These data reveal a consistent and tightly controlled profile for the product.
Collapse
Affiliation(s)
- Paul W Tebbey
- AbbVie; Global Medical Affairs; Biologics Strategic Development; North Chicago, IL USA
| | - Amy Varga
- AbbVie; Biologics Development and Manufacturing Launch; AbbVie Bioresearch Center; Worcester, MA USA
| | - Michael Naill
- AbbVie; Biologics Development and Manufacturing Launch; AbbVie Bioresearch Center; Worcester, MA USA
| | - Jerry Clewell
- AbbVie; Global Medical Affairs; Biologics Strategic Development; North Chicago, IL USA
| | - Jaap Venema
- AbbVie; Global Medical Affairs; Biologics Strategic Development; North Chicago, IL USA
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The hyper-IgE syndromes have been recognized as a group of primary immunodeficiencies characterized by eczema, recurrent skin and lung infections, and elevated serum IgE. Recently, mutations in phosphoglucomutase 3 (encoding PGM3, which is involved in the protein glycosylation pathway) have been identified in autosomal recessive forms of hyper-IgE syndromes. RECENT FINDINGS Autosomal recessive, hypomorphic PGM3 mutations cause a multisystem disorder, characterized by both a congenital glycosylation disease and a hyper-IgE syndrome. The reported mutations in PGM3 led to an impaired biosynthesis of UDP-GlcNAc and impaired tri-antennary and tetra-antennary N-glycan structures. Laboratory results in patients showed eosinophilia, a T-cell proliferation defect, and a reversed CD4/CD8 ratio. The impaired glycosylation in PGM3-mutant patients will not only affect proteins involved in the immune system, and thus causes a multisystem phenotype. SUMMARY The identification of hyper-IgE syndromes-associated mutations in PGM3 provides the basis for future studies on the pathophysiology and the molecular mechanisms of eczema, IgE dysregulation, and increased susceptibility to infections.
Collapse
|
42
|
Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 2014; 15:707-16. [PMID: 25045879 DOI: 10.1038/ni.2939] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/09/2014] [Indexed: 12/15/2022]
Abstract
Antibodies produced in response to a foreign antigen are characterized by polyclonality, not only in the diverse epitopes to which their variable domains bind but also in the various effector molecules to which their constant regions (Fc domains) engage. Thus, the antibody's Fc domain mediates diverse effector activities by engaging two distinct classes of Fc receptors (type I and type II) on the basis of the two dominant conformational states that the Fc domain may adopt. These conformational states are regulated by the differences among antibody subclasses in their amino acid sequence and by the complex, biantennary Fc-associated N-linked glycan. Here we discuss the diverse downstream proinflammatory, anti-inflammatory and immunomodulatory consequences of the engagement of type I and type II Fc receptors in the context of infectious, autoimmune, and neoplastic disorders.
Collapse
Affiliation(s)
- Andrew Pincetic
- 1] The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA. [2]
| | - Stylianos Bournazos
- 1] The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA. [2]
| | - David J DiLillo
- 1] The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA. [2]
| | - Jad Maamary
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| | - Taia T Wang
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| | - Rony Dahan
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| | | | - Jeffrey V Ravetch
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
43
|
Dugast AS, Stamatatos L, Tonelli A, Suscovich TJ, Licht AF, Mikell I, Ackerman ME, Streeck H, Klasse P, Moore JP, Alter G. Independent evolution of Fc- and Fab-mediated HIV-1-specific antiviral antibody activity following acute infection. Eur J Immunol 2014; 44:2925-37. [PMID: 25043633 PMCID: PMC4311770 DOI: 10.1002/eji.201344305] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/25/2014] [Accepted: 07/04/2014] [Indexed: 11/07/2022]
Abstract
Fc-related antibody activities, such as antibody-dependent cellular cytotoxicity (ADCC), or more broadly, antibody-mediated cellular viral inhibition (ADCVI), play a role in curbing early SIV viral replication, are enriched in human long-term infected nonprogressors, and could potentially contribute to protection from infection. However, little is known about the mechanism by which such humoral immune responses are naturally induced following infection. Here, we focused on the early evolution of the functional antibody response, largely driven by the Fc portion of the antibody, in the context of the evolving binding and neutralizing antibody response, which is driven mainly by the antibody-binding fragment (Fab). We show that ADCVI/ADCC-inducing responses in humans are rapidly generated following acute HIV-1 infection, peak at approximately 6 months postinfection, but decay rapidly in the setting of persistent immune activation, as Fab-related activities persistently increase. Moreover, the loss of Fc activity occurred in synchrony with a loss of HIV-specific IgG3 responses. Our data strongly suggest that Fc- and Fab-related antibody functions are modulated in a distinct manner following acute HIV infection. Vaccination strategies intended to optimally induce both sets of antiviral antibody activities may, therefore, require a fine tuning of the inflammatory response.
Collapse
Affiliation(s)
- Anne-Sophie Dugast
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA; United States of America
| | - Leonidas Stamatatos
- Seattle Biomedical Research Institute, Seattle; United States of America
- Department of Global Health, University of Washington, Seattle, WA; United States of America
| | - Andrew Tonelli
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA; United States of America
| | - Todd J. Suscovich
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA; United States of America
| | - Anna F. Licht
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA; United States of America
| | - Iliyana Mikell
- Seattle Biomedical Research Institute, Seattle; United States of America
- Department of Global Health, University of Washington, Seattle, WA; United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH; United States of America
| | - Hendrik Streeck
- US Military HIV Research Program, Silver Spring, Maryland; United States of America
| | - P.J. Klasse
- Weill Cornell Medical College, New York, New York; United States of America
| | - John P. Moore
- Weill Cornell Medical College, New York, New York; United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA; United States of America
| |
Collapse
|
44
|
Abstract
ABSTRACT
Antibodies can impact pathogens in the presence or in the absence of effector cells or effector molecules such as complement, and experiments can often sort out with precision the mechanisms by which an antibody inhibits a pathogen
in vitro
. In addition,
in vivo
models, particularly those engineered to knock in or knock out effector cells or effector molecules, are excellent tools for understanding antibody functions. However, it is highly likely that multiple antibody functions occur simultaneously or sequentially in the presence of an infecting organism
in vivo
. The most critical incentive for measuring antibody functions is to provide a basis for vaccine development and for the development of therapeutic antibodies. In this respect, some functions, such as virus neutralization, serve to inhibit the acquisition of a pathogen or limit its pathogenesis. However, antibodies can also enhance replication or contribute to pathogenesis. This review emphasizes those antibody functions that are potentially beneficial to the host. In addition, this review will focus on the effects of antibodies on organisms themselves, rather than on the toxins the organisms may produce.
Collapse
|
45
|
Stanley P, Sundaram S. Rapid assays for lectin toxicity and binding changes that reflect altered glycosylation in mammalian cells. ACTA ACUST UNITED AC 2014; 6:117-133. [PMID: 24903886 DOI: 10.1002/9780470559277.ch130206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycosylation engineering is used to generate glycoproteins, glycolipids, or proteoglycans with a more defined complement of glycans on their glycoconjugates. For example, a mammalian cell glycosylation mutant lacking a specific glycosyltransferase generates glycoproteins, and/or glycolipids, and/or proteoglycans with truncated glycans missing the sugar transferred by that glycosyltransferase, as well as those sugars that would be added subsequently. In some cases, an alternative glycosyltransferase may then use the truncated glycans as acceptors, thereby generating a new or different glycan subset in the mutant cell. Another type of glycosylation mutant arises from gain-of-function mutations that, for example, activate a silent glycosyltransferase gene. In this case, glycoconjugates will have glycans with additional sugar(s) that are more elaborate than the glycans of wild type cells. Mutations in other genes that affect glycosylation, such as nucleotide sugar synthases or transporters, will alter the glycan complement in more general ways that usually affect several types of glycoconjugates. There are now many strategies for generating a precise mutation in a glycosylation gene in a mammalian cell. Large-volume cultures of mammalian cells may also generate spontaneous mutants in glycosylation pathways. This article will focus on how to rapidly characterize mammalian cells with an altered glycosylation activity. The key reagents for the protocols described are plant lectins that bind mammalian glycans with varying avidities, depending on the specific structure of those glycans. Cells with altered glycosylation generally become resistant or hypersensitive to lectin toxicity, and have reduced or increased lectin or antibody binding. Here we describe rapid assays to compare the cytotoxicity of lectins in a lectin resistance test, and the binding of lectins or antibodies by flow cytometry in a glycan-binding assay. Based on these tests, glycosylation changes expressed by a cell can be revealed, and glycosylation mutants classified into phenotypic groups that may reflect a loss-of-function or gain-of-function mutation in a specific gene involved in glycan synthesis.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | - Subha Sundaram
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
46
|
Fc glycan-modulated immunoglobulin G effector functions. J Clin Immunol 2014; 34 Suppl 1:S51-5. [PMID: 24760108 DOI: 10.1007/s10875-014-0018-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Immunoglobulin G (IgG) molecules are glycoproteins and residues in the sugar moiety attached to the IgG constant fragment (Fc) are essential for IgG functionality such as binding to cellular Fc receptors and complement activation. The core of this sugar moiety consists of a bi-antennary heptameric structure of mannose and N-acetylglucosamine (GlcNAc), further decorated with terminal and branching residues including galactose, sialic acid, fucose, and GlcNAc. Presence or absence of distinct residues such as fucose and sialic acid can dramatically alter pro- and anti-inflammatory IgG activities which could be harnessed for immunotherapeutic purposes. Here we review recent advances in understanding the role of the IgG-Fc glycan during immune responses and for immunotherapy with a focus on sialic acid and intravenous immunoglobulin (IVIG) treatment.
Collapse
|
47
|
Lux A, Seeling M, Baerenwaldt A, Lehmann B, Schwab I, Repp R, Meidenbauer N, Mackensen A, Hartmann A, Heidkamp G, Dudziak D, Nimmerjahn F. A Humanized Mouse Identifies the Bone Marrow as a Niche with Low Therapeutic IgG Activity. Cell Rep 2014; 7:236-48. [DOI: 10.1016/j.celrep.2014.02.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/27/2013] [Accepted: 02/27/2014] [Indexed: 10/25/2022] Open
|
48
|
Hristodorov D, Fischer R, Linden L. With or without sugar? (A)glycosylation of therapeutic antibodies. Mol Biotechnol 2013; 54:1056-68. [PMID: 23097175 DOI: 10.1007/s12033-012-9612-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antibodies and antibody-based drugs are currently the fastest-growing class of therapeutics. Over the last three decades, more than 30 therapeutic monoclonal antibodies and derivatives thereof have been approved for and successfully applied in diverse indication areas including cancer, organ transplants, autoimmune/inflammatory disorders, and cardiovascular disease. The isotype of choice for antibody therapeutics is human IgG, whose Fc region contains a ubiquitous asparagine residue (N297) that acts as an acceptor site for N-linked glycans. The nature of these glycans can decisively influence the therapeutic performance of a recombinant antibody, and their absence or modification can lead to the loss of Fc effector functions, greater immunogenicity, and unfavorable pharmacokinetic profiles. However, recent studies have shown that aglycosylated antibodies can be genetically engineered to display novel or enhanced effector functions and that favorable pharmacokinetic properties can be preserved. Furthermore, the ability to produce aglycosylated antibodies in lower eukaryotes and bacteria offers the potential to broaden and simplify the production platforms and avoid the problem of antibody heterogeneity, which occurs when mammalian cells are used for production. In this review, we discuss the importance of Fc glycosylation focusing on the use of aglycosylated and glyco-engineered antibodies as therapeutic proteins.
Collapse
Affiliation(s)
- Dmitrij Hristodorov
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | | | | |
Collapse
|
49
|
EndoS2 is a unique and conserved enzyme of serotype M49 group A Streptococcus that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein. Biochem J 2013; 455:107-18. [PMID: 23865566 PMCID: PMC3778708 DOI: 10.1042/bj20130126] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many bacteria have evolved ways to interact with glycosylation functions of the immune system of their hosts. Streptococcus pyogenes [GAS (group A Streptococcus)] secretes the enzyme EndoS that cleaves glycans on human IgG and impairs the effector functions of the antibody. The ndoS gene, encoding EndoS, has, until now, been thought to be conserved throughout the serotypes. However, in the present study, we identify EndoS2, an endoglycosidase in serotype M49 GAS strains. We characterized EndoS2 and the corresponding ndoS2 gene using sequencing, bioinformatics, phylogenetic analysis, recombinant expression and LC-MS analysis of glycosidic activity. This revealed that EndoS2 is present exclusively, and highly conserved, in serotype M49 of GAS and is only 37% identical with EndoS. EndoS2 showed endo-β-N-acetylglucosaminidase activity on all N-linked glycans of IgG and on biantennary and sialylated glycans of AGP (α1-acid glycoprotein). The enzyme was found to act only on native IgG and AGP and to be specific for free biantennary glycans with or without terminal sialylation. GAS M49 expression of EndoS2 was monitored in relation to carbohydrates present in the culture medium and was linked to the presence of sucrose. We conclude that EndoS2 is a unique endoglycosidase in serotype M49 and differs from EndoS of other GAS strains by targeting both IgG and AGP. EndoS2 expands the repertoire of GAS effectors that modify key glycosylated molecules of host defence.
Collapse
|
50
|
Malaspina A, Collins BS, Dell A, Alter G, Onami TM. Conference report: "Functional Glycomics in HIV Type 1 Vaccine Design" workshop report, Bethesda, Maryland, April 30-May 1, 2012. AIDS Res Hum Retroviruses 2013; 29:1407-17. [PMID: 23767872 DOI: 10.1089/aid.2013.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A vital part of the renewed hope for a vaccine against the human immunodeficiency virus (HIV-1) is based on recent studies that have highlighted major sites of HIV-1 vulnerability that could be effectively targeted by a preventive vaccine. One of these potential vulnerabilities includes the dense cluster of carbohydrates surrounding HIV-1's envelope glycoproteins gp120 and gp41, typically referred to as the "glycan shield." Recent data from several laboratories have shown that glycans on the HIV-1 envelope form key epitopes for broadly neutralizing antibodies (bNAb). Moreover, HIV-1 envelope glycans play an important role in viral transmission, antigenicity, and immunogenicity. The recent availability of novel tools and technologies has now allowed investigators to leverage glycomic structure-function relationships in the design of candidate HIV-1 vaccines. Additionally, glycans modulate the immune response, playing an essential role in Fc receptor and complement activity. To promote cross-disciplinary collaboration and promote synergistic HIV-1- glycomics research, the National Institutes of Health (NIH) cosponsored and convened a 1.5-day workshop entitled "Functional Glycomics in HIV-1 Vaccine Design." The meeting focused on the role of glycan interactions with neutralizing antibodies, the influence of immunoglobulin G (IgG) Fc receptor glycosylation, newly available glycomics technologies, and how new information on the role of glycans could be applied in HIV-1 immunogen design strategies. This report summarizes the discussions of this workshop.
Collapse
Affiliation(s)
- Angela Malaspina
- Preclinical Research and Development Branch, Division of AIDS, U.S. National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Brenda S. Collins
- HJF-DAIDS, a Division of The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Contractor to NIAID, NIH, DHHS, Bethesda, Maryland
| | - Anne Dell
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Charlestown, Massachusetts
| | - Thandi M. Onami
- Vaccine Clinical Research Branch, Division of AIDS, U.S. National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|