1
|
Spalletta A, Joly N, Martin P. Latest Trends in Lipase-Catalyzed Synthesis of Ester Carbohydrate Surfactants: From Key Parameters to Opportunities and Future Development. Int J Mol Sci 2024; 25:3727. [PMID: 38612540 PMCID: PMC11012184 DOI: 10.3390/ijms25073727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Carbohydrate-based surfactants are amphiphilic compounds containing hydrophilic moieties linked to hydrophobic aglycones. More specifically, carbohydrate esters are biosourced and biocompatible surfactants derived from inexpensive renewable raw materials (sugars and fatty acids). Their unique properties allow them to be used in various areas, such as the cosmetic, food, and medicine industries. These multi-applications have created a worldwide market for biobased surfactants and consequently expectations for their production. Biobased surfactants can be obtained from various processes, such as chemical synthesis or microorganism culture and surfactant purification. In accordance with the need for more sustainable and greener processes, the synthesis of these molecules by enzymatic pathways is an opportunity. This work presents a state-of-the-art lipase action mode, with a focus on the active sites of these proteins, and then on four essential parameters for optimizing the reaction: type of lipase, reaction medium, temperature, and ratio of substrates. Finally, this review discusses the latest trends and recent developments, showing the unlimited potential for optimization of such enzymatic syntheses.
Collapse
Affiliation(s)
| | - Nicolas Joly
- Unité Transformations & Agroressources, ULR7519, Université d’Artois-UniLaSalle, F-62408 Béthune, France; (A.S.); (P.M.)
| | | |
Collapse
|
2
|
Miao Y, To MH, Siddiqui MA, Wang H, Lodens S, Chopra SS, Kaur G, Roelants SLKW, Lin CSK. Sustainable biosurfactant production from secondary feedstock-recent advances, process optimization and perspectives. Front Chem 2024; 12:1327113. [PMID: 38312346 PMCID: PMC10834756 DOI: 10.3389/fchem.2024.1327113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Biosurfactants have garnered increased attention lately due to their superiority of their properties over fossil-derived counterparts. While the cost of production remains a significant hurdle to surpass synthetic surfactants, biosurfactants have been anticipated to gain a larger market share in the coming decades. Among these, glycolipids, a type of low-molecular-weight biosurfactant, stand out for their efficacy in reducing surface and interfacial tension, which made them highly sought-after for various surfactant-related applications. Glycolipids are composed of hydrophilic carbohydrate moieties linked to hydrophobic fatty acid chains through ester bonds that mainly include rhamnolipids, trehalose lipids, sophorolipids, and mannosylerythritol lipids. This review highlights the current landscape of glycolipids and covers specific glycolipid productivity and the diverse range of products found in the global market. Applications such as bioremediation, food processing, petroleum refining, biomedical uses, and increasing agriculture output have been discussed. Additionally, the latest advancements in production cost reduction for glycolipid and the challenges of utilizing second-generation feedstocks for sustainable production are also thoroughly examined. Overall, this review proposes a balance between environmental advantages, economic viability, and societal benefits through the optimized integration of secondary feedstocks in biosurfactant production.
Collapse
Affiliation(s)
- Yahui Miao
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Ming Ho To
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
- Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, China
| | - Huaimin Wang
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, United States
| | - Sofie Lodens
- Bio Base Europe Pilot Plant, Ghent, Belgium
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON, Canada
| | - Sophie L K W Roelants
- Bio Base Europe Pilot Plant, Ghent, Belgium
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| |
Collapse
|
3
|
Castanho NRCM, de Marco N, Caetano ÉLA, Alves PLM, Pickler TB, Ibanez NLDA, Jozala AF, Grotto D. Exploring Bacterial Cellulose and a Biosurfactant as Eco-Friendly Strategies for Addressing Pharmaceutical Contaminants. Molecules 2024; 29:448. [PMID: 38257361 PMCID: PMC10818349 DOI: 10.3390/molecules29020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aquatic environments face contamination by pharmaceuticals, prompting concerns due to their toxicity even at low concentrations. To combat this, we developed an ecologically sustainable biosurfactant derived from a microorganism and integrated it into bacterial cellulose (BC). This study aimed to evaluate BC's efficacy, with and without the biosurfactant, as a sorbent for paracetamol and 17α-ethinylestradiol (EE2) in water. We cultivated BC membranes using Gluconacetobacter xylinus ATCC 53582 and synthesized the biosurfactant through pre-inoculation of Bacillus subtilis in a synthetic medium. Subsequently, BC membranes were immersed in the biosurfactant solution for incorporation. Experiments were conducted using contaminated water, analyzing paracetamol concentrations via spectrophotometry and EE2 levels through high-performance liquid chromatography. Results indicated BC's superior adsorption for EE2 over paracetamol. Incorporating the biosurfactant reduced hormone adsorption but enhanced paracetamol sorption. Notably, original and freeze-dried BC exhibited better adsorption efficacy than biosurfactant-infused BC. In conclusion, BC showed promise in mitigating EE2 contamination, suggesting its potential for environmental remediation. Future research could focus on optimizing biosurfactant concentrations to enhance sorption capabilities without compromising BC's inherent effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Angela Faustino Jozala
- Department of Pharmacy, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (N.R.C.M.C.); (N.d.M.); (É.L.A.C.); (P.L.M.A.); (T.B.P.); (N.L.d.A.I.)
| | - Denise Grotto
- Department of Pharmacy, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (N.R.C.M.C.); (N.d.M.); (É.L.A.C.); (P.L.M.A.); (T.B.P.); (N.L.d.A.I.)
| |
Collapse
|
4
|
Boby F, Bhuiyan MNH, Saha BK, Dey SS, Saha AK, Islam MJ, Bashera MA, Moulick SP, Jahan F, Zaman MAU, Chowdhury SF, Naser SR, Khan MS, Sarkar MMH. In silico exploration of Serratia sp. BRL41 genome for detecting prodigiosin Biosynthetic Gene Cluster (BGC) and in vitro antimicrobial activity assessment of secreted prodigiosin. PLoS One 2023; 18:e0294054. [PMID: 37967102 PMCID: PMC10651056 DOI: 10.1371/journal.pone.0294054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
The raising concern of drug resistance, having substantial impacts on public health, has instigated the search of new natural compounds with substantial medicinal activity. In order to find out a natural solution, the current study has utilized prodigiosin, a linear tripyrrole red pigment, as an active ingredient to control bacterial proliferation and prevent cellular oxidation caused by ROS (Reactive Oxygen Species). A prodigiosin-producing bacterium BRL41 was isolated from the ancient Barhind soil of BCSIR Rajshahi Laboratories, Bangladesh, and its morphological and biochemical characteristics were investigated. Whole genome sequencing data of the isolate revealed its identity as Serratia sp. and conferred the presence of prodigiosin gene cluster in the bacterial genome. "Prodigiosin NRPS", among the 10 analyzed gene clusters, showed 100% similarity with query sequences where pigC, pigH, pigI, and pigJ were identified as fundamental genes for prodigiosin biosynthesis. Some other prominent clusters for synthesis of ririwpeptides, yersinopine, trichrysobactin were also found in the chromosome of BRL41, whilst the rest displayed less similarity with query sequences. Except some first-generation beta-lactam resistance genes, no virulence and resistance genes were found in the genome of BRL41. Structural illumination of the extracted red pigment by spectrophotometric scanning, Thin-Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), and change of color at different pH solutions verified the identity of the isolated compound as prodigiosin. Serratia sp. BRL41 attained its maximum productivity 564.74 units/cell at temperature 30˚C and pH 7.5 in two-fold diluted nutrient broth medium. The compound exhibited promising antibacterial activity against Gram-positive and Gram-negative bacteria with MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values ranged from 3.9 to15.62 μg/mL and 7.81 to 31.25 μg/mL respectively. At concentration 500 μg/mL, except in Salmonella enterica ATCC-10708, prodigiosin significantly diminished biofilm formed by Listeria monocytogens ATCC-3193, Pseudomonas aeruginosa ATCC-9027, Escherichia coli (environmental isolate), Staphylococcus aureus (environmental isolate). Cellular glutathione level (GSH) was elevated upon application of 250 and 500 μg/mL pigment where 125 μg/mL failed to show any free radical scavenging activity. Additionally, release of cellular components in growth media of both Gram-positive and Gram-negative bacteria were facilitated by the extract that might be associated with cell membrane destabilization. Therefore, the overall findings of antimicrobial, antibiofilm and antioxidant activities suggest that in time to come prodigiosin might be a potential natural source to treat various diseases and infections.
Collapse
Affiliation(s)
- Farhana Boby
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Nurul Huda Bhuiyan
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Barun Kanti Saha
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Subarna Sandhani Dey
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Anik Kumar Saha
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Jahidul Islam
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Mahci Al Bashera
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shyama Prosad Moulick
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Farhana Jahan
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Sanjana Fatema Chowdhury
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Showti Raheel Naser
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Salim Khan
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Murshed Hasan Sarkar
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| |
Collapse
|
5
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
6
|
Bhadra S, Chettri D, Kumar Verma A. Biosurfactants: Secondary Metabolites Involved in the Process of Bioremediation and Biofilm Removal. Appl Biochem Biotechnol 2023; 195:5541-5567. [PMID: 35579742 DOI: 10.1007/s12010-022-03951-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
The search for environmentally friendly methods to remove persistent substances such as organic pollutants and sessile communities such as biofilms that severely affect the environment and human health resulted in biosurfactant discovery. Owing to their low level of toxicity and high biodegradability, biosurfactants are increasingly preferred to be used for removal of pollutants from nature. These amphipathic molecules can be synthesized inexpensively, employing cheap substrates such as agricultural and industrial wastes. Recent progress has been made in identifying various biosurfactants that can be used to remove organic pollutants and harmful microbial aggregates, as well as novel microbial strains that produce these surface-active molecules to survive in a hydrocarbon-rich environment. This review focuses on the identification and understanding the role of biosurfactants and the microorganisms involved in the removal of biofilms and remediation of xenobiotics and various types of hydrocarbons such as crude oil, aromatic hydrocarbons, n-alkanes, aliphatic hydrocarbons, asphaltenes, naphthenes, and other petroleum products. This property of biosurfactant is very important as biofilms are of great concern due to their impact on the environment, public health, and industries worldwide. This work also includes several advanced molecular methods that can be used to enhance the production of biosurfactants by the microorganisms studied.
Collapse
Affiliation(s)
- Sushruta Bhadra
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
7
|
Kumari R, Singha LP, Shukla P. Biotechnological potential of microbial bio-surfactants, their significance, and diverse applications. FEMS MICROBES 2023; 4:xtad015. [PMID: 37614639 PMCID: PMC10442721 DOI: 10.1093/femsmc/xtad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Globally, there is a huge demand for chemically available surfactants in many industries, irrespective of their detrimental impact on the environment. Naturally occurring green sustainable substances have been proven to be the best alternative for reducing reliance on chemical surfactants and promoting long-lasting sustainable development. The most frequently utilized green active biosurfactants, which are made by bacteria, yeast, and fungi, are discussed in this review. These biosurfactants are commonly originated from contaminated sites, the marine ecosystem, and the natural environment, and it holds great potential for environmental sustainability. In this review, we described the importance of biosurfactants for the environment, including their biodegradability, low toxicity, environmental compatibility, and stability at a wide pH range. In this review, we have also described the various techniques that have been utilized to characterize and screen the generation of microbial biosurfactants. Also, we reviewed the potential of biosurfactants and its emerging applications in the foods, cosmetics, pharmaceuticals, and agricultural industries. In addition, we also discussed the ways to overcome problems with expensive costs such as low-cost substrate media formulation, gravitational techniques, and solvent-free foam fractionation for extraction that could be employed during biosurfactant production on a larger scale.
Collapse
Affiliation(s)
- Renuka Kumari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Lairenjam Paikhomba Singha
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer-305817, Rajasthan, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
8
|
Li Y, Cui Z, Luan X, Bian X, Li G, Hao T, Liu J, Feng K, Song Y. Degradation potential and pathways of methylcyclohexane by bacteria derived from Antarctic surface water. CHEMOSPHERE 2023; 329:138647. [PMID: 37037356 DOI: 10.1016/j.chemosphere.2023.138647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Cycloalkanes pose a tremendous environmental risk due to their high concentration in petroleum hydrocarbons and hazardous effects to organisms. Numerous studies have documented the biodegradation of acyclic alkanes and aromatic hydrocarbons. However, insufficient attention has been paid to studies on the microbial degradation of cycloalkanes, which might be closely linked to psychrophilic microbes derived from low-temperature habitats. Here we show that endemic methylcyclohexane (MCH, an abundant cycloalkane species in oil) consumers proliferated in seawater samples derived from the Antarctic surface water (AASW). The MCH-consuming bacterial communities derived from AASW exhibited a distinct species composition compared with their counterparts derived from other cold-water habitats. We also probed Colwellia and Roseovarius as the key active players in cycloalkane degradation by dilution-to-extinction-based incubation with MCH as sole source of carbon and energy. Furthermore, we propose two nearly complete MCH degradation pathways, lactone formation and aromatization, concurrently in the high-quality metagenome-assembled genomes of key MCH consumer Roseovarius. Overall, we revealed that these Antarctic microbes might have strong interactions that enhance the decomposition of more refractory hydrocarbons through complementary degradation pathways.
Collapse
Affiliation(s)
- Yingchao Li
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, 266061, People's Republic of China
| | - Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, 266061, People's Republic of China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
| | - Xiao Luan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100048, People's Republic of China
| | - Xinqi Bian
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, 266061, People's Republic of China
| | - Guoqing Li
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, 266061, People's Republic of China
| | - Tong Hao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Jinyan Liu
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, 266061, People's Republic of China
| | - Ke Feng
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, 266061, People's Republic of China
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, 215163, China.
| |
Collapse
|
9
|
Schultz J, Modolon F, Peixoto RS, Rosado AS. Shedding light on the composition of extreme microbial dark matter: alternative approaches for culturing extremophiles. Front Microbiol 2023; 14:1167718. [PMID: 37333658 PMCID: PMC10272570 DOI: 10.3389/fmicb.2023.1167718] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
More than 20,000 species of prokaryotes (less than 1% of the estimated number of Earth's microbial species) have been described thus far. However, the vast majority of microbes that inhabit extreme environments remain uncultured and this group is termed "microbial dark matter." Little is known regarding the ecological functions and biotechnological potential of these underexplored extremophiles, thus representing a vast untapped and uncharacterized biological resource. Advances in microbial cultivation approaches are key for a detailed and comprehensive characterization of the roles of these microbes in shaping the environment and, ultimately, for their biotechnological exploitation, such as for extremophile-derived bioproducts (extremozymes, secondary metabolites, CRISPR Cas systems, and pigments, among others), astrobiology, and space exploration. Additional efforts to enhance culturable diversity are required due to the challenges imposed by extreme culturing and plating conditions. In this review, we summarize methods and technologies used to recover the microbial diversity of extreme environments, while discussing the advantages and disadvantages associated with each of these approaches. Additionally, this review describes alternative culturing strategies to retrieve novel taxa with their unknown genes, metabolisms, and ecological roles, with the ultimate goal of increasing the yields of more efficient bio-based products. This review thus summarizes the strategies used to unveil the hidden diversity of the microbiome of extreme environments and discusses the directions for future studies of microbial dark matter and its potential applications in biotechnology and astrobiology.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
10
|
Algieri F, Tanaskovic N, Rincon CC, Notario E, Braga D, Pesole G, Rusconi R, Penna G, Rescigno M. Lactobacillus paracasei CNCM I-5220-derived postbiotic protects from the leaky-gut. Front Microbiol 2023; 14:1157164. [PMID: 37020718 PMCID: PMC10067918 DOI: 10.3389/fmicb.2023.1157164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
The maintenance of intestinal barrier function is essential for preventing different pathologies, such as the leaky gut syndrome (LGS), which is characterized by the passage of harmful agents, like bacteria, toxins, and viruses, into the bloodstream. Intestinal barrier integrity is controlled by several players, including the gut microbiota. Various molecules, called postbiotics, are released during the natural metabolic activity of the microbiota. Postbiotics can regulate host–microbe interactions, epithelial homeostasis, and have overall benefits for our health. In this work, we used in vitro and in vivo systems to demonstrate the role of Lactobacillus paracasei CNCM I-5220-derived postbiotic (LP-PBF) in preserving intestinal barrier integrity. We demonstrated in vitro that LP-PBF restored the morphology of tight junctions (TJs) that were altered upon Salmonella typhimurium exposure. In vivo, LP-PBF protected the gut vascular barrier and blocked S. typhimurium dissemination into the bloodstream. Interestingly, we found that LP-PBF interacts not only with the host cells, but also directly with S. typhimurium blocking its biofilm formation, partially due to the presence of biosurfactants. This study highlights that LP-PBF is beneficial in maintaining gut homeostasis due to the synergistic effect of its different components. These results suggest that LP-PBF could be utilized in managing several pathologies displaying an impaired intestinal barrier function.
Collapse
Affiliation(s)
| | | | | | - Elisabetta Notario
- Department of Bioscience, Biotechnologies and Environment – DBBA, University of Bari Aldo Moro, Bari, Italy
| | | | - Graziano Pesole
- Department of Bioscience, Biotechnologies and Environment – DBBA, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Giuseppe Penna
- Postbiotica S.r.l., Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- *Correspondence: Maria Rescigno,
| |
Collapse
|
11
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
12
|
Parus A, Ciesielski T, Woźniak-Karczewska M, Ślachciński M, Owsianiak M, Ławniczak Ł, Loibner AP, Heipieper HJ, Chrzanowski Ł. Basic principles for biosurfactant-assisted (bio)remediation of soils contaminated by heavy metals and petroleum hydrocarbons - A critical evaluation of the performance of rhamnolipids. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130171. [PMID: 36367467 DOI: 10.1016/j.jhazmat.2022.130171] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Despite the fact that rhamnolipids are among the most studied biosurfactants, there are still several gaps which must be filled. The aim of this review is to emphasize and to indicate which issues should be taken into account in order to achieve efficient rhamnolipids-assisted biodegradation or phytoextraction of soils contaminated by heavy metals and petroleum hydrocarbons without harmful side effects. Four main topics have been elucidated in the review: effective concentration of rhamnolipids in soil, their potential phytotoxicity, susceptibility to biodegradation and interaction with soil microorganisms. The discussed elements are often closely associated and often overlap, thus making the interpretation of research results all the more challenging. Each dedicated section of this review includes a description of potential issues and questions, an explanation of the background and rationale for each problem, analysis of relevant literature reports and a short summary with possible application guidelines. The main conclusion is that there is a necessity to establish regulations regarding effective concentrations for rhamnolipids-assisted remediation of soil. The use of an improper concentration is the direct cause of all the other discussed phenomena.
Collapse
Affiliation(s)
- Anna Parus
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
| | - Tomasz Ciesielski
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
| | - Marta Woźniak-Karczewska
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
| | - Mariusz Ślachciński
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznan, Poland
| | - Mikołaj Owsianiak
- Quantitative Sustainability Assessment Division, Department of Environmental and Resources Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Łukasz Ławniczak
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
| | - Andreas P Loibner
- Department IFA-Tulln, Institute of Environmental Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Łukasz Chrzanowski
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland; Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
13
|
Sarangi MK, Padhi S, Patel LD, Rath G, Nanda SS, Yi DK. Theranostic efficiency of biosurfactants against COVID-19 and similar viruses - A review. J Drug Deliv Sci Technol 2022; 76:103764. [PMID: 36090183 PMCID: PMC9444339 DOI: 10.1016/j.jddst.2022.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
The world has witnessed an extreme vulnerability of a pandemic during 2020; originated from China. The coronavirus disease 2019 (COVID-19) is infecting and beginning deaths in thousands to millions, creating of the global economic crisis. Biosurfactants (BSs) can carry the prevention, control and management of pandemic out through diverse approaches, such as pharmaceutical, therapeutic, hygienic and environmental. The microbiotas having virulent intrinsic properties towards starting as easily as spreading of diseases (huge morbidity and mortality) could be inhibited via BSs. Such elements could be recognised for their antimicrobial activity, capability to interact with the immune system via micelles formation and in nanoparticulate synthesis. However, they can be used for developing novel and more effective therapeutics, pharmaceuticals, non-toxic formulations, vaccines, and effective cleaning agents. Such approaches can be utilized for product development and implemented for managing and combating the pandemic conditions. This review emphasized on the potentiality of BSs as key components with several ways for protecting against unknown and known pathogens, including COVID-19.
Collapse
Affiliation(s)
- Manoj Kumar Sarangi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, Pin-248001, India
| | - Sasmita Padhi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, Pin-248001, India
| | - L D Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, Pin-391760, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, 751030, Odisha, India
| | | | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin, 03674, South Korea
| |
Collapse
|
14
|
Schultz J, Argentino ICV, Kallies R, Nunes da Rocha U, Rosado AS. Polyphasic Analysis Reveals Potential Petroleum Hydrocarbon Degradation and Biosurfactant Production by Rare Biosphere Thermophilic Bacteria From Deception Island, an Active Antarctic Volcano. Front Microbiol 2022; 13:885557. [PMID: 35602031 PMCID: PMC9114708 DOI: 10.3389/fmicb.2022.885557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 01/19/2023] Open
Abstract
Extreme temperature gradients in polar volcanoes are capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located in maritime Antarctica. The volcano has pronounced temperature gradients over very short distances, from as high as 100°C in the fumaroles to subzero next to the glaciers. These characteristics make Deception a promising source of a variety of bioproducts for use in different biotechnological areas. In this study, we isolated thermophilic bacteria from sediments in fumaroles at two geothermal sites on Deception Island with temperatures between 50 and 100°C, to evaluate the potential capacity of these bacteria to degrade petroleum hydrocarbons and produce biosurfactants under thermophilic conditions. We isolated 126 thermophilic bacterial strains and identified them molecularly as members of genera Geobacillus, Anoxybacillus, and Brevibacillus (all in phylum Firmicutes). Seventy-six strains grew in a culture medium supplemented with crude oil as the only carbon source, and 30 of them showed particularly good results for oil degradation. Of 50 strains tested for biosurfactant production, 13 showed good results, with an emulsification index of 50% or higher of a petroleum hydrocarbon source (crude oil and diesel), emulsification stability at 100°C, and positive results in drop-collapse, oil spreading, and hemolytic activity tests. Four of these isolates showed great capability of degrade crude oil: FB2_38 (Geobacillus), FB3_54 (Geobacillus), FB4_88 (Anoxybacillus), and WB1_122 (Geobacillus). Genomic analysis of the oil-degrading and biosurfactant-producer strain FB4_88 identified it as Anoxybacillus flavithermus, with a high genetic and functional diversity potential for biotechnological applications. These initial culturomic and genomic data suggest that thermophilic bacteria from this Antarctic volcano have potential applications in the petroleum industry, for bioremediation in extreme environments and for microbial enhanced oil recovery (MEOR) in reservoirs. In addition, recovery of small-subunit rRNA from metagenomes of Deception Island showed that Firmicutes is not among the dominant phyla, indicating that these low-abundance microorganisms may be important for hydrocarbon degradation and biosurfactant production in the Deception Island volcanic sediments.
Collapse
Affiliation(s)
- Júnia Schultz
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Alexandre Soares Rosado
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
15
|
The car tank lid bacteriome: a reservoir of bacteria with potential in bioremediation of fuel. NPJ Biofilms Microbiomes 2022; 8:32. [PMID: 35484166 PMCID: PMC9050737 DOI: 10.1038/s41522-022-00299-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
Bioprospecting of microorganisms suitable for bioremediation of fuel or oil spills is often carried out in contaminated environments such as gas stations or polluted coastal areas. Using next-generation sequencing (NGS) we analyzed the microbiota thriving below the lids of the fuel deposits of diesel and gasoline cars. The microbiome colonizing the tank lids differed from the diversity found in other hydrocarbon-polluted environments, with Proteobacteria being the dominant phylum and without clear differences between gasoline or diesel-fueled vehicles. We observed differential growth when samples were inoculated in cultures with gasoline or diesel as the main carbon source, as well as an increase in the relative abundance of the genus Pseudomonas in diesel. A collection of culturable strains was established, mostly Pseudomonas, Stenotrophomonas, Staphylococcus, and Bacillus genera. Strains belonging to Bacillus, Pseudomonas, Achromobacter, and Isoptericola genera showed a clear diesel degradation pattern when analyzed by GC-MS, suggesting their potential use for bioremediation and a possible new species of Isoptericola was further characterized as hydrocarbon degrader.
Collapse
|
16
|
Hydrothermal Synthesis of Biphasic Calcium Phosphate from Cuttlebone Assisted by the Biosurfactant L-rhamnose Monohydrate for Biomedical Materials. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5040088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The motivation of this research work is to develop novel medical material from cuttlebone (calcium source) by L-rhamnose monohydrate (biosurfactant) for aged people. The process can be synthesized biphasic calcium phosphate which is eco-friendly to environment. One of the most important aspects for this work is to use cuttlebone as a naturally occurring calcium source from a local beach in Thailand. It usually contains 90% calcium carbonate. The objective of this research work is to synthesize the biphasic calcium phosphate by hydrothermal reaction. Critical micelle concentrations (CMCs) of 10, 20, 100, 500 and 1000 of L-rhamnose monohydrate were used to control particle size and shape. XRD revealed a mixture of β-tricalcium phosphate and hydroxyapatite powder. SEM reported that the size of particles can be effectively controlled by the addition of L-rhamnose monohydrate, and with the addition of surfactant, size uniformity was achieved. The cytotoxicity test was reported to be in the range of 70–75%. It was remarkable to note that biphasic calcium phosphate synthesized from cuttlebone with the aid of L-rhamnose monohydrate will be considered an excellent candidate as a scaffold material.
Collapse
|
17
|
Adnan M, Siddiqui AJ, Hamadou WS, Ashraf SA, Hassan MI, Snoussi M, Badraoui R, Jamal A, Bardakci F, Awadelkareem AM, Sachidanandan M, Patel M. Functional and Structural Characterization of Pediococcus pentosaceus-Derived Biosurfactant and Its Biomedical Potential against Bacterial Adhesion, Quorum Sensing, and Biofilm Formation. Antibiotics (Basel) 2021; 10:antibiotics10111371. [PMID: 34827310 PMCID: PMC8614858 DOI: 10.3390/antibiotics10111371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022] Open
Abstract
Biosurfactants are surface-active molecules of microbial origin and alternatives to synthetic surfactants with various applications. Due to their environmental-friendliness, biocompatibility, biodegradability, effectiveness to work under various environmental conditions, and non-toxic nature, they have been recently recognized as potential agents with therapeutic and commercial importance. The biosurfactant produced by various probiotic lactic acid bacteria (LAB) has enormous applications in different fields. Thus, in vitro assessment of biofilm development prevention or disruption by natural biosurfactants derived from probiotic LAB is a plausible approach that can lead to the discovery of novel antimicrobials. Primarily, this study aims to isolate, screen, and characterize the functional and biomedical potential of biosurfactant synthesized by probiotic LAB Pediococcus pentosaceus (P. pentosaceus). Characterization consists of the assessment of critical micelle concentration (CMC), reduction in surface tension, and emulsification index (% EI24). Evaluation of antibacterial, antibiofilm, anti-QS, and anti-adhesive activities of cell-bound biosurfactants were carried out against different human pathogenic bacteria (B. subtilis, P. aeruginosa, S. aureus, and E. coli). Moreover, bacterial cell damage, viability of cells within the biofilm, and exopolysaccharide (EPS) production were also evaluated. As a result, P. pentosaceus was found to produce 4.75 ± 0.17 g/L biosurfactant, which displayed a CMC of 2.4 ± 0.68 g/L and reduced the surface tension from 71.11 ± 1.12 mN/m to 38.18 ± 0.58 mN/m. P. pentosaceus cells bound to the crude biosurfactant were found to be effective against all tested bacterial pathogens. It exhibited an anti-adhesion ability and impeded the architecture of the biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total EPS content. Furthermore, the crude biosurfactant derived from P. pentosaceus was structurally characterized as a lipoprotein by GC-MS analysis, which confirms the presence of lipids and proteins. Thus, our findings represent the potent anti-adhesion and antibiofilm potential of P. pentosaceus crude biosurfactant for the first time, which may be explored further as an alternative to antibiotics or chemically synthesized toxic antibiofilm agents.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Correspondence: (M.A.); (M.P.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 10025, India;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Center, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
- Correspondence: (M.A.); (M.P.)
| |
Collapse
|
18
|
pH-switchable pickering emulsions stabilized by polyelectrolyte-biosurfactant complex coacervate colloids. J Colloid Interface Sci 2021; 600:23-36. [DOI: 10.1016/j.jcis.2021.04.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
|
19
|
Dinshaw IJ, Ahmad N, Salim N, Leo BF. Nanoemulsions: A Review on the Conceptualization of Treatment for Psoriasis Using a 'Green' Surfactant with Low-Energy Emulsification Method. Pharmaceutics 2021; 13:1024. [PMID: 34371716 PMCID: PMC8309190 DOI: 10.3390/pharmaceutics13071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a skin disease that is not lethal and does not spread through bodily contact. However, this seemingly harmless condition can lead to a loss of confidence and social stigmatization due to a persons' flawed appearance. The conventional methods of psoriasis treatment include taking in systemic drugs to inhibit immunoresponses within the body or applying topical drugs onto the surface of the skin to inhibit cell proliferation. Topical methods are favored as they pose lesser side effects compared to the systemic methods. However, the side effects from systemic drugs and low bioavailability of topical drugs are the limitations to the treatment. The use of nanotechnology in this field has enhanced drug loading capacity and reduced dosage size. In this review, biosurfactants were introduced as a 'greener' alternative to their synthetic counterparts. Glycolipid biosurfactants are specifically suited for anti-psoriatic application due to their characteristic skin-enhancing qualities. The selection of a suitable oil phase can also contribute to the anti-psoriatic effect as some oils have skin-healing properties. The review covers the pathogenic pathway of psoriasis, conventional treatments, and prospective ingredients to be used as components in the nanoemulsion formulation. Furthermore, an insight into the state-of-the-art methods used in formulating nanoemulsions and their progression to low-energy methods are also elaborated in detail.
Collapse
Affiliation(s)
- Ignatius Julian Dinshaw
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Bey Fen Leo
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
20
|
Yip CH, Mahalingam S, Wan KL, Nathan S. Prodigiosin inhibits bacterial growth and virulence factors as a potential physiological response to interspecies competition. PLoS One 2021; 16:e0253445. [PMID: 34161391 PMCID: PMC8221495 DOI: 10.1371/journal.pone.0253445] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/06/2021] [Indexed: 11/19/2022] Open
Abstract
Prodigiosin, a red linear tripyrrole pigment, has long been recognised for its antimicrobial property. However, the physiological contribution of prodigiosin to the survival of its producing hosts still remains undefined. Hence, the aim of this study was to investigate the biological role of prodigiosin from Serratia marcescens, particularly in microbial competition through its antimicrobial activity, towards the growth and secreted virulence factors of four clinical pathogenic bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa) as well as Staphylococcus aureus and Escherichia coli. Prodigiosin was first extracted from S. marcescens and its purity confirmed by absorption spectrum, high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrophotometry (LC-MS/MS). The extracted prodigiosin was antagonistic towards all the tested bacteria. A disc-diffusion assay showed that prodigiosin is more selective towards Gram-positive bacteria and inhibited the growth of MRSA, S. aureus and E. faecalis and Gram-negative E. coli. A minimum inhibitory concentration of 10 μg/μL of prodigiosin was required to inhibit the growth of S. aureus, E. coli and E. faecalis whereas > 10 μg/μL was required to inhibit MRSA growth. We further assessed the effect of prodigiosin towards bacterial virulence factors such as haemolysin and production of protease as well as on biofilm formation. Prodigiosin did not inhibit haemolysis activity of clinically associated bacteria but was able to reduce protease activity for MRSA, E. coli and E. faecalis as well as decrease E. faecalis, Salmonella Typhimurium and E. coli biofilm formation. Results of this study show that in addition to its role in inhibiting bacterial growth, prodigiosin also inhibits the bacterial virulence factor protease production and biofilm formation, two strategies employed by bacteria in response to microbial competition. As clinical pathogens were more resistant to prodigiosin, we propose that prodigiosin is physiologically important for S. marcescens to compete against other bacteria in its natural soil and surface water environments.
Collapse
Affiliation(s)
- Chee-Hoo Yip
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Sobina Mahalingam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Kiew-Lian Wan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
21
|
da Silva AF, Banat IM, Giachini AJ, Robl D. Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess Biosyst Eng 2021; 44:2003-2034. [PMID: 34131819 PMCID: PMC8205652 DOI: 10.1007/s00449-021-02597-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Biosurfactants are in demand by the global market as natural commodities that can be added to commercial products or use in environmental applications. These biomolecules reduce the surface/interfacial tension between fluid phases and exhibit superior stability to chemical surfactants under different physico-chemical conditions. Biotechnological production of biosurfactants is still emerging. Fungi are promising producers of these molecules with unique chemical structures, such as sophorolipids, mannosylerythritol lipids, cellobiose lipids, xylolipids, polyol lipids and hydrophobins. In this review, we aimed to contextualize concepts related to fungal biosurfactant production and its application in industry and the environment. Concepts related to the thermodynamic and physico-chemical properties of biosurfactants are presented, which allows detailed analysis of their structural and application. Promising niches for isolating biosurfactant-producing fungi are presented, as well as screening methodologies are discussed. Finally, strategies related to process parameters and variables, simultaneous production, process optimization through statistical and genetic tools, downstream processing and some aspects of commercial products formulations are presented.
Collapse
Affiliation(s)
- André Felipe da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins (UFT), Gurupi, TO, Brazil
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, UK
| | - Admir José Giachini
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
22
|
Production of High Purity Biosurfactants Using Heavy Oil Residues as Carbon Source. ENERGIES 2021. [DOI: 10.3390/en14123557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Typically, oil pollution cleanup procedures following first response actions include dispersion. Crude oil is biodegradable, and its bioavailability can be increased when dispersed into very fine droplets by means of chemical surfactants. Although their use is widely spread in many applications, the latter may prove toxic, depending on the extent of use. The use of biological means, such as bioremediation and biosurfactants, has emerged over the past years as a very promising ‘green’ alternative technology. Biosurfactants (BSs) are amphiphilic molecules produced by microorganisms during biodegradation, thus increasing the bioavailability of the organic pollutants. It is their biodegradability and low toxicity that render BSs as a very promising alternative to the synthetic ones. Alcanivorax borkumensis SK2 strain ability to produce BSs, without any impurities from the substrate, was investigated. The biosurfactant production was scaled up by means of a sequencing batch reactor (SBR) and a heavy oil residue substrate as the carbon source. The product is free from substrate impurities, and its efficiency is tested on oil bioremediation in the marine environment. The product’s dispersion efficiency was determined by the baffled flask test. The production method proposed can have a significant impact to the market, given the ever-increasing demand for ecologically friendly, reliable, commercially viable and economically competitive environmental cleanup techniques.
Collapse
|
23
|
Bamunuarachchi NI, Khan F, Kim YM. Inhibition of Virulence Factors and Biofilm Formation of Acinetobacter Baumannii by Naturally-derived and Synthetic Drugs. Curr Drug Targets 2021; 22:734-759. [PMID: 33100201 DOI: 10.2174/1389450121666201023122355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
Acinetobacter baumannii is a gram-negative, aerobic, non-motile, and pleomorphic bacillus. A. baumannii is also a highly-infectious pathogen causing high mortality and morbidity rates in intensive care units. The discovery of novel agents against A. baumannii infections is urgently needed due to the emergence of drug-resistant A. baumannii strains and the limited number of efficacious antibiotics available for treatment. In addition to the production of several virulence factors, A. baumannii forms biofilms on the host cell surface as well. Formation of biofilms occurs through initial surface attachment, microcolony formation, biofilm maturation, and detachment stages, and is one of the major drug resistance mechanisms employed by A. baumannii. Several studies have previously reported the efficacy of naturally-derived and synthetic compounds as anti- biofilm and anti-virulence agents against A. baumannii. Here, inhibition of biofilm formation and virulence factors of A. baumannii using naturally-derived and synthetic compounds are reviewed.
Collapse
Affiliation(s)
| | - Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
24
|
|
25
|
Javadi A, Pourmand MR, Hamedi J, Gharebaghi F, Baseri Z, Rahdar HA, Morovvati A, Mohammadzadeh R, Eshraghi SS. Production and Characterization of Biosurfactant by Nocardia Species Isolated Form Soil Samples in Tehran. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this work, we report the Nocardia species were initially screened and then tested for their ability to produce biosurfactant. The biosurfactant production from the Nocardia species was determined by qualitative standard methods. The selected bacterial strain had better oil spreading and emulsifying activity and surface tension reduction. The biosurfactant producer strain was identified by 16S rRNA gene sequencing method. Using Fourier transform infrared spectroscopy and comparative analysis, the biosurfactant structure could be detected. Oil spreading tests and blue agar plate tests confirmed the presence of biosurfactant and extracellular anionic glycolipids. The E24% assay using olive oil showed strong emulsifying characteristic of extracted biosurfactant with a 100%. The stability of the biosurfactant produced in different conditions was significant. Nocardia coubleae was identified by biochemical methods and molecular methods.
Collapse
Affiliation(s)
- Ali Javadi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohamad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Javad Hamedi
- Microbial Biotechnology Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran , Tehran , Iran
| | - Fatemeh Gharebaghi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Zohre Baseri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences , Tehran , Iran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Morovvati
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Razieh Mohammadzadeh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Seyyed Saeed Eshraghi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
26
|
Invasion of Epithelial Cells Is Correlated with Secretion of Biosurfactant via the Type 3 Secretion System (T3SS) of Shigella flexneri. J Pathog 2020; 2020:3062821. [PMID: 32802515 PMCID: PMC7411461 DOI: 10.1155/2020/3062821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
Biosurfactants are amphipathic molecules produced by many microorganisms, usually bacteria, fungi, and yeasts. They possess the property of reducing the tension of the membrane interfaces. No studies have been conducted on Shigella species showing the role of biosurfactant-like molecules (BLM) in pathogenicity. The aim of this study is to assess the ability of Shigella environmental and clinical strains to produce BLM and investigate the involvement of biosurfactants in pathogenicity. Our study has shown that BLM are secreted in the extracellular medium with EI24 ranging from 80% to 100%. The secretion is depending on the type III secretion system (T3SS). Moreover, our results have shown that S. flexneri, S. boydii, and S. sonnei are able to interact with hydrophobic areas with 17.64%, 21.42%, and 22.22% hydrophobicity, respectively. BLM secretion is totally prevented due to inhibition of T3SS by 100 mM benzoic and 1.5 mg/ml salicylic acids. P. aeruginosa harboring T3SS is able to produce 100% of BLM in the presence or in the absence of both T3SS inhibitors. The secreted BLM are extractable with an organic solvent such as chloroform, and this could entirely be considered a lipopeptide or polypeptide compound. Secretion of BLM allows some Shigella strains to induce multicellular phenomena like "swarming."
Collapse
|
27
|
Smith ML, Gandolfi S, Coshall PM, Rahman PKSM. Biosurfactants: A Covid-19 Perspective. Front Microbiol 2020; 11:1341. [PMID: 32582137 PMCID: PMC7295905 DOI: 10.3389/fmicb.2020.01341] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
The recent outbreak in severe acute respiratory syndrome - coronavirus-2 (SARS-CoV-2) has demonstrated the complete inability of nations across the world to cope with the pressures of a global pandemic, especially one in which the only current feasible treatments are those which deal with the symptoms alone and not the viral cause. As the death toll rises, scientists begin to fall toward new avenues of research, with novelty showing itself to be an incredible and so far, underrated resource. In this case, the use of biosurfactants in dealing with this pandemic justifies extensive study with their potential applications being in the prevention of viral spread; dealing with the symptoms that develop after the incubation period; directly targeting viral infected cells and preventing the spread of the virus throughout the host, all in addition to also acting as potential drug delivery systems and cleaning agents. This extensive avenue of biosurfactants owes to the simplicity in their amphiphilic structure which permits them to interact directly with the lipid membrane of the coronavirus, in a way which wouldn't be of significant threat to the host. Although it could possibly interact and affect the virus, it could also affect human internal organs/cells by interacting with lipid membrane, if (biosurfactant is) ingested, and it still needs further studies in human models. The structure of the coronavirus, in this case SARS-CoV-2, is detrimentally dependent on the integrity of its lipid membrane which encloses its vital proteins and RNA. Biosurfactants possess the innate ability to threaten this membrane, a result of their own hydrophobic domains across their amphiphilic structure. With biosurfactants additionally being both natural and sustainable, while also possessing a remarkably low cytotoxicity, it is of no doubt that they are going to be of increasing significance in dealing with the current pandemic.
Collapse
Affiliation(s)
- Matthew L. Smith
- Centre for Enzyme Innovation, School of Biological Science, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Stefano Gandolfi
- Centre for Enzyme Innovation, School of Biological Science, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Philippa M. Coshall
- Centre for Enzyme Innovation, School of Biological Science, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Pattanathu K. S. M. Rahman
- Centre for Enzyme Innovation, School of Biological Science, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- TeeGene Biotech, Wilton Centre, Redcar and Cleveland, Redcar, United Kingdom
| |
Collapse
|
28
|
A bacterial strain of Pseudomonas aeruginosa B0406 pathogen opportunistic, produce a biosurfactant with tolerance to changes of pH, salinity and temperature. Microb Pathog 2020; 139:103869. [DOI: 10.1016/j.micpath.2019.103869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 11/23/2022]
|
29
|
Medical-Grade Silicone Coated with Rhamnolipid R89 Is Effective against Staphylococcus spp. Biofilms. Molecules 2019; 24:molecules24213843. [PMID: 31731408 PMCID: PMC6864460 DOI: 10.3390/molecules24213843] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are considered two of the most important pathogens, and their biofilms frequently cause device-associated infections. Microbial biosurfactants recently emerged as a new generation of anti-adhesive and anti-biofilm agents for coating implantable devices to preserve biocompatibility. In this study, R89 biosurfactant (R89BS) was evaluated as an anti-biofilm coating on medical-grade silicone. R89BS is composed of homologues of the mono- (75%) and di-rhamnolipid (25%) families, as evidenced by mass spectrometry analysis. The antimicrobial activity against Staphylococcus spp. planktonic and sessile cells was evaluated by microdilution and metabolic activity assays. R89BS inhibited S. aureus and S. epidermidis growth with minimal inhibitory concentrations (MIC99) of 0.06 and 0.12 mg/mL, respectively and dispersed their pre-formed biofilms up to 93%. Silicone elastomeric discs (SEDs) coated by R89BS simple adsorption significantly counteracted Staphylococcus spp. biofilm formation, in terms of both built-up biomass (up to 60% inhibition at 72 h) and cell metabolic activity (up to 68% inhibition at 72 h). SEM analysis revealed significant inhibition of the amount of biofilm-covered surface. No cytotoxic effect on eukaryotic cells was detected at concentrations up to 0.2 mg/mL. R89BS-coated SEDs satisfy biocompatibility requirements for leaching products. Results indicate that rhamnolipid coatings are effective anti-biofilm treatments and represent a promising strategy for the prevention of infection associated with implantable devices.
Collapse
|
30
|
Sar P, Ghosh A, Scarso A, Saha B. Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04017-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Lamsal BP, Patra P, Sharma R, Green CC. Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications. TENSIDE SURFACT DET 2019. [DOI: 10.3139/113.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The economically viable large-scale production of the pure isoforms of the surfactin biosurfactants, involving bacterial – Bacillus subtilis – fermentation of biomass hydrolysate feedstock, relies on the types of bacterial strains, optimization of the fermentation processing parameters, differences in the composition of the carbon and nitrogen in the bacterial media, and the chromatography techniques used for isolation of the isoforms. Here, we biosynthesized the surfactin isoforms in their mixture forms through fermentation of biomass hydrolysates at 2 wt.% carbohydrate content. The surfactin isoforms were assessed for their surface-active properties and toxicity. The enzyme hydrolysates considered were from switchgrass, soyhull (fiber), alfalfa, and bagasse. The isoform mixtures obtained after fermentation of the hydrolysates and, glucose as a control, were concentrated using chromatography columns, and characterized for molecular weights (MWs) and relative distribution using LCMS. The isoform mixtures, obtained in different fermenters (5- and 15-L) and, for different hydrolysates, invariably constituted 5 isoforms with MWs as 992.6, 1006.6, 1020.6, 1034.6, 1048.6, 1062.6 m/z amu, with their relative proportions as 6, 24, 35, 24, and 10 weight % respectively. The surface tension values of all these isoforms, in the absence of electrolytes and at 12 ppt salinity, were similar: 37 (pH 6.5) and 31 (pH 9.5) mN/m. Furthermore, the emulsification index values for the isoforms were also similar: Dispersant-to-Oil ratio as 1:20. The LC50 for Gulf killifish, Fundulus grandis for these surfactin isoforms ranged between 10 and 20 mg/L; a microbially-produced surfactin variant FA-Glu (Fatty acid Glutamate) was least toxic with LC50 at ∼100 mg/L. Thus, the surfactin synthesis approach adopted here suggested that pure (>95 wt.%) non-toxic isoforms of surfactin biosurfactants can be produced in the forms of their mixtures with surface-active properties similar to those of the pure forms of the surfactin isoforms.
Collapse
Affiliation(s)
- Buddhi P. Lamsal
- Iowa State University , Food Science and Human Nutrition, 536 Farm House Lane, Ames, IA , 50011
| | - Pathra Patra
- Columbia University , Earth and Environmental Engineering, 500 W. 120th St., 918 Mudd, New York , NY 10027
| | - Rajat Sharma
- Iowa State University , Food Science and Human Nutrition, 536 Farm House Lane, Ames, IA , 50011
| | - Christopher C. Green
- Louisiana State University Agriculture Center , School of Renewable Natural Resources, 227 Renewable Natural Resources Building, Baton Rouge, LA , 70803
| |
Collapse
|
32
|
Kannan S, Krishnamoorthy G, Kulanthaiyesu A, Marudhamuthu M. Effect of biosurfactant derived from Vibrio natriegens MK3 against Vibrio harveyi biofilm and virulence. J Basic Microbiol 2019; 59:936-949. [PMID: 31347191 DOI: 10.1002/jobm.201800706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/10/2019] [Accepted: 06/29/2019] [Indexed: 12/29/2022]
Abstract
Vibrio harveyi is a marine luminous pathogen, which causes biofilm-mediated infections, pressures the search for an innovative alternate approach to strive against vibriosis in aquaculture. This study anticipated to explore the effect of glycolipid biosurfactant as an antipathogenic against V. harveyi to control vibriosis. In this study, 27 bacterial strains were isolated from marine soil sediments. Out of these, 11 strains exhibited surfactant activity and the strain MK3 showed high emulsification index. The potent strain was identified as Vibrio natriegens and named as V. natriegens MK3. The extracted biosurfactant was purified using high-performance liquid chromatography and it was efficient to decrease the surface tension of the growth medium up to 21 mN/m. The functional group and composition of the biosurfactant were determined by Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy spectral studies and the nature of the biosurfactant was identified as glycolipid. The surfactant was capable of reducing the biofilm formation, bioluminescence, extracellular polysaccharide synthesis, and quorum sensing in marine shrimp pathogen V. harveyi. The antagonistic effect of biosurfactant was evaluated against V. harveyi-infected brine shrimp Artemia salina. This study reveals that biosurfactant can be considered for the management of biofilm-related aquatic infections.
Collapse
Affiliation(s)
- Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Govindan Krishnamoorthy
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Arunkumar Kulanthaiyesu
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kerala, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
33
|
Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Mar Drugs 2019; 17:md17070408. [PMID: 31323998 PMCID: PMC6669457 DOI: 10.3390/md17070408] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
Biosurfactants are amphiphilic secondary metabolites produced by microorganisms. Marine bacteria have recently emerged as a rich source for these natural products which exhibit surface-active properties, making them useful for diverse applications such as detergents, wetting and foaming agents, solubilisers, emulsifiers and dispersants. Although precise structural data are often lacking, the already available information deduced from biochemical analyses and genome sequences of marine microbes indicates a high structural diversity including a broad spectrum of fatty acid derivatives, lipoamino acids, lipopeptides and glycolipids. This review aims to summarise biosyntheses and structures with an emphasis on low molecular weight biosurfactants produced by marine microorganisms and describes various biotechnological applications with special emphasis on their role in the bioremediation of oil-contaminated environments. Furthermore, novel exploitation strategies are suggested in an attempt to extend the existing biosurfactant portfolio.
Collapse
|
34
|
Bacterial communities versus anthropogenic disturbances in the Antarctic coastal marine environment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00064-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Câmara JMD, Sousa MAS, Barros Neto EL. Optimization and Characterization of Biosurfactant Rhamnolipid Production byPseudomonas aeruginosaIsolated from an Artificially Contaminated Soil. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jéssica Maria D.A. Câmara
- Chemical Engineering DepartmentUniversidade Federal do Rio Grande do Norte Senador Salgado Filho 3000—Campus Universitário, Natal Rio Grande do Norte Brazil
| | - Magna Angélica S.B. Sousa
- Chemical Engineering DepartmentUniversidade Federal do Rio Grande do Norte Senador Salgado Filho 3000—Campus Universitário, Natal Rio Grande do Norte Brazil
| | - Eduardo L. Barros Neto
- Chemical Engineering DepartmentUniversidade Federal do Rio Grande do Norte Senador Salgado Filho 3000—Campus Universitário, Natal Rio Grande do Norte Brazil
| |
Collapse
|
36
|
Singh P, Patil Y, Rale V. Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol 2018; 126:2-13. [DOI: 10.1111/jam.14057] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- P. Singh
- Symbiosis School of Biological Sciences; Symbiosis International (Deemed University); Pune India
| | - Y. Patil
- Symbiosis Centre for Research and Innovation; Symbiosis International (Deemed University); Pune India
| | - V. Rale
- Symbiosis School of Biological Sciences; Symbiosis International (Deemed University); Pune India
| |
Collapse
|
37
|
Alizadeh-Sani M, Hamishehkar H, Khezerlou A, Azizi-Lalabadi M, Azadi Y, Nattagh-Eshtivani E, Fasihi M, Ghavami A, Aynehchi A, Ehsani A. Bioemulsifiers Derived from Microorganisms: Applications in the Drug and Food Industry. Adv Pharm Bull 2018; 8:191-199. [PMID: 30023320 PMCID: PMC6046428 DOI: 10.15171/apb.2018.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 01/05/2023] Open
Abstract
Emulsifiers are a large category of compounds considered as surface active agents or surfactants. An emulsifier acts by reducing the speed of chemical reactions, and enhancing its stability. Bioemulsifiers are known as surface active biomolecule materials, due to their unique features over chemical surfactants, such as non-toxicity, biodegradability, foaming, biocompatibility, efficiency at low concentrations, high selectivity in different pH, temperatures and salinities. Emulsifiers are found in various natural resources and are synthesized by Bacteria, Fungi and Yeast. Bioemulsifier’s molecular weight is higher than that of biosurfactants. Emulsion’s function is closely related to their chemical structure. Therefore, the aim of this paper was to study the various bioemulsifiers derived from microorganisms used in the drug and food industry. In this manuscript, we studied organisms with biosurfactant producing abilities. These inexpensive substrates could be used in environmental remediation and in the petroleum industry.
Collapse
Affiliation(s)
- Mahmood Alizadeh-Sani
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaghob Azadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elyas Nattagh-Eshtivani
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Fasihi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abed Ghavami
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin Aynehchi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Vera ECS, de Azevedo PODS, Domínguez JM, Oliveira RPDS. Optimization of biosurfactant and bacteriocin-like inhibitory substance (BLIS) production by Lactococcus lactis CECT-4434 from agroindustrial waste. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
New lipopeptide produced by Corynebacterium aquaticum from a low-cost substrate. Bioprocess Biosyst Eng 2018; 41:1177-1183. [PMID: 29700657 DOI: 10.1007/s00449-018-1946-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022]
Abstract
Conventional biosurfactants have high production costs. Therefore, the use of low-cost carbon sources for their production is attractive for industry. The ability to remain stable under various environmental conditions further extends industrial application. Here we aimed to evaluate the stability of a new lipopeptide produced by Corynebacterium aquaticum using fish residue as an unconventional energy source. The biosurfactant was produced using 3% fish residue, 2% of the microorganism, and mineral medium. Biosurfactant characterization was performed by thin layer chromatography (TLC), as well as by testing its infrared, surface tension, emulsifying activity, and ionic character. The stability of the biosurfactant was evaluated by testing its surface tension at a range of temperatures, pH, and saline concentrations, as well as after 6 months of storage. The biosurfactant was characterized as a lipopeptide due to its retention time, which was coincident with the amino acid and lipid chains obtained in the TLC analysis, being confirmed by some regions of absorption verified in the infrared analysis. The surface tension and emulsifying activity of the biosurfactant were 27.8 mN/m and 87.6%, respectively, and showed anionic character. The biosurfactant was stable at temperatures of 20 to 121 °C, in saline concentrations of 1 to 7%, and at pH close to neutrality. Based on our findings, it is possible to use unconventional sources of energy to produce a lipopeptide biosurfactant that can act under various environments.
Collapse
|
40
|
Reis CBLD, Morandini LMB, Bevilacqua CB, Bublitz F, Ugalde G, Mazutti MA, Jacques RJS. First report of the production of a potent biosurfactant with α,β-trehalose by Fusarium fujikuroi under optimized conditions of submerged fermentation. Braz J Microbiol 2018; 49 Suppl 1:185-192. [PMID: 29728339 PMCID: PMC6328722 DOI: 10.1016/j.bjm.2018.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/07/2018] [Accepted: 04/03/2018] [Indexed: 11/15/2022] Open
Abstract
Biosurfactants have many advantages over synthetic surfactants but have higher production costs. Identifying microorganisms with high production capacities for these molecules and optimizing their growth conditions can reduce cost. The present work aimed to isolate and identify a fungus with high biosurfactant production capacity, optimize its growth conditions in a low cost culture medium, and characterize the chemical structure of the biosurfactant molecule. The fungal strain UFSM-BAS-01 was isolated from soil contaminated with hydrocarbons and identified as Fusarium fujikuroi. To optimize biosurfactant production, a Plackett–Burman design and a central composite rotational design were used. The variables evaluated were pH, incubation period, temperature, agitation and amount of inoculum in a liquid medium containing glucose. The partial structure of the biosurfactant molecule was identified by nuclear magnetic resonance spectrometry. F. fujikuroi reduced surface tension from 72 to 20 mN m−1 under the optimized conditions of pH 5.0, 37 °C and 7 days of incubation with 190 rpm agitation. The partial identification of the structure of the biosurfactant demonstrated the presence of an α,β-trehalose. The present study is the first report of the biosynthesis of this compound by F. fujikuroi, suggesting that the biosurfactant produced belongs to the class of trehalolipids.
Collapse
Affiliation(s)
| | | | | | - Fabricio Bublitz
- Universidade Federal de Santa Maria, Departamento de Química, Santa Maria, RS, Brazil
| | - Gustavo Ugalde
- Universidade Federal de Santa Maria, Departamento de Defesa Fitossanitária, Santa Maria, RS, Brazil
| | - Marcio Antonio Mazutti
- Universidade Federal de Santa Maria, Departamento de Engenharia Química, Santa Maria, RS, Brazil
| | | |
Collapse
|
41
|
Ghasemi A, Moosavi-Nasab M, Behzadnia A, Rezaei M. Enhanced biosurfactant production with low-quality date syrup by Lactobacillus rhamnosus using a fed-batch fermentation. Food Sci Biotechnol 2018; 27:1137-1144. [PMID: 30263844 DOI: 10.1007/s10068-018-0366-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/18/2018] [Accepted: 03/25/2018] [Indexed: 10/17/2022] Open
Abstract
Novel strategies toward the use of low-cost media to produce food-grade microbial products have been considerably attended in recent years. In this study, date syrup obtained from low-quality date fruits was implemented for biosurfactant production by the probiotic bacterium, Lactobacillus rhamnosus PTCC 1637. The most level of biosurfactant was achieved through fermentation in a bioreactor with a lactose feeding phase, up to 24 h. Critical micelle concentration of the cell-bound biosurfactant was found to be 6.0 mg/ml with a minimum surface tension value of 39.00 mN/m and a maximum emulsifying index of 42%. The spectrum of Fourier transform infrared spectroscopy taken from the cell-bound biosurfactant suggests that it should be a multi-component mixture of protein and polysaccharides associated with phosphate groups. The results indicated the potential for developing strategies toward the low-cost production of food-grade biomaterials by probiotic microorganisms.
Collapse
Affiliation(s)
- Abouzar Ghasemi
- 1Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- 1Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran.,2Seafood Processing Research Group, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Asma Behzadnia
- 1Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
42
|
Mouafo TH, Mbawala A, Ndjouenkeu R. Effect of Different Carbon Sources on Biosurfactants' Production by Three Strains of Lactobacillus spp. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5034783. [PMID: 29651438 PMCID: PMC5832067 DOI: 10.1155/2018/5034783] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/20/2023]
Abstract
The potential of three indigenous bacterial strains (Lactobacillus delbrueckii N2, Lactobacillus cellobiosus TM1, and Lactobacillus plantarum G88) for the production of biosurfactants using sugar cane molasses or glycerol as substrates was investigated through emulsifying, surface tension, and antimicrobial activities. The different biosurfactants produced with molasses as substrate exhibited high surface tension reduction from 72 mN/m to values ranged from 47.50 ± 1.78 to 41.90 ± 0.79 mN/m and high emulsification index ranging from 49.89 ± 5.28 to 81.00 ± 1.14%. Whatever the Lactobacillus strain or the substrate used, the biosurfactants produced showed antimicrobial activities against Candida albicans LV1, some pathogenic and/or spoilage Gram-positive and Gram-negative bacteria. The yields of biosurfactants with molasses (2.43 ± 0.09 to 3.03 ± 0.09 g/L) or glycerol (2.32 ± 0.19 to 2.82 ± 0.05 g/L) were significantly (p < 0.05) high compared to those obtained with MRS broth as substrate (0.30 ± 0.02 to 0.51 ± 0.09 g/L). Preliminary characterization of crude biosurfactants reveals that they are mainly glycoproteins and glycolipids with molasses and glycerol as substrate, respectively. Therefore, sugar cane molasses or glycerol can effectively be used by Lactobacillus strains as low-cost substrates to increase their biosurfactants production.
Collapse
Affiliation(s)
- Tene Hippolyte Mouafo
- Centre for Research on Food and Nutrition, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 6163, Yaounde, Cameroon
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon
| | - Augustin Mbawala
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon
| | - Robert Ndjouenkeu
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon
| |
Collapse
|
43
|
Farias BCS, Hissa DC, do Nascimento CTM, Oliveira SA, Zampieri D, Eberlin MN, Migueleti DLS, Martins LF, Sousa MP, Moyses DN, Melo VMM. Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery. Appl Microbiol Biotechnol 2017; 102:1179-1190. [DOI: 10.1007/s00253-017-8675-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/10/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
|
44
|
Heryani H, Putra MD. Kinetic study and modeling of biosurfactant production using Bacillus sp. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
45
|
Borah SN, Goswami D, Sarma HK, Cameotra SS, Deka S. Rhamnolipid Biosurfactant against Fusarium verticillioides to Control Stalk and Ear Rot Disease of Maize. Front Microbiol 2016; 7:1505. [PMID: 27708638 PMCID: PMC5030215 DOI: 10.3389/fmicb.2016.01505] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/08/2016] [Indexed: 12/04/2022] Open
Abstract
Antifungal activity of rhamnolipids (RLs) has been widely studied against many plant pathogenic fungi, but not against Fusarium verticillioides, a major pathogen of maize (Zea mays L.). F. verticillioides causes stalk and ear rot of maize or asymptomatically colonizes the plant and ears resulting in moderate to heavy crop loss throughout the world. F. verticillioides produces fumonisin mycotoxins, reported carcinogens, which makes the contaminated ears unsuitable for consumption. In this study, the RL produced using glucose as sole carbon source was characterized by FTIR and LCMS analyses and its antifungal activity against F. verticillioides was evaluated in vitro on maize stalks and seeds. Further, the effect of RL on the mycelia of F. verticillioides was investigated by scanning electron microscopy which revealed visible damage to the mycelial structure as compared to control samples. In planta, treatment of maize seeds with a RL concentration of 50 mg l-1 resulted in improved biomass and fruiting compared to those of healthy control plants and complete suppression of characteristic disease symptoms and colonization of maize by F. verticillioides. The study highlights the potential of RLs to be used for an effective biocontrol strategy against colonization of maize plant by F. verticillioides.
Collapse
Affiliation(s)
- Siddhartha N. Borah
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and TechnologyGuwahati, India
| | - Debahuti Goswami
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and TechnologyGuwahati, India
| | - Hridip K. Sarma
- Department of Biotechnology, Gauhati UniversityGuwahati, India
| | | | - Suresh Deka
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and TechnologyGuwahati, India
| |
Collapse
|
46
|
El-Housseiny GS, Aboulwafa MM, Aboshanab KA, Hassouna NAH. Optimization of Rhamnolipid Production by P. aeruginosa Isolate P6. J SURFACTANTS DETERG 2016. [DOI: 10.1007/s11743-016-1845-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Yaseen Y, Gancel F, Drider D, Béchet M, Jacques P. Influence of promoters on the production of fengycin in Bacillus spp. Res Microbiol 2016; 167:272-281. [DOI: 10.1016/j.resmic.2016.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
|
48
|
Deepika K, Kalam S, Ramu Sridhar P, Podile AR, Bramhachari P. Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2015.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Rebello S, Joseph BV, Joseph SV, Jose L, Mundayoor S, Jisha MS. Bioconversion of sodium dodecyl sulphate to rhamnolipids by transformed Escherichia coli DH5α cells-a novel strategy for rhamnolipid synthesis. J Appl Microbiol 2015; 120:638-46. [PMID: 26677807 DOI: 10.1111/jam.13032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/28/2015] [Accepted: 12/13/2015] [Indexed: 11/29/2022]
Abstract
AIMS Biological synthesis of rhamnolipids from SDS by Pseudomonas aeruginosa S15 is found to be a cost effective mode of rhamnolipid synthesis. This study aimed to attempt rhamnolipid synthesis by transformant Escherichia coli DH5α cells. METHODS AND RESULTS Molecular analysis by curing experiments revealed that the properties of SDS based rhamnolipid synthesis were plasmid borne. Transformation of 10 kb plasmid to E. coli DH5α cells conferred rhamnolipid synthetic ability to transformant. Various genetic elements involved in SDS based rhamnolipid synthesis were analyzed using PCR based and restriction digestion based approaches. PCR amplification using primers specific for sdsA gene encoding alkylsulfatases yielded two significant amplicons viz, 1·2 kb fragment and 422 bp fragment, coding for putative dehydratase and ABC transporter respectively. Amplicon of sdsB gene lacked ability of SDS degradation and rhamnolipid synthesis. Rhamnolipid biosynthesis by transformant E. coli DH5α containing the whole of the 10 kb plasmid, was optimized to yield of 3·38 g l(-1) in 5 days of incubation. CONCLUSIONS Plasmid encoded rhamnolipid synthesis from recombinant E. coli cells is novel and could serve as yet another promising approach among various steps adopted for safe and effective rhamnolipid synthesis. SIGNIFICANCE AND IMPACT OF THE STUDY SDS based rhamnolipid synthesis by S15 attained a high substrate (SDS) to product (Rhamnolipid) conversion ratio. However, the use of Pseudomonas strains is always discouraged as they are opportunistic pathogens and could sometimes turn infectious. Thus, transformation of genetic elements coding SDS based rhamnolipid synthesis to nonpathogenic strains could be promising.
Collapse
Affiliation(s)
- S Rebello
- School of Biosciences, Mahatma Gandhi University, Kottayam, India.,UniBiosys Biotech Research Labs, Kalamaserry, India
| | - B V Joseph
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - S V Joseph
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - L Jose
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - S Mundayoor
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
50
|
Chen WC, Juang RS, Wei YH. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.07.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|