1
|
León TM, Porco TC, Kim CS, Kaewkes S, Kaewkes W, Sripa B, Spear RC. Modeling liver fluke transmission in northeast Thailand: Impacts of development, hydrology, and control. Acta Trop 2018; 188:101-107. [PMID: 30149023 DOI: 10.1016/j.actatropica.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
Human infection with the Southeast Asian liver fluke Opisthorchis viverrini and liver fluke-associated cholangiocarcinoma cause significant disease burden in Southeast Asia. While there has been considerable work to understand liver fluke pathology and to reduce infection prevalence, there remains a limited understanding of the environmental determinants of parasite transmission dynamics to inform treatment and control programs. A particular setting where targeted control efforts have taken place is the Lawa Lake complex in northeast Thailand. Here, we describe the recent history of host infections, as well as the hydrologic characteristics of this floodplain ecosystem that influence the extent of snail habitat and fish mobility and the transport of human waste and parasite cercariae. Using mathematical modeling, we outline a framework for reconstructing environmental transmission of O. viverrini over the course of the Lawa Project control program from its inception in 2008 until 2016, using locally acquired but fragmentary longitudinal infection data for both humans and environmental hosts. The role of water flow in facilitating movement between snail, fish, human, and reservoir hosts is a particular focus with respect to its relevant scales and its impact on success of interventions. In this setting, we argue that an understanding of the key environmental drivers of disease transmission processes is central to the effectiveness of any environmental intervention.
Collapse
Affiliation(s)
- Tomás M León
- School of Public Health, University of California, Berkeley, USA; Tropical Disease Research Center, Khon Kaen University, Thailand.
| | | | - Christina S Kim
- Tropical Disease Research Center, Khon Kaen University, Thailand
| | | | - Wanlop Kaewkes
- Tropical Disease Research Center, Khon Kaen University, Thailand
| | - Banchob Sripa
- Tropical Disease Research Center, Khon Kaen University, Thailand
| | - Robert C Spear
- School of Public Health, University of California, Berkeley, USA
| |
Collapse
|
2
|
Nuss AB, Brown MR, Murty US, Gulia-Nuss M. Insulin receptor knockdown blocks filarial parasite development and alters egg production in the southern house mosquito, Culex quinquefasciatus. PLoS Negl Trop Dis 2018; 12:e0006413. [PMID: 29649225 PMCID: PMC5918164 DOI: 10.1371/journal.pntd.0006413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/24/2018] [Accepted: 03/26/2018] [Indexed: 01/04/2023] Open
Abstract
Lymphatic filariasis, commonly known as elephantiasis, is a painful and profoundly disfiguring disease. Wuchreria bancrofti (Wb) is responsible for >90% of infections and the remainder are caused by Brugia spp. Mosquitoes of the genera Culex (in urban and semi-urban areas), Anopheles (in rural areas of Africa and elsewhere), and Aedes (in Pacific islands) are the major vectors of W. bancrofti. A preventive chemotherapy called mass drug administration (MDA), including albendazole with ivermectin or diethylcarbamazine citrate (DEC) is used in endemic areas. Vector control strategies such as residual insecticide spraying and long-lasting insecticidal nets are supplemental to the core strategy of MDA to enhance elimination efforts. However, increasing insecticide resistance in mosquitoes and drug resistance in parasite limit the effectiveness of existing interventions, and new measures are needed for mosquito population control and disruption of mosquito-parasite interactions to reduce transmission. Mosquito insulin signaling regulates nutrient metabolism and has been implicated in reduced prevalence and intensity of malaria parasite, Plasmodium falciparum, infection in mosquitoes. Currently no data are available to assess how insulin signaling in mosquitoes affects the development of multi-cellular parasites, such as filarial nematodes. Here, we show that insulin receptor knockdown in blood fed C. quinquefasciatus, the major vector of Wb in India, completely blocks the development of filarial nematode parasite to the infective L3 stage, and results in decreased ecdysteroid production and trypsin activity leading to fewer mosquito eggs. These data indicate that a functional mosquito insulin receptor (IR) is necessary for filarial parasite development and mosquito reproduction. Therefore, insulin signaling may represent a new target for the development of vector control or parasite blocking strategies. Lymphatic filariasis (LF) is caused by infection with nematodes of the family Filarioidea. 90% of infections are caused by Wuchereria bancrofti and the remainder by Brugia spp. In endemic countries, LF has a major social and economic impact with an estimated annual loss of $1 billion. Filarial infection can cause a variety of clinical manifestations, including lymphoedema of the limbs, genital disease (hydrocele, and swelling of the scrotum and penis) and recurrent acute attacks, which are extremely painful and are accompanied by fever. As one of the leading causes of global disability, LF accounts for at least 2.8 million disability-adjusted life year (DALY). Mass drug administration (MDA) is used prophylactically on the community level where the infection is present to decrease disease transmission. These drugs have limited effect on adult parasites but effectively reduce microfilariae in the bloodstream and prevent the spread of microfilaria to mosquitoes. Use of mosquito population control strategies is supplemental to the core strategy of MDA. However, increasing insecticide resistance in mosquitoes and drug resistant nematode parasites are complicating elimination efforts and emphasizes the need for novel interventions for vector control and parasite transmission. Insulin signaling is a highly conserved signaling pathway that regulates growth and nutrient homeostasis in animals. Our previous work in Aedes aegypti mosquitoes showed additional roles of insulin receptor signaling in blood digestion and reproduction. The present data strongly supports our previous findings in a different mosquito species and further explores the role of mosquito insulin receptor in the development of the filarial nematode to the infective stage. This information is pertinent to ongoing efforts to control and eradicate filariasis because insulin signaling may represent a new target for the development of vector control or transmission blocking strategies.
Collapse
Affiliation(s)
- Andrew Bradley Nuss
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, Nevada, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail: (ABN); (MGN)
| | - Mark R. Brown
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | | | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail: (ABN); (MGN)
| |
Collapse
|
3
|
Michael E, Singh BK, Mayala BK, Smith ME, Hampton S, Nabrzyski J. Continental-scale, data-driven predictive assessment of eliminating the vector-borne disease, lymphatic filariasis, in sub-Saharan Africa by 2020. BMC Med 2017; 15:176. [PMID: 28950862 PMCID: PMC5615442 DOI: 10.1186/s12916-017-0933-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND There are growing demands for predicting the prospects of achieving the global elimination of neglected tropical diseases as a result of the institution of large-scale nation-wide intervention programs by the WHO-set target year of 2020. Such predictions will be uncertain due to the impacts that spatial heterogeneity and scaling effects will have on parasite transmission processes, which will introduce significant aggregation errors into any attempt aiming to predict the outcomes of interventions at the broader spatial levels relevant to policy making. We describe a modeling platform that addresses this problem of upscaling from local settings to facilitate predictions at regional levels by the discovery and use of locality-specific transmission models, and we illustrate the utility of using this approach to evaluate the prospects for eliminating the vector-borne disease, lymphatic filariasis (LF), in sub-Saharan Africa by the WHO target year of 2020 using currently applied or newly proposed intervention strategies. METHODS AND RESULTS: We show how a computational platform that couples site-specific data discovery with model fitting and calibration can allow both learning of local LF transmission models and simulations of the impact of interventions that take a fuller account of the fine-scale heterogeneous transmission of this parasitic disease within endemic countries. We highlight how such a spatially hierarchical modeling tool that incorporates actual data regarding the roll-out of national drug treatment programs and spatial variability in infection patterns into the modeling process can produce more realistic predictions of timelines to LF elimination at coarse spatial scales, ranging from district to country to continental levels. Our results show that when locally applicable extinction thresholds are used, only three countries are likely to meet the goal of LF elimination by 2020 using currently applied mass drug treatments, and that switching to more intensive drug regimens, increasing the frequency of treatments, or switching to new triple drug regimens will be required if LF elimination is to be accelerated in Africa. The proportion of countries that would meet the goal of eliminating LF by 2020 may, however, reach up to 24/36 if the WHO 1% microfilaremia prevalence threshold is used and sequential mass drug deliveries are applied in countries. CONCLUSIONS We have developed and applied a data-driven spatially hierarchical computational platform that uses the discovery of locally applicable transmission models in order to predict the prospects for eliminating the macroparasitic disease, LF, at the coarser country level in sub-Saharan Africa. We show that fine-scale spatial heterogeneity in local parasite transmission and extinction dynamics, as well as the exact nature of intervention roll-outs in countries, will impact the timelines to achieving national LF elimination on this continent.
Collapse
Affiliation(s)
- Edwin Michael
- Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN, 46556, USA.
| | - Brajendra K Singh
- Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN, 46556, USA
| | - Benjamin K Mayala
- Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN, 46556, USA
| | - Morgan E Smith
- Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN, 46556, USA
| | - Scott Hampton
- Center for Research Computing, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jaroslaw Nabrzyski
- Center for Research Computing, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
4
|
Michael E, Madon S. Socio-ecological dynamics and challenges to the governance of Neglected Tropical Disease control. Infect Dis Poverty 2017; 6:35. [PMID: 28166826 PMCID: PMC5292817 DOI: 10.1186/s40249-016-0235-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 12/29/2016] [Indexed: 12/22/2022] Open
Abstract
The current global attempts to control the so-called “Neglected Tropical Diseases (NTDs)” have the potential to significantly reduce the morbidity suffered by some of the world’s poorest communities. However, the governance of these control programmes is driven by a managerial rationality that assumes predictability of proposed interventions, and which thus primarily seeks to improve the cost-effectiveness of implementation by measuring performance in terms of pre-determined outputs. Here, we argue that this approach has reinforced the narrow normal-science model for controlling parasitic diseases, and in doing so fails to address the complex dynamics, uncertainty and socio-ecological context-specificity that invariably underlie parasite transmission. We suggest that a new governance approach is required that draws on a combination of non-equilibrium thinking about the operation of complex, adaptive, systems from the natural sciences and constructivist social science perspectives that view the accumulation of scientific knowledge as contingent on historical interests and norms, if more effective control approaches sufficiently sensitive to local disease contexts are to be devised, applied and managed. At the core of this approach is an emphasis on the need for a process that assists with the inclusion of diverse perspectives, social learning and deliberation, and a reflexive approach to addressing system complexity and incertitude, while balancing this flexibility with stability-focused structures. We derive and discuss a possible governance framework and outline an organizational structure that could be used to effectively deal with the complexity of accomplishing global NTD control. We also point to examples of complexity-based management structures that have been used in parasite control previously, which could serve as practical templates for developing similar governance structures to better manage global NTD control. Our results hold important wider implications for global health policy aiming to effectively control and eradicate parasitic diseases across the world.
Collapse
Affiliation(s)
- Edwin Michael
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, USA.
| | - Shirin Madon
- Department of International Development, London School of Economics and Political Science, London, UK.,Department of Management, London School of Economics and Political Science, London, UK
| |
Collapse
|
5
|
Michael E, Singh BK. Heterogeneous dynamics, robustness/fragility trade-offs, and the eradication of the macroparasitic disease, lymphatic filariasis. BMC Med 2016; 14:14. [PMID: 26822124 PMCID: PMC4731922 DOI: 10.1186/s12916-016-0557-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/13/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The current WHO-led initiative to eradicate the macroparasitic disease, lymphatic filariasis (LF), based on single-dose annual mass drug administration (MDA) represents one of the largest health programs devised to reduce the burden of tropical diseases. However, despite the advances made in instituting large-scale MDA programs in affected countries, a challenge to meeting the goal of global eradication is the heterogeneous transmission of LF across endemic regions, and the impact that such complexity may have on the effort required to interrupt transmission in all socioecological settings. METHODS Here, we apply a Bayesian computer simulation procedure to fit transmission models of LF to field data assembled from 18 sites across the major LF endemic regions of Africa, Asia and Papua New Guinea, reflecting different ecological and vector characteristics, to investigate the impacts and implications of transmission heterogeneity and complexity on filarial infection dynamics, system robustness and control. RESULTS We find firstly that LF elimination thresholds varied significantly between the 18 study communities owing to site variations in transmission and initial ecological parameters. We highlight how this variation in thresholds lead to the need for applying variable durations of interventions across endemic communities for achieving LF elimination; however, a major new result is the finding that filarial population responses to interventions ultimately reflect outcomes of interplays between dynamics and the biological architectures and processes that generate robustness/fragility trade-offs in parasite transmission. Intervention simulations carried out in this study further show how understanding these factors is also key to the design of options that would effectively eliminate LF from all settings. In this regard, we find how including vector control into MDA programs may not only offer a countermeasure that will reliably increase system fragility globally across all settings and hence provide a control option robust to differential locality-specific transmission dynamics, but by simultaneously reducing transmission regime variability also permit more reliable macroscopic predictions of intervention effects. CONCLUSIONS Our results imply that a new approach, combining adaptive modelling of parasite transmission with the use of biological robustness as a design principle, is required if we are to both enhance understanding of complex parasitic infections and delineate options to facilitate their elimination effectively.
Collapse
Affiliation(s)
- Edwin Michael
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Brajendra K Singh
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
6
|
Modeling the impact and costs of semiannual mass drug administration for accelerated elimination of lymphatic filariasis. PLoS Negl Trop Dis 2013; 7:e1984. [PMID: 23301115 PMCID: PMC3536806 DOI: 10.1371/journal.pntd.0001984] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 11/07/2012] [Indexed: 11/25/2022] Open
Abstract
The Global Program to Eliminate Lymphatic Filariasis (LF) has a target date of 2020. This program is progressing well in many countries. However, progress has been slow in some countries, and others have not yet started their mass drug administration (MDA) programs. Acceleration is needed. We studied how increasing MDA frequency from once to twice per year would affect program duration and costs by using computer simulation modeling and cost projections. We used the LYMFASIM simulation model to estimate how many annual or semiannual MDA rounds would be required to eliminate LF for Indian and West African scenarios with varied pre-control endemicity and coverage levels. Results were used to estimate total program costs assuming a target population of 100,000 eligibles, a 3% discount rate, and not counting the costs of donated drugs. A sensitivity analysis was done to investigate the robustness of these results with varied assumptions for key parameters. Model predictions suggested that semiannual MDA will require the same number of MDA rounds to achieve LF elimination as annual MDA in most scenarios. Thus semiannual MDA programs should achieve this goal in half of the time required for annual programs. Due to efficiency gains, total program costs for semiannual MDA programs are projected to be lower than those for annual MDA programs in most scenarios. A sensitivity analysis showed that this conclusion is robust. Semiannual MDA is likely to shorten the time and lower the cost required for LF elimination in countries where it can be implemented. This strategy may improve prospects for global elimination of LF by the target year 2020. The Global Program to Eliminate Lymphatic Filariasis (LF) employs annual mass drug administration (MDA) of antifilarial drugs to reduce infection rates in populations and interrupt transmission. While this program is working well in many countries, progress has been slow in others, and some countries have not yet started MDA programs. We used computer simulation modeling and cost projections to study how increasing MDA frequency from once to twice per year would affect program duration and costs. Our results suggest that semiannual MDA is likely to reduce the time required to eliminate LF by 50% and reduce total program costs (excluding the cost of donated drugs) in most situations. For these and other reasons, we expect semiannual MDA to be superior to annual MDA in most endemic settings. Semiannual MDA should be considered as a means of accelerating LF elimination in areas where it can be implemented, because this may improve prospects for global elimination of LF by the target year 2020.
Collapse
|
7
|
Knopp S, Steinmann P, Hatz C, Keiser J, Utzinger J. Nematode Infections:. Infect Dis Clin North Am 2012; 26:359-81. [DOI: 10.1016/j.idc.2012.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Abstract
The World Health Organization has developed a comprehensive plan to deal with neglected tropical diseases (NTDs). Compared with a decade ago, more resources are being spent to address the problem of neglected diseases, and considerable progress has been made. However, NTDs remain neglected, deepening the global inequities in health. The current efforts do not implement a multiprong strategy and are effective in the short term, but do not generate long-term, sustainable solutions. This article discusses the current successes in providing access to medicine for treatment of a multitude of neglected diseases, and the opportunities to achieve global equality in health.
Collapse
|