1
|
Wise M, Silvia M, Reyes G, Dunn R, Onorato TM, Pieplow C, Furze A, Hebert E, Oulhen N, Ritschoff D, McClay DR, Wessel G. A molecular basis for spine color morphs in the sea urchin Lytechinus variegatus. Sci Rep 2024; 14:28518. [PMID: 39557917 PMCID: PMC11574130 DOI: 10.1038/s41598-024-79312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Animals of the phylum Echinodermata are characterized by a pentaradially symmetric endoskeleton in adults. Echinoids also have endoskeletal spines ranging in length from several millimeters (sand dollars e.g. Mellita quinquiesperforata of the order Clypeasteroida) to 30 cm (the black sea urchin, Diadema antillarum of the order Euechinoidea). Here we integrate an analysis of genetic, structural and molecular properties of spines from the variegated sea urchin, Lytechinus variegatus. Through genetic crosses we learned that white is dominant over red and green colors, and that pigmentation follows classic Mendelian genetics. The abundance of mRNAs encoding flavin mono-oxygenase variancts and polyketide synthase was predictive of the color of the adult and antibodies identified their histological location in the spine cells. By RNA in situ hybridization, candidate genes important for spine biomineralization and pigmentation were mapped onto the spine epithelia, and MicroCT scans of spines from different color morphs concluded that color morphs are entirely due to pigmentation and not to structural variations of the endoskeleton. By confocal microscopy we localized gene expression along and within the spines and learned that genes involved in pigment biosynthesis showed selective distribution along the spine. Spine epidermis is mitotically active and red spherule immunocytes are highly migratory within the spine. Overall the results provide a key foundation for examining the mechanisms of molecular diversity and patterning in the name sake of the phylum Echinodermata.
Collapse
Affiliation(s)
- Maria Wise
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, 28516, USA
| | - Madison Silvia
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Gerardo Reyes
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Rushane Dunn
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Thomas M Onorato
- Department of Natural Sciences, LaGuardia Community College/CUNY, 31-10 Thomson Avenue, Long Island City, NY, 11101, USA
| | - Cosmo Pieplow
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Aidan Furze
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - El Hebert
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Dan Ritschoff
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, 28516, USA
| | - David R McClay
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Gary Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Carter J, Jobson S, Hamel JF, Mercier A. Efficacy of anesthetics in an echinoderm based on multifaceted stress biomarkers. Sci Rep 2024; 14:26619. [PMID: 39496728 PMCID: PMC11535335 DOI: 10.1038/s41598-024-77627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Animal care committees remain ambiguous on the need for anesthetics during experimental procedures on invertebrate taxa due to long-standing questioning of their sentience and pain perception. When used, anesthetizing procedures for invertebrates have commonly been adapted from those developed for vertebrates, under the largely unverified assumption that they afford the same benefits. The present study formally tested the efficacy of four common anesthetics of aquatic invertebrates (ethanol, MgCl2, clove oil, MS-222) using behavioural (reaction to physical contact and presence of a predator), physiological (respiration rate), cellular (coelomocytes), and hormonal (cortisol) biomarkers in the holothuroid Cucumaria frondosa (Echinodermata). While subjects recovered from exposures to all anesthetics tested, their responses differed markedly. Ethanol did not immobilize the individuals and concurrently increased their respiration rate, and cellular and hormonal stress markers. MgCl2 and clove oil reduced the behavioural and physiological responses, and decreased the cellular markers, but increased the cortisol levels. Only MS-222 fully immobilized the treated individuals and decreased their respiration rate, both during exposure and throughout ulterior interactions with a predator, while keeping coelomocyte counts and cortisol concentrations at baseline levels. MS-222 thus appears to induce the loss of sensation, representing a promising anesthetic and sedative in soft-bodied aquatic invertebrates.
Collapse
Affiliation(s)
- Jillian Carter
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| | - Sara Jobson
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Jean-François Hamel
- Society for the Exploration and Valuing of the Environment, St. Philips, NL, A1M 2B7, Canada
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
3
|
Amran RH, Jamal MT, Bowrji S, Sayegh F, Santanumurti MB, Satheesh S. Mini review: antimicrobial compounds produced by bacteria associated with marine invertebrates. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01209-5. [PMID: 39446239 DOI: 10.1007/s12223-024-01209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
Collapse
Affiliation(s)
- Ramzi H Amran
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
| | - Saba Bowrji
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
| | - Fotoon Sayegh
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Browijoyo Santanumurti
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Alijagic A, Särndahl E. Can evolutionary immunology decode micro and nanoplastic challenges? Front Immunol 2024; 15:1404360. [PMID: 38827731 PMCID: PMC11140029 DOI: 10.3389/fimmu.2024.1404360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
5
|
Crow RS, Shaw CG, Grayfer L, Smith LC. Recombinant SpTransformer proteins are functionally diverse for binding and phagocytosis by three subtypes of sea urchin phagocytes. Front Immunol 2024; 15:1372904. [PMID: 38742116 PMCID: PMC11089230 DOI: 10.3389/fimmu.2024.1372904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.
Collapse
Affiliation(s)
| | | | | | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
6
|
Juhasz-Dora T, James P, Evensen T, Lindberg SK. Hidden in plain sight: hyperspectral documentation of complex biofluorescence produced by the green sea urchin ( Strongylocentrotus droebachiensis). Methods Appl Fluoresc 2024; 12:025002. [PMID: 38277704 DOI: 10.1088/2050-6120/ad232e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Biofluorescence in echinoderms is largely unexplored, and even though the green sea urchinStrongylocentrotus droebachiensisis a well-studied species, the presence and/or function of fluorescence remains very poorly understood. Hyperspectral imaging was conducted on adult sea urchins (N = 380) while fluorospectrometric analysis was conducted on sea urchin coelomic fluid (N = 30). Fluorescence was documented in both the spines and coelomic fluid ofS. droebachiensis. Intact spines exhibited a low intensity green emission (∼550-600 nm), while broken spines averaged a high emission peak in the green spectrum (∼580 nm). Sea urchins produce a red exudate with a pronounced emission peak (∼680 nm) with a shoulder peak (∼730 nm). The sampled coelomic fluid exhibited high variability, with a majority exhibiting a low-level green fluorescence while pronounced emission peaks (N = 5) were found in the red spectrum (∼680 nm). The complex fluorescence produced byS. droebachiensiswarrants further investigation on its applicability for monitoring welfare of sea urchins in aquaculture facilities.
Collapse
Affiliation(s)
- Thomas Juhasz-Dora
- Bantry Marine Research Station, Gearhies, Bantry, Co. Cork P75 AX07, Ireland
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 N73K, Ireland
| | | | - Tor Evensen
- Nofima AS, PO Box 6122, NO-9291, Tromsø, Norway
| | | |
Collapse
|
7
|
Ren Y, Xu Y, Wang Z, Wang Y, Zhang J, Li Z, Chen Y, Go W, Javed MT, Li Q. Molecular cloning, biological description, and functional analysis of Ajfos transcription factor in pathogen-induced Apostichopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109814. [PMID: 38065305 DOI: 10.1016/j.cbpc.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Activator protein-1 subfamily member c-Fos wields significant influence over cellular activities, such as regulation of cell growth and division, cell death, and immune responses under various extracellular situations. In this study, the full-length c-Fos of sea cucumber, Apostichopus japonicus (Ajfos) was successfully cloned and analyzed. The anticipated 306 amino acid sequences of Ajfos displayed a basic-leucine zipper (bZIP) domain, similar to invertebrate counterparts. In addition, the qPCR results suggested Ajfos expressed in all tissues, with the highest level in coelomocytes from polian vesicle (vesicle lumen cells), followed by coelomocytes from coelom (coelomocytes). Moreover, the expression levels of Ajfos in the coelomocytes and vesicle lumen cells of sea cucumber showed significant changes after the Vibrio splendidus challenge, especially reaching a peak at 6 h. Compared with the silencing negative control RNA interference (siNC) group, silencing Ajfos (siAjfos) in vivo decreased the downstream proliferation-related gene expression of vesicle lumen cells after infection with V. splendidus while no significant influence was observed on coelomocytes. Furthermore, the proliferation proportion of vesicle lumen cells in the siAjfos group was significantly reduced under pathogen stimulation conditions. Finally, based on the fluctuation trend of total coelomocyte density (TCD) from coelom and polian vesicle previously discovered, it is evident that Ajfos played a critical role in facilitating the swift proliferation of vesicle lumen cells in response to V. splendidus stimulation. Altogether, this research provided an initial reference of the function of Ajfos in echinoderms, unveiling its participation in host coelomocyte proliferation of sea cucumbers during bacterial challenges.
Collapse
Affiliation(s)
- Yuan Ren
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhenhui Wang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yinan Wang
- College of Fisheries, Tianjin Agricultural University, Tianjin 300392, PR China; College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jialin Zhang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhen Li
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yupeng Chen
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Go
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Muhammad Tariq Javed
- Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Qiang Li
- College of Fisheries, Tianjin Agricultural University, Tianjin 300392, PR China; College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
8
|
Shao Y, Wang C, Lu T, Jiang J, Li C, Wang X. Dietary Bacillus cereus LS2 protects juvenile sea cucumber Apostichopus japonicus against Vibrio splendidus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109237. [PMID: 37984612 DOI: 10.1016/j.fsi.2023.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to investigate the effects of Bacillus cereus LS2 on the growth performance, innate immunity, intestinal microbiota, and disease resistance of sea cucumber Apostichopus japonicus. After feeding with LS2 for 30 days, results showed that dietary with LS2 had a significant improvement in the growth rate and immune parameters (including total coelomocytes counts, phagocytosis, respiratory burst, and immune-related enzymes) of juvenile sea cucumbers. Subsequently, transcriptome sequencing and qRT-PCR verification were performed to analyze the potential mechanism of LS2 diet and thus improve the immune response of A. japonicus. GO and KEGG pathway analysis indicated that LS2 can primarily activate the "Lectins" and "complement and coagulation cascades" pathways to modulate the innate immunity of the sea cucumbers. Furthermore, 16S rRNA sequencing was used to analyze the intestinal microbial composition of sea cucumbers after dietary with LS2. Results showed that Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the most prevalent phyla in A. japonicus intestinal microbiota. The abundance of Actinobacteria (46.20%) and Bacteroidetes (12.80%) were significantly higher in the LS2 group, whereas the relative abundance of Proteobacteria (49.98%) and Firmicutes (14.97%) were higher in the control group. The LDA scores of Nocardiaceae and Rhodococcus were also the highest taxa after the dietary administration of LS2, indicating that Actinobacteria phylum played a pivotal role in the intestinal microbial function of A. japonicus. Overall, these results suggested that feeding with Bacillus LS2 may be beneficial for A. japonicus farming.
Collapse
Affiliation(s)
- Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China.
| | - Chengyang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Tianyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Jianyang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao, PR China
| | - Xuelei Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, PR China
| |
Collapse
|
9
|
Win EHA, Mumu S, Fahim N, Parajuli K, Blumenthal E, Palu R, Mustafa A. Comparative physiological study of sea cucumbers from eastern waters of United States. PLoS One 2023; 18:e0293481. [PMID: 37903114 PMCID: PMC10615258 DOI: 10.1371/journal.pone.0293481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
Sea cucumbers, belonging to the phylum Echinodermata, are known to possess valuable bioactive compounds that have medicinal properties. In several countries, such as Korea, China, and Japan, they are cultured in the aquaculture industries for food and medicinal purposes. Research has shown that different species of sea cucumbers each possesses unique medicinal values. As a result, we strive towards finding species with better health resilience in aquaculture system to be cultured for nutritional and medicinal purposes. In this paper, we compared the physiological and immunological parameters of three species of sea cucumbers, Cucumaria frondosa (C. frondosa), Isostychopus badionotus (I. badionotus), and Pentacta pygmaea (P. Pygmaea) from the waters of the eastern United States as they have not been studied extensively. Four different cells of sea cucumbers, phagocytic, red spherule, white spherule, and vibratile cells, that contribute to their immunity were counted. C. frondosa exhibited the highest concentrations of phagocytic cells, white spherule cells, and vibratile cells, compared to the two other species. Due to its high phagocytic cell concentration, the highest phagocytic capacity was seen in C. frondosa although it was not statistically significant. We also observed that C. frondosa had the highest total cell count and the highest concentration of coelomic protein among the three species. Lastly, C. frondosa possessed the highest lysozyme activity. Taken together, we concluded that C. frondosa is the best of the three species compared to be reared in the aquaculture systems for use in the food and biomedicine industries due to its immunological and physiological properties.
Collapse
Affiliation(s)
- Eaint Honey Aung Win
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Sinthia Mumu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Nahian Fahim
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Kusum Parajuli
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Elliott Blumenthal
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Rebecca Palu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Ahmed Mustafa
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
10
|
Konrad KD, Arnott M, Testa M, Suarez S, Song JL. microRNA-124 directly suppresses Nodal and Notch to regulate mesodermal development. Dev Biol 2023; 502:50-62. [PMID: 37419400 PMCID: PMC10719910 DOI: 10.1016/j.ydbio.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
MicroRNAs regulate gene expression post-transcriptionally by destabilizing and/or inhibiting translation of target mRNAs in animal cells. MicroRNA-124 (miR-124) has been examined mostly in the context of neurogenesis. This study discovers a novel role of miR-124 in regulating mesodermal cell differentiation in the sea urchin embryo. The expression of miR-124 is first detectable at 12hours post fertilization at the early blastula stage, during endomesodermal specification. Mesodermally-derived immune cells come from the same progenitor cells that give rise to blastocoelar cells (BCs) and pigment cells (PCs) that must make a binary fate decision. We determined that miR-124 directly represses Nodal and Notch to regulate BC and PC differentiation. miR-124 inhibition does not impact the dorsal-ventral axis formation, but result in a significant increase in number of cells expressing BC-specific transcription factors (TFs) and a concurrent reduction of differentiated PCs. In general, removing miR-124's suppression of Nodal phenocopies miR124 inhibition. Interestingly, removing miR-124's suppression of Notch leads to an increased number of both BCs and PCs, with a subset of hybrid cells that express both BC- and PC-specific TFs in the larvae. Removal of miR-124's suppression of Notch not only affects differentiation of both BCs and PCs, but also induces cell proliferation of these cells during the first wave of Notch signaling. This study demonstrates that post-transcriptional regulation by miR-124 impacts differentiation of BCs and PCs by regulating the Nodal and Notch signaling pathways.
Collapse
Affiliation(s)
- Kalin D Konrad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Malcolm Arnott
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Michael Testa
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Santiago Suarez
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
11
|
Wahltinez SJ, Byrne M, Stacy NI. Coelomic fluid of asteroid echinoderms: Current knowledge and future perspectives on its utility for disease and mortality investigations. Vet Pathol 2023; 60:547-559. [PMID: 37264636 DOI: 10.1177/03009858231176563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Coelomic fluid surrounds the internal organs of asteroid echinoderms (asteroids, otherwise known as sea stars or starfish) and plays an essential role in the immune system, as well as in the transport of respiratory gases, nutrients, waste products, and reproductive mediators. Due to its importance in physiology and accessibility for nonlethal diagnostic sampling, coelomic fluid of asteroids provides an excellent sample matrix for health evaluations and can be particularly useful in disease and mortality investigations. This is especially important in light of recent increases in the number of affected individuals and species, larger geographic scope, and increased observed frequency of sea star wasting events compared with historic accounts of wasting. This review summarizes the current knowledge about coelomocytes, the effector cell of the asteroid immune system; coelomic fluid electrolytes, osmolality, acid-base status and respiratory gases, and microbiota; and genomic, transcriptomic, and proteomic investigations of coelomic fluid. The utility of coelomic fluid analysis for assessing stressor responses, diseases, and mortality investigations is considered with knowledge gaps and future directions identified. This complex body fluid provides an exciting opportunity to increase our understanding of this unique and ecologically important group of animals.
Collapse
Affiliation(s)
| | - Maria Byrne
- The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
12
|
Murano C, Gallo A, Nocerino A, Macina A, Cecchini Gualandi S, Boni R. Short-Term Thermal Stress Affects Immune Cell Features in the Sea Urchin Paracentrotus lividus. Animals (Basel) 2023; 13:1954. [PMID: 37370464 DOI: 10.3390/ani13121954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Due to global warming, animals are experiencing heat stress (HS), affecting many organic functions and species' survival. In this line, some characteristics of immune cells in sea urchins subjected to short-term HS were evaluated. Paracentrotus lividus adult females were randomly divided into three groups and housed in tanks at 17 °C. In two of these tanks, the temperatures were gradually increased up to 23 and 28 °C. Celomatic fluid was collected after 3 and 7 days. The coelomocytes were morphologically typed and evaluated for their mitochondrial membrane potential (MMP), lipoperoxidation extent (LPO), and hydrogen peroxide content (H2O2). Respiratory burst was induced by treatment with phorbol 12-myristate 13-acetate (PMA). HS caused a significant change in the coelomocytes' type distribution. MMP increased in the 23 °C-group and decreased in the 28 °C-group at both 3 and 7 days. LPO only increased in the 28 °C-group at 7 days. H2O2 progressively decreased together with the temperature increase. Respiratory burst was detected in all groups, but it was higher in the 17 °C group. In conclusion, the increase in temperature above the comfort zone for this animal species affects their immune cells with possible impairment of their functions.
Collapse
Affiliation(s)
- Carola Murano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Aurora Nocerino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Alberto Macina
- Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | - Raffaele Boni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
13
|
Spurrell M, Oulhen N, Foster S, Perillo M, Wessel G. Gene regulatory divergence amongst echinoderms underlies appearance of pigment cells in sea urchin development. Dev Biol 2023; 494:13-25. [PMID: 36519720 PMCID: PMC9870932 DOI: 10.1016/j.ydbio.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Larvae of the sea urchin, Strongylocentrotus purpuratus, have pigmented migratory cells implicated in immune defense and gut patterning. The transcription factor SpGcm activates the expression of many pigment cell-specific genes, including those involved in pigment biosynthesis (SpPks1 and SpFmo3) and immune related genes (e.g. SpMif5). Despite the importance of this cell type in sea urchins, pigmented cells are absent in larvae of the sea star, Patiria miniata. In this study, we tested the premises that sea stars lack genes to synthesize echinochrome pigment, that the genes are present but are not expressed in the larvae, or rather that the homologous gene expression does not contribute to echinochrome synthesis. Our results show that orthologs of sea urchin pigment cell-specific genes (PmPks1, PmFmo3-1 and PmMifL1-2) are present in the sea star genome and expressed in the larvae. Although no cell lineage homologous to migratory sea urchin pigment cells is present, dynamic gene activation accomplishes a similar spatial and temporal expression profile. The mechanisms regulating the expression of these genes, though, is highly divergent. In sea stars, PmGcm lacks the central role in pigment gene expression since it is not expressed in PmPks1 and PmFmo3-1-positive cells, and knockdown of Gcm does not abrogate pigment gene expression. Pigment genes are instead expressed in the coelomic mesoderm early in development before later being expressed in the ectoderm. These findings were supported by in situ RNA hybridization and comparative scRNA-seq analyses. We conclude that simply the coexpression of Pks1 and Fmo3 orthologs in cells of the sea star is not sufficient to underlie the emergence of the larval pigment cell in the sea urchin.
Collapse
Affiliation(s)
- Maxwell Spurrell
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Nathalie Oulhen
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Stephany Foster
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Margherita Perillo
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Gary Wessel
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA.
| |
Collapse
|
14
|
Gata6 + large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends Immunol 2023; 44:129-145. [PMID: 36623953 DOI: 10.1016/j.it.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023]
Abstract
There are striking similarities between the sea urchin cavity macrophage-like phagocytes (coelomocytes) and mammalian cavity macrophages in not only their location, but also their behaviors. These cells are crucial for maintaining homeostasis within the cavity following a breach, filling the gap and functioning as a barrier between vital organs and the environment. In this review, we summarize the evolving literature regarding these Gata6+ large peritoneal macrophages (GLPMs), focusing on ontogeny, their responses to perturbations, including their rapid aggregation via coagulation, as well as scavenger receptor cysteine-rich domains and their potential roles in diseases, such as cancer. We challenge the 50-year old phenomenon of the 'macrophage disappearance reaction' (MDR) and propose the new term 'macrophage disturbance of homeostasis reaction' (MDHR), which may better describe this complex phenomenon.
Collapse
|
15
|
Savoca D, Pace A, Arizza V, Arculeo M, Melfi R. Controlled uptake of PFOA in adult specimens of Paracentrotus lividus and evaluation of gene expression in their gonads and embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26094-26106. [PMID: 36350439 PMCID: PMC9995410 DOI: 10.1007/s11356-022-23940-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanoic acid (PFOA) has been largely used in the manufacturing industry but a few years ago it turned out to be a dangerous pollutant which is now of concern for terrestrial and aquatic environments. Here, we investigated the bioaccumulation of PFOA in the sea urchin Paracentrotus lividus after exposure to different concentrations of the pollutant for 28 days. We observed rapid uptake of PFOA in the coelomic fluid collected weekly during the exposure period and high bioaccumulation in gonads at the end of the experiment. Interestingly, animals were also able to fast depurate when relocated to a clean environment. In addition, to assess the effect of PFOA on sea urchins' physiological pathways, we analysed the expression profile of some marker genes both in the gonads and in the embryos obtained from parents exposed to PFOA. Our results suggest that PFOA is a persistent, bioaccumulative compound that adversely affects the health of the exposed organisms and their offspring by causing significant changes in the expression of some key target genes and the occurrence of developmental anomalies in the embryos.
Collapse
Affiliation(s)
- Dario Savoca
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy.
| | - Andrea Pace
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Marco Arculeo
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Raffaella Melfi
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| |
Collapse
|
16
|
Wang Z, Fan X, Li Z, Guo L, Ren Y, Li Q. Comparative analysis for immune response of coelomic fluid from coelom and polian vesicle in Apostichopus japonicus to Vibrio splendidus infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100074. [PMID: 36618076 PMCID: PMC9811217 DOI: 10.1016/j.fsirep.2022.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
The polian vesicle and coelom of sea cucumber Apostichopus japonicus were full of coelomic fluid in which many types of coelomocytes with different functions were suspended. Our previous work has indicated the differences of coelomocytes between two sites mainly in subtype proportion, non-specific immune enzymes activities and several immune-related genes expression levels in healthy A. japonicus. However, the functional similarities and differences of coelomic fluid in two sites including the coelom and polian vesicle after pathogenic infection still remain unclear. Here, we investigated the changes of the total coelomocyte density (TCD) and differential coelomocyte density (DCD) after pathogen infection by Vibrio splendidus in coelom and polian vesicle. After infected by V. splendidus, the TCD in the coelom and polian vesicle rapidly declined at 12 h, and then the TCD in the coelom showed a stably ascending trend, while the TCD in the polian vesicle reached a peak at 24 h post infection (hpi), and then showed a continuously decline trend from 24 hpi to 72 hpi followed by a slow elevation until recovering the normal level from 72 hpi to 96 hpi. Then the activities of acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD) were determined to evaluate the response of cell-free coelomic fluid to V. splendidus infection. The activities of ACP, AKP and CAT showed similar trends in the coelom and polian vesicle. The SOD activity significantly increased in the polian vesicle, whereas it exhibited a decreasing trend in the coelom. Finally, the expression profiles of nine immune-related genes including Aj-MyD88, Aj-IRAK4, Aj-i-Lys, Aj-Rel, Aj-p50, Aj-DMBT1, Aj-CDC, Aj-Rrp15 and Aj-Fibrinogen C were detected after V. splendidus challenge. The results suggested all the detected genes were significantly up-regulated both in the coelom and polian vesicle, and the expression levels of these genes in two sites shared similar trends except Aj-MyD88 and Aj-DMBT1. This research provides a new insight into the differentially immune roles of coelomic fluid and coelomocytes in polian vesicle and coelom response to bacterial infections and supplements comprehensive resources for better understanding the innate immune response of A. japonicus.
Collapse
Affiliation(s)
- Zhenhui Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuyuan Fan
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhen Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Liyuan Guo
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yuan Ren
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qiang Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,Corresponding author.
| |
Collapse
|
17
|
Taguchi M, Minakata K, Tame A, Furukawa R. Establishment of the immunological self in juvenile Patiria pectinifera post-metamorphosis. Front Immunol 2022; 13:1056027. [PMID: 36561757 PMCID: PMC9763293 DOI: 10.3389/fimmu.2022.1056027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Ontogeny of the immune system is a fundamental immunology issue. One indicator of immune system maturation is the establishment of the immunological self, which describes the ability of the immune system to distinguish allogeneic individuals (allorecognition ability). However, the timing of immune system maturation during invertebrate ontogeny is poorly understood. In the sea star Patiria pectinifera, cells that have dissociated from the embryos and larvae are able to reconstruct larvae. This reconstruction phenomenon is possible because of a lack of allorecognition capability in the larval immune system, which facilitates the formation of an allogeneic chimera. In this study, we revealed that the adult immune cells of P. pectinifera (coelomocytes) have allorecognition ability. Based on a hypothesis that allorecognition ability is acquired before and after metamorphosis, we conducted detailed morphological observations and survival time analysis of metamorphosis-induced chimeric larvae. The results showed that all allogeneic chimeras died within approximately two weeks to one month of reaching the juvenile stage. In these chimeras, the majority of the epidermal cell layer was lost and the mesenchymal region expanded, but cell death appeared enhanced in the digestive tract. These results indicate that the immunological self of P. pectinifera is established post-metamorphosis during the juvenile stage. This is the first study to identify the timing of immune system maturation during echinodermal ontogenesis. As well as establishing P. pectinifera as an excellent model for studies on self- and non-self-recognition, this study enhances our understanding of the ontogeny of the immune system in invertebrates.
Collapse
Affiliation(s)
- Mizuki Taguchi
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, Yokohama, Japan
| | - Kota Minakata
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Akihiro Tame
- Department of Marine and Earth Sciences, Marine Works Japan Ltd., Yokosuka, Japan
| | - Ryohei Furukawa
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, Yokohama, Japan
| |
Collapse
|
18
|
Cui H, Liu J, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Zhang Y. Echinochrome A Reverses Kidney Abnormality and Reduces Blood Pressure in a Rat Model of Preeclampsia. Mar Drugs 2022; 20:722. [PMID: 36421999 PMCID: PMC9699499 DOI: 10.3390/md20110722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 05/31/2024] Open
Abstract
We aimed to observe the effects of Echinochrome A (Ech A) on systemic changes using a rat model of preeclampsia. The results showed that an infusion of angiotensin II (Ang II) through an osmotic pump (1 μg/kg/min) on GD 8 increased systolic and diastolic blood pressures and reduced fetal weight and placental weight. The diameters of the glomeruli were expended and glomeruli capillaries were diminished. No change was observed in the heart and liver in the Ang II group, but epithelial structures were disrupted in the uterus. Ech A treatment on GD 14 (100 μg/μL) through the jugular vein reduced systolic and diastolic blood pressures and reversed glomerulus alterations, but the fetal or placental parameters were unaffected. Ech A only partly reversed the effect on the uterus. The mRNA expression of TNF-α was increased and IL-10 and VEGF were reduced in the uterus of the Ang II group, while Ech A restored these changes. A similar trend was observed in the kidney, liver, and heart of this group. Furthermore, Bcl-2 was reduced and Bcl-2/Bax ratios were significantly reduced in the kidney and heart of the Ang II group, while Ech A reversed these changes. We suggest that Ech A modulates inflammation and apoptosis in key systemic organs in Ang II-induced rat preeclampsia and preserves kidney and uterus structures and reduces blood pressure.
Collapse
Affiliation(s)
- Huixing Cui
- Department of Physiology & Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
- Department of Research Center, Yanbian University Hospital, Yanji 133000, China
| | - Junxian Liu
- Department of Physiology & Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
- Department of Research Center, Yanbian University Hospital, Yanji 133000, China
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Yinhua Zhang
- Department of Physiology & Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
- Department of Research Center, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
19
|
Guatelli S, Ferrario C, Bonasoro F, Anjo SI, Manadas B, Candia Carnevali MD, Varela Coelho A, Sugni M. More than a simple epithelial layer: multifunctional role of echinoderm coelomic epithelium. Cell Tissue Res 2022; 390:207-227. [PMID: 36083358 PMCID: PMC9630195 DOI: 10.1007/s00441-022-03678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
Abstract
In echinoderms, the coelomic epithelium (CE) is reportedly the source of new circulating cells (coelomocytes) as well as the provider of molecular factors such as immunity-related molecules. However, its overall functions have been scarcely studied in detail. In this work, we used an integrated approach based on both microscopy (light and electron) and proteomic analyses to investigate the arm CE in the starfish Marthasterias glacialis during different physiological conditions (i.e., non-regenerating and/or regenerating). Our results show that CE cells share both ultrastructural and proteomic features with circulating coelomocytes (echinoderm immune cells). Additionally, microscopy and proteomic analyses indicate that CE cells are actively involved in protein synthesis and processing, and membrane trafficking processes such as phagocytosis (particularly of myocytes) and massive secretion phenomena. The latter might provide molecules (e.g., immune factors) and fluids for proper arm growth/regrowth. No stem cell marker was identified and no pre-existing stem cell was observed within the CE. Rather, during regeneration, CE cells undergo dedifferentiation and epithelial-mesenchymal transition to deliver progenitor cells for tissue replacement. Overall, our work underlines that echinoderm CE is not a "simple epithelial lining" and that instead it plays multiple functions which span from immunity-related roles as well as being a source of regeneration-competent cells for arm growth/regrowth.
Collapse
Affiliation(s)
- Silvia Guatelli
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Center for Complexity & Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | | | - Ana Varela Coelho
- ITQB-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy.
- Center for Complexity & Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
20
|
Liu F, Last KS, Henry TB, Reinardy HC. Interspecific differences in oxidative DNA damage after hydrogen peroxide exposure of sea urchin coelomocytes. Mutagenesis 2022; 38:13-20. [PMID: 36130095 PMCID: PMC9897020 DOI: 10.1093/mutage/geac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interspecific comparison of DNA damage can provide information on the relative vulnerability of marine organisms to toxicants that induce oxidative genotoxicity. Hydrogen peroxide (H2O2) is an oxidative toxicant that causes DNA strand breaks and nucleotide oxidation and is used in multiple industries including Atlantic salmon aquaculture to treat infestations of ectoparasitic sea lice. H2O2 (up to 100 mM) can be released into the water after sea lice treatment, with potential consequences of exposure in nontarget marine organisms. The objective of the current study was to measure and compare differences in levels of H2O2-induced oxidative DNA damage in coelomocytes from Scottish sea urchins Echinus esculentus, Paracentrotus lividus, and Psammechinus miliaris. Coelomocytes were exposed to H2O2 (0-50 mM) for 10 min, cell concentration and viability were quantified, and DNA damage was measured by the fast micromethod, an alkaline unwinding DNA method, and the modified fast micromethod with nucleotide-specific enzymes. Cell viability was >92% in all exposures and did not differ from controls. Psammechinus miliaris coelomocytes had the highest oxidative DNA damage with 0.07 ± 0.01, 0.08 ± 0.01, and 0.07 ± 0.01 strand scission factors (mean ± SD) after incubation with phosphate-buffered saline, formamidopyrimidine-DNA glycosylase, and endonuclease-III, respectively, at 50 mM H2O2. Exposures to 0.5 mM H2O2 (100-fold dilution from recommended lice treatment concentration) induced oxidative DNA damage in all three species of sea urchins, suggesting interspecific differences in vulnerabilities to DNA damage and/or DNA repair mechanisms. Understanding impacts of environmental genotoxicants requires understanding species-specific susceptibilities to DNA damage, which can impact long-term stability in sea urchin populations in proximity to aquaculture farms.
Collapse
Affiliation(s)
- Fengjia Liu
- The Scottish Association for Marine Science, Oban, United Kingdom
| | - Kim S Last
- The Scottish Association for Marine Science, Oban, United Kingdom
| | - Theodore B Henry
- Institute of Earth and Life Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom,Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Helena C Reinardy
- Corresponding author. Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK. E-mail: ;
| |
Collapse
|
21
|
Wound repair in sea urchin larvae involves pigment cells and blastocoelar cells. Dev Biol 2022; 491:56-65. [PMID: 36067837 DOI: 10.1016/j.ydbio.2022.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
Abstract
Sea urchin larvae spend weeks to months feeding on plankton prior to metamorphosis. When handled in the laboratory they are easily injured, suggesting that in the plankton they are injured with some frequency. Fortunately, larval wounds are repaired through an efficient wound response with mesenchymal pigment cells and blastocoelar cells assisting as the epithelium closes. An injury to the epithelium leads to an immediate calcium transient that rapidly spreads around the entire larva and is necessary for activating pigment cell migration toward the wound. If calcium transport is blocked, the pigment cells fail to activate and remain in place. When activated, pigment cells initiate directed migration to the wound site from distances of at least 85 μm. Upon arrival at the wound site they participate in an innate immune response. Blastocoelar cells are recruited to the injury site as well, though the calcium transient is unnecessary for activating these cells. At the wound site, blastocoelar cells participate in several functions including remodeling the skeleton if it protrudes through the epithelium.
Collapse
|
22
|
Barela Hudgell MA, Grayfer L, Smith LC. Coelomocyte populations in the sea urchin, Strongylocentrotus purpuratus, undergo dynamic changes in response to immune challenge. Front Immunol 2022; 13:940852. [PMID: 36119116 PMCID: PMC9471872 DOI: 10.3389/fimmu.2022.940852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The sea urchin, Strongylocentrotus purpuratus has seven described populations of distinct coelomocytes in the coelomic fluid that are defined by morphology, size, and for some types, by known functions. Of these subtypes, the large phagocytes are thought to be key to the sea urchin cellular innate immune response. The concentration of total coelomocytes in the coelomic fluid increases in response to pathogen challenge. However, there is no quantitative analysis of how the respective coelomocyte populations change over time in response to immune challenge. Accordingly, coelomocytes collected from immunoquiescent, healthy sea urchins were evaluated by flow cytometry for responses to injury and to challenge with either heat-killed Vibrio diazotrophicus, zymosan A, or artificial coelomic fluid, which served as the vehicle control. Responses to the initial injury of coelomic fluid collection or to injection of V. diazotrophicus show significant increases in the concentration of large phagocytes, small phagocytes, and red spherule cells after one day. Responses to zymosan A show decreases in the concentration of large phagocytes and increases in the concentration of small phagocytes. In contrast, responses to injections of vehicle result in decreased concentration of large phagocytes. When these changes in coelomocytes are evaluated based on proportions rather than concentration, the respective coelomocyte proportions are generally maintained in response to injection with V. diazotrophicus and vehicle. However, this is not observed in response to zymosan A and this lack of correspondence between proportions and concentrations may be an outcome of clearing these large particles by the large phagocytes. Variations in coelomocyte populations are also noted for individual sea urchins evaluated at different times for their responses to immune challenge compared to the vehicle. Together, these results demonstrate that the cell populations in sea urchin immune cell populations undergo dynamic changes in vivo in response to distinct immune stimuli and to injury and that these changes are driven by the responses of the large phagocyte populations.
Collapse
Affiliation(s)
| | | | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
23
|
Oulhen N, Byrne M, Duffin P, Gomez-Chiarri M, Hewson I, Hodin J, Konar B, Lipp EK, Miner BG, Newton AL, Schiebelhut LM, Smolowitz R, Wahltinez SJ, Wessel GM, Work TM, Zaki HA, Wares JP. A Review of Asteroid Biology in the Context of Sea Star Wasting: Possible Causes and Consequences. THE BIOLOGICAL BULLETIN 2022; 243:50-75. [PMID: 36108034 PMCID: PMC10642522 DOI: 10.1086/719928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Paige Duffin
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, Rhode Island
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, New York
| | - Jason Hodin
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington
| | - Brenda Konar
- College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, Alaska
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, Georgia
| | - Benjamin G. Miner
- Department of Biology, Western Washington University, Bellingham, Washington
| | | | - Lauren M. Schiebelhut
- Department of Life and Environmental Sciences, University of California, Merced, California
| | - Roxanna Smolowitz
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island
| | - Sarah J. Wahltinez
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Gary M. Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Thierry M. Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii
| | - Hossam A. Zaki
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - John P. Wares
- Department of Genetics, University of Georgia, Athens, Georgia
- Odum School of Ecology, University of Georgia, Athens, Georgia
| |
Collapse
|
24
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
25
|
Abstract
Larvae of sea urchins have a population of conspicuous pigmented cells embedded in the outer surface epithelium. Pigment cells are a distinct mesodermal lineage that gives rise to a key component of the larval immune system. During cleavage, signaling from adjacent cells influences a small crescent of cells to initiate a network of genetic interactions that prepare the cells for morphogenesis and specializes them as immunocytes. The cells become active during gastrulation, detach from the epithelium, migrate through the blastocoel, and insert into the ectoderm where they complete their differentiation. Studies of pigment cell development have helped establish how cellular signaling controls networks of genetic interactions that bring about morphogenesis and differentiation. This review summarizes studies of pigment cell development and concludes that pigment cells are an excellent experimental model. Pigment cells provide several opportunities to further test and refine our understanding of the molecular basis of cellular development.
Collapse
Affiliation(s)
- Robert D Burke
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
26
|
Zhu J, Shao Y, Chen K, Zhang W, Li C. A transglutaminase 2-like gene from sea cucumber Apostichopus japonicus mediates coelomocytes autophagy. FISH & SHELLFISH IMMUNOLOGY 2021; 119:602-612. [PMID: 34742899 DOI: 10.1016/j.fsi.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Transglutaminases (TGases) are widely known to play critical roles in innate immunity, in particular, TGase2, which involves in autophagy process to help degrade protein aggregates under stressful conditions in mammals. Nevertheless, the function of the TGase2 counterpart whether involves in invertebrate autophagy is largely unknown. In this study, a novel TGase2-like homologous gene from the sea cucumber Apostichopus japonicus (named as AjTGase2-like) was cloned using RACE technology and its biological functions were also investigated. The AjTGase2-like gene encoded a peptide of 750 amino acids with the representative domains of Transglut_N domain, TGc domain, and two Transglut_C domains, which exhibited highly conservative with vertebrate TGase2. Multiple sequence alignments and phylogenetic analysis both supported that AjTGase2-like belonged to a new member of TGase2 subfamily. AjTGase2-like was pervasively expressed in all examined tissues, with the largest transcription in muscle, followed by respiratory trees, and intestine. After immersion infection with Vibrio splendidus, the mRNA and protein levels of AjTGase2-like were both significantly induced and reached the highest levels at 24 h, indicating AjTGase2-like plays a key role in immune response. Further functional analysis showed that the ubiquitinated protein level was significantly increased by 1.65-fold (p < 0.01) after silencing of AjTGase2-like, and the protein levels of AjLC3-II/I and AjBeclin1 were both obviously decreased by 0.49-fold (p < 0.01) and 0.64-fold (p < 0.01) at the same time, while the authophagy receptor of Ajp62 was signally up-regulated by 1.40-fold (p < 0.01) under same condition. Moreover, the immunofluorescence signals of AjLC3 and Ajp62 were consistent with their protein levels, suggesting knockdown of AjTGase2-like causes a blockage in autophagy. More importantly, the AjLC3 positive signal was not increased after adding with chloroquine in the case of AjTGase2-like interference, indicating AjTGase2-like might play pivotal role in the early step of autophagosome formation. Besides, our results showed that the fluorescence signal of AjTGase2-like was largely co-localized with Ajp62 around the cytoplasm in vivo, and rAjp62 could directly combine with rAjTGase2-like in vitro, indicating AjTGase2-like interacts with Ajp62 during autophagy. Overall, our findings supported that AjTGase2-like served as a positive regulator in sea cucumber authophay.
Collapse
Affiliation(s)
- Jiaqian Zhu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| | - Kaiyu Chen
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
27
|
Echinochrome A Treatment Alleviates Atopic Dermatitis-like Skin Lesions in NC/Nga Mice via IL-4 and IL-13 Suppression. Mar Drugs 2021; 19:md19110622. [PMID: 34822493 PMCID: PMC8625509 DOI: 10.3390/md19110622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease in which skin barrier dysfunction leads to dryness, pruritus, and erythematous lesions. AD is triggered by immune imbalance and oxidative stress. Echinochrome A (Ech A), a natural pigment isolated from sea urchins, exerts antioxidant and beneficial effects in various inflammatory disease models. In the present study, we tested whether Ech A treatment alleviated AD-like skin lesions. We examined the anti-inflammatory effect of Ech A on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like lesions in an NC/Nga mouse model. AD-like skin symptoms were induced by treatment with 1% DNCB for 1 week and 0.4% DNCB for 5 weeks in NC/Nga mice. The results showed that Ech A alleviated AD clinical symptoms, such as edema, erythema, and dryness. Treatment with Ech A induced the recovery of epidermis skin lesions as observed histologically. Tewameter® and Corneometer® measurements indicated that Ech A treatment reduced transepidermal water loss and improved stratum corneum hydration, respectively. Ech A treatment also inhibited inflammatory-response-induced mast cell infiltration in AD-like skin lesions and suppressed the expression of proinflammatory cytokines, such as interferon-γ, interleukin-4, and interleukin-13. Collectively, these results suggest that Ech A may be beneficial for treating AD owing to its anti-inflammatory effects.
Collapse
|
28
|
Zapata-Vívenes E, Bastidas M, Marcano LDV, Sonnenholzner-Varas J. Colorless spherule cells and lysozyme contribute to innate immunological responses in the sea urchin Lytechinus variegatus, exposed to bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2021; 117:253-261. [PMID: 34418557 DOI: 10.1016/j.fsi.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The sea urchin Lytechinus variegatus is considered a good candidate for aquaculture, but bacterial diseases are a major challenge in culture conditions. The innate immunological defenses of L. variegatus to bacterial challenges were assessed through hematology parameters, in vitro phagocytosis, lysozyme activity and total plasma protein concentrations in cell-free coelomic fluid. Adult sea urchins were inoculated with Microccocus lysodeikticus, Escherichia coli and Vibrio parahaemolyticus in the cavity coelomic. Filtrated and sterile seawater (FSW) injected and non-injected sea urchins were used as control groups. Righting time, external aspects and behavior of sea urchins were evaluated. Twenty-four hours post-inoculation, we found an increase in the population of colorless spherule cells (CLS), phagocytosis, and humoral responses in sea urchins challenged by bacterial inoculations. Righting time was not affected by the treatments and apparent external signs of disease were not observed at least during 96h post-inoculation. The immunological system of L. variegatus quickly eliminated pathogenic microorganisms. CLS and lysozyme activity cooperate in the immune defenses of L. variegatus, showing an extraordinary efficiency for adjusting the immune defenses under stress caused by microbes. We recommend that the cellular and humoral markers serve as routine tests to monitor health status in sea urchins.
Collapse
Affiliation(s)
- Edgar Zapata-Vívenes
- Grupo de Biología y Cultivo de Equinodermos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Ecuador.
| | - Mariángel Bastidas
- Departamento de Bioanálisis, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| | - Leida Del Valle Marcano
- Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| | - Jorge Sonnenholzner-Varas
- Grupo de Biología y Cultivo de Equinodermos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Ecuador.
| |
Collapse
|
29
|
Soleimani S, Mashjoor S, Mitra S, Yousefzadi M, Rezadoost H. Coelomic fluid of Echinometra mathaei: The new prospects for medicinal antioxidants. FISH & SHELLFISH IMMUNOLOGY 2021; 117:311-319. [PMID: 34418558 DOI: 10.1016/j.fsi.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Echinoid pigments have various biological properties such as antioxidant, cytotoxic, and antibacterial activities. We aimed to evaluate the extraction of cell-free coelomic fluid (CFCF) and coelomocyte lysate (CL) as well as qualitatively and quantitatively identify the coelomic fluid of Echinometra mathaei as a new source of polyhydroxylatednaphthoquinone (PHNQ) antioxidant pigments. Based on the High Performance liquid chromatography-electrospray mass spectrometry (HPLC-MS) analysis in negative mode, the main quinonoid (PHNQ) pigments were identified and quantified. This study also illustrated the total ion current chromatograms and related mass spectra of Spinochrome A, Spinochrome B, Spinochrome C, and Echinochrome A in CL and SpinochromeC in CFCF samples. The ions at 221, 279, 265 and 263 m/z correspond to the pseudo-molecular [M - H] ions of Spinochrome B, Spinochrome C, Echinochrome A, and Spinochrome A, respectively. These components have previously been noted from the shells and spines of sea urchins but identification of PHNQs pigments in CL and CFCF of E. mathaei using LC-MS was introduced for the first time. The results also showed that, the highest DPPH radical scavenging activity of CFCF (88.12 DPPH% scavenging at 70 μg/mL, IC50 = <10 μg/mL). The findings clearly suggest that the coelomic fluid of E. mathaei could be served as the promising as well as potential natural antioxidants in the medical and pharmaceutical industries and could replace the increasing prices of the commercial antioxidants products.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Sakineh Mashjoor
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran; Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Soumita Mitra
- Department of Marine Science, University of Calcutta, Calcutta, India
| | - Morteza Yousefzadi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran; Department of Biology, Faculty of Science, University of Qom, Qom, Iran.
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, ShahidBeheshti University, GC, Tehran, Iran
| |
Collapse
|
30
|
D’Alessio S, Buckley KM, Kraev I, Hayes P, Lange S. Extracellular Vesicle Signatures and Post-Translational Protein Deimination in Purple Sea Urchin ( Strongylocentrotus purpuratus) Coelomic Fluid-Novel Insights into Echinodermata Biology. BIOLOGY 2021; 10:866. [PMID: 34571743 PMCID: PMC8464700 DOI: 10.3390/biology10090866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
The purple sea urchin (Strongylocentrotus purpuratus) is a marine invertebrate of the class Echinoidea that serves as an important research model for developmental biology, cell biology, and immunology, as well as for understanding regenerative responses and ageing. Peptidylarginine deiminases (PADs) are calcium-dependent enzymes that mediate post-translational protein deimination/citrullination. These alterations affect protein function and may also play roles in protein moonlighting. Extracellular vesicles (EVs) are membrane-bound vesicles that are released from cells as a means of cellular communication. Their cargo includes a range of protein and RNA molecules. EVs can be isolated from many body fluids and are therefore used as biomarkers in physiological and pathological responses. This study assessed EVs present in the coelomic fluid of the purple sea urchin (Strongylocentrotus purpuratus), and identified both total protein cargo as well as the deiminated protein cargo. Deiminated proteins in coelomic fluid EVs were compared with the total deiminated proteins identified in coelomic fluid to assess putative differences in deiminated protein targets. Functional protein network analysis for deiminated proteins revealed pathways for immune, metabolic, and gene regulatory functions within both total coelomic fluid and EVs. Key KEGG and GO pathways for total EV protein cargo furthermore showed some overlap with deimination-enriched pathways. The findings presented in this study add to current understanding of how post-translational deimination may shape immunity across the phylogeny tree, including possibly via PAD activity from microbiota symbionts. Furthermore, this study provides a platform for research on EVs as biomarkers in sea urchin models.
Collapse
Affiliation(s)
- Stefania D’Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (S.D.); (P.H.)
| | | | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (S.D.); (P.H.)
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (S.D.); (P.H.)
- UCL EGA Institute for Women’s Health, Maternal and Fetal Medicine, London WC1E 6AU, UK
| |
Collapse
|
31
|
Ballarin L, Karahan A, Salvetti A, Rossi L, Manni L, Rinkevich B, Rosner A, Voskoboynik A, Rosental B, Canesi L, Anselmi C, Pinsino A, Tohumcu BE, Jemec Kokalj A, Dolar A, Novak S, Sugni M, Corsi I, Drobne D. Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Front Immunol 2021; 12:688106. [PMID: 34276677 PMCID: PMC8278520 DOI: 10.3389/fimmu.2021.688106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.
Collapse
Affiliation(s)
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Lucia Manni
- Department of Biology, University of Padua, Padua, Italy
| | - Baruch Rinkevich
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Amalia Rosner
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
- Department of Biology, Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Anselmi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
| | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Begüm Ece Tohumcu
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
32
|
Adhikary S, Hui SP. The loss of regeneration competency in the animal kingdom at the expense of immunity: A journey in retrospect. Brain Behav Immun 2021; 94:8-10. [PMID: 33588075 DOI: 10.1016/j.bbi.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Regeneration refers to the structural growth of damaged organs or tissues and their functional integration into the existing system. Injury induced regenerative response is extremely variable across the animal kingdom. On one hand the early acoelomates can reform the entire animal even from dissociated cells, on the other; the capacity in humans is mostly restricted to wound healing. A general trend of regenerative ability is the existence of an inverse relationship between the robustness of immune system and the degree of regeneration throughout the animal kingdom. This review summarizes the evolutionary advancement of immune system in different groups and gives an account of their respective regenerative competency.
Collapse
Affiliation(s)
- Satadal Adhikary
- Post Graduate Department of Zoology, ABN Seal College, Cooch Behar 736101, India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
33
|
Andrade C, Oliveira B, Guatelli S, Martinez P, Simões B, Bispo C, Ferrario C, Bonasoro F, Rino J, Sugni M, Gardner R, Zilhão R, Coelho AV. Characterization of Coelomic Fluid Cell Types in the Starfish Marthasterias glacialis Using a Flow Cytometry/Imaging Combined Approach. Front Immunol 2021; 12:641664. [PMID: 33815394 PMCID: PMC8013778 DOI: 10.3389/fimmu.2021.641664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Coelomocytes is the generic name for a collection of cellular morphotypes, present in many coelomate animals, and highly variable among echinoderm classes. The roles attributed to the major types of these free circulating cells present in the coelomic fluid of echinoderms include immune response, phagocytic digestion and clotting. Our main aim in this study was to characterize coelomocytes found in the coelomic fluid of Marthasterias glacialis (class Asteroidea) by using a combination of flow cytometry (FC), imaging flow cytometry (IFC) and fluorescence plus transmission electron microscopy (TEM). Two coelomocyte populations (P1 and P2) identified through flow cytometry were subsequently studied in terms of abundance, morphology, ultrastructure, cell viability and cell cycle profiles. Ultrastructurally, P2 diploid cells were present as two main morphotypes, similar to phagocytes and vertebrate thrombocytes, whereas the smaller P1 cellular population was characterized by low mitotic activity, a relatively undifferentiated cytotype and a high nucleus/cytoplasm ratio. In the present study we could not rule out possible similarities between haploid P1 cells and stem-cell types in other animals. Additionally, we report the presence of two other morphotypes in P2 that could only be detected by fluorescence microscopy, as well as a morphotype revealed via combined microscopy/FC. This integrative experimental workflow combined cells physical separation with different microscopic image capture technologies, enabling us to better tackle the characterization of the heterogeneous composition of coelomocytes populations.
Collapse
Affiliation(s)
- Claúdia Andrade
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Medicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- Flow Cytometry SRL, Instituto Gulbenkian Ciencia, Oeiras, Portugal
| | - Bárbara Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Silvia Guatelli
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Barcelona, Spain
| | - Beatriz Simões
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Claúdia Bispo
- Flow Cytometry SRL, Instituto Gulbenkian Ciencia, Oeiras, Portugal
| | - Cinzia Ferrario
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Francesco Bonasoro
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - José Rino
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Michela Sugni
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Rui Gardner
- Flow Cytometry SRL, Instituto Gulbenkian Ciencia, Oeiras, Portugal
| | - Rita Zilhão
- Departamento de Biologia Vegetal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
34
|
Faddetta T, Ardizzone F, Faillaci F, Reina C, Palazzotto E, Strati F, De Filippo C, Spinelli G, Puglia AM, Gallo G, Cavalieri V. Composition and geographic variation of the bacterial microbiota associated with the coelomic fluid of the sea urchin Paracentrotus lividus. Sci Rep 2020; 10:21443. [PMID: 33293569 PMCID: PMC7723044 DOI: 10.1038/s41598-020-78534-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/19/2020] [Indexed: 12/26/2022] Open
Abstract
In the present work, culture-based and culture-independent investigations were performed to determine the microbiota structure of the coelomic fluid of Mediterranean sea urchin Paracentrotus lividus individuals collected from two distinct geographical sites neighboring a high-density population bay and a nature reserve, respectively. Next Generation Sequencing analysis of 16S rRNA gene (rDNA) showed that members of the Proteobacteria, Bacteroidetes and Fusobacteria phyla, which have been previously reported to be commonly retrieved from marine invertebrates, dominate the overall population of microorganisms colonizing this liquid tissue, with minority bacterial genera exhibiting remarkable differences among individuals. Our results showed that there is a correlation between microbiota structure and geographical location of the echinoderm collection site, highlighting over-representation of metagenomic functions related to amino acid and bioactive peptides metabolism in specimens inhabiting the nature reserve. Finally, we also described the developmental delay and aberrations exhibited by sea urchin embryos exposed to distinct bacterial isolates, and showed that these defects rely upon hydrophilic compound(s) synthesized by the bacterial strains assayed. Altogether, our findings lay the groundwork to decipher the relationships of bacteria with sea urchins in their aquatic environment, also providing an additional layer of information to understand the biological roles of the coelomic fluid.
Collapse
Affiliation(s)
- Teresa Faddetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Francesco Ardizzone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Francesca Faillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Piazza Delle Cliniche 2, 90127, Palermo, Italy
| | - Emilia Palazzotto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello, 16, 20139, Milano, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Giovanni Spinelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Anna Maria Puglia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, ed. 16, 90128, Palermo, Italy.
| |
Collapse
|
35
|
Dettleff P, Villagra M, González J, Fuentes M, Estrada JM, Valenzuela C, Molina A, Valdés JA. Effect of bacterial LPS, poly I:C and temperature on the immune response of coelomocytes in short term cultures of red sea urchin (Loxechinus albus). FISH & SHELLFISH IMMUNOLOGY 2020; 107:187-193. [PMID: 32971271 DOI: 10.1016/j.fsi.2020.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
In echinoderms, the immune system plays a relevant role in defense against infection by pathogens. Particularly, in sea urchins, the immune system has been shown to be complex, especially in terms of the variety of immune genes and molecules described. A key component of the response to external pathogens are the Toll-like receptors (TLRs), which are a well-characterized class of pattern recognition receptors (PRRs) that participate in the recognition of pathogen-associated molecular patterns (PAMPs). Despite the fact that TLRs have been described in several sea urchin species, for the red sea urchin (Loxechinus albus), which is one of the most important sea urchins across the world in terms of fisheries, limited information on the TLR-mediated immune response exists. In the present study, for the first time, we evaluated the effect of thermal stress, LPS and poly I:C treatment on the coelomocyte immune response of Loxechinus albus to determine how these factors modulate TLR and strongylocin (antimicrobial peptides of echinoderms) responses. We show that the tlr3-like, tlr4-like, tlr6-like and tlr8-like transcripts are modulated by poly I:C, while LPS only modulates the tlr4-like response; there was no effect of temperature on TLR expression, as evaluated by RT-qPCR. Additionally, we showed that strongylocin-1 and strongylocin-2 are modulated in response to simulated viral infection with poly I:C, providing the first evidence of strongylocin expression in L. albus. Finally, we determined that temperature and LPS modify the viability of coelomocytes, while poly I:C treatment did not affect the viability of these cells. This study contributes to the knowledge of immune responses in sea urchins to improve the understanding of the role of TLRs and strongylocins in echinoderms.
Collapse
Affiliation(s)
- Phillip Dettleff
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Maximiliano Villagra
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Joaquín González
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Cristian Valenzuela
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alfredo Molina
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
36
|
Ferrario C, Sugni M, Somorjai IML, Ballarin L. Beyond Adult Stem Cells: Dedifferentiation as a Unifying Mechanism Underlying Regeneration in Invertebrate Deuterostomes. Front Cell Dev Biol 2020; 8:587320. [PMID: 33195242 PMCID: PMC7606891 DOI: 10.3389/fcell.2020.587320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
The diversity of regenerative phenomena seen in adult metazoans, as well as their underlying mechanistic bases, are still far from being comprehensively understood. Reviewing both ultrastructural and molecular data, the present work aims to showcase the increasing relevance of invertebrate deuterostomes, i.e., echinoderms, hemichordates, cephalochordates and tunicates, as invaluable models to study cellular aspects of adult regeneration. Our comparative approach suggests a fundamental contribution of local dedifferentiation -rather than mobilization of resident undifferentiated stem cells- as an important cellular mechanism contributing to regeneration in these groups. Thus, elucidating the cellular origins, recruitment and fate of cells, as well as the molecular signals underpinning tissue regrowth in regeneration-competent deuterostomes, will provide the foundation for future research in tackling the relatively limited regenerative abilities of vertebrates, with clear applications in regenerative medicine.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ildiko M. L. Somorjai
- The Willie Russel Laboratories, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, United Kingdom
| | | |
Collapse
|
37
|
Hewson I, Johnson MR, Tibbetts IR. An Unconventional Flavivirus and Other RNA Viruses in the Sea Cucumber (Holothuroidea; Echinodermata) Virome. Viruses 2020; 12:v12091057. [PMID: 32972018 PMCID: PMC7551563 DOI: 10.3390/v12091057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents of benthic marine habitats. We surveilled RNA viruses inhabiting eight species (representing four families) of holothurian collected from four geographically distinct locations by viral metagenomics, including a single specimen of Apostichopus californicus affected by a hitherto undocumented wasting disease. The RNA virome comprised genome fragments of both single-stranded positive sense and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales, and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was most similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal totiviruses in both genome architecture and homology and had likely infected mycobiome constituents. Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar to invertebrate transcriptome-derived picorna-like viruses. The greatest number of viral genome fragments was recovered from the wasting A. californicus library compared to the asymptomatic A. californicus library. However, reads from the asymptomatic library recruited to nearly all recovered wasting genome fragments, suggesting that they were present but not well represented in the grossly normal specimen. These results expand the known host range of flaviviruses and suggest that fungi and their viruses may play a role in holothurian ecology.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-0151
| | | | - Ian R. Tibbetts
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| |
Collapse
|
38
|
Perillo M, Oulhen N, Foster S, Spurrell M, Calestani C, Wessel G. Regulation of dynamic pigment cell states at single-cell resolution. eLife 2020; 9:e60388. [PMID: 32812865 PMCID: PMC7455242 DOI: 10.7554/elife.60388] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cells bearing pigment have diverse roles and are often under strict evolutionary selection. Here, we explore the regulation of pigmented cells in the purple sea urchin Strongylocentrotus purpuratus, an emerging model for diverse pigment function. We took advantage of single cell RNA-seq (scRNAseq) technology and discovered that pigment cells in the embryo segregated into two distinct populations, a mitotic cluster and a post-mitotic cluster. Gcm is essential for expression of several genes important for pigment function, but is only transiently expressed in these cells. We discovered unique genes expressed by pigment cells and test their expression with double fluorescence in situ hybridization. These genes include new members of the fmo family that are expressed selectively in pigment cells of the embryonic and in the coelomic cells of the adult - both cell-types having immune functions. Overall, this study identifies nodes of molecular intersection ripe for change by selective evolutionary pressures.
Collapse
Affiliation(s)
- Margherita Perillo
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Stephany Foster
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Maxwell Spurrell
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | | | - Gary Wessel
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| |
Collapse
|
39
|
Sun L, Zhou F, Shao Y, Lv Z, Li C. Sedoheptulose kinase bridges the pentose phosphate pathway and immune responses in pathogen-challenged sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103694. [PMID: 32283109 DOI: 10.1016/j.dci.2020.103694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The sedoheptulose kinase carbohydrate kinase-like protein (CARKL) is critical for immune cell activation, reactive oxygen species (ROS) production, and cell polarization by restricting flux through the pentose phosphate pathway (PPP). To date, little is known about CARKL in regulating immune responses in marine invertebrates. In this study, we first cloned and characterized the CARKL gene from Apostichopus japonicus (designated as AjCARKL). Time-course analysis revealed that Vibrio splendidus challenge in vivo and lipopolysaccharide stimulation in vitro significantly downregulated AjCARKL mRNA expression. Furthermore, AjCARKL overexpression in cultured coelomocytes not only significantly inhibited the mRNA expression level of the rate-limiting enzyme glucose-6-phosphate dehydrogenase of the PPP but sharply decreased coelomocyte proliferation, ROS production, and phagocytic rate. Additionally, AjCARKL overexpression in mouse peritoneal macrophages (RAW264.7 cells) significantly attenuated the intracellular ROS production and sensitized the M2 phenotype macrophage polarization. These results revealed that AjCARKL serves as a rheostat for cellular metabolism and is required for proper immune response by negatively regulating PPP in pathogen-challenged A. japonicus.
Collapse
Affiliation(s)
- Lianlian Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Fangyuan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
40
|
Yina S, Zhongjie C, Kaiyu C, Chenghua L, Xiaodong Z. Target of rapamycin signaling inhibits autophagy in sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 102:480-488. [PMID: 32437859 DOI: 10.1016/j.fsi.2020.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Autophagy mediated by mTOR pathway is a particularly important immune defense mechanism in the pathogens infected mammals. However, the role of TOR in echinoderm autophagy is largely unknown. Here, a cDNA encoding TOR protein was cloned and characterized from sea cucumber Apostichopus japonicus (designated as AjTOR) and its biological functions were also investigated. The AjTOR gene encoded a peptide of 2499 amino acids with the representative domains of DUF3385, FAT, FRB, PI3Kc, and FATC, which exhibited highly conservation with vertebrate orthologs. Phylogenetic analysis supported that AjTOR belonged to a new member of TOR family. Moreover, tissues distribution analysis indicated that AjTOR was ubiquitously expressed in all the tested tissues, with the highest transcription in muscle. Vibrio splendidus infection in vivo and LPS challenge in vitro could both significantly down-regulate the mRNA expression of AjTOR. What's more, transmission electron microscopy observations showed that rapamycin treatment resulted in rapid formation of autophagosomes in coelomocytes both at 3 and 6 h, however, injection with mTOR activator of MHY1485 showed an inhibitory effect on autophagosomes formation compared to the control, suggesting blocking the expression of AjTOR could accelerates autophagy signals. Our findings supported that AjTOR served as a negative regulator in sea cucumber authophay.
Collapse
Affiliation(s)
- Shao Yina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Che Zhongjie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chen Kaiyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Li Chenghua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| | - Zhao Xiaodong
- School of Ocean, Yantai University, Yantai, 264005, PR China
| |
Collapse
|
41
|
Liang W, Zhang W, Lv Z, Li C. 4-Hydroxyphenylpyruvate dioxygenase from sea cucumber Apostichopus japonicus negatively regulates reactive oxygen species production. FISH & SHELLFISH IMMUNOLOGY 2020; 101:261-268. [PMID: 32276034 DOI: 10.1016/j.fsi.2020.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
As a wide distribution molecule, 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) catalyzes the second step in the tyrosine catabolism pathway. This process commonly occurs in all aerobic life forms. The broad distribution of these metabolites suggests that they have an important role in many organisms. A portion of the 4-HPPD homology sequence was also identified in Apostichopus japonicus transcriptome. However, the functional roles of A. japonicus 4-HPPD remain unclear. In the current study, a 4-HPPD homolog was cloned from A. japonicus (designated as AjHPPD). The nucleotide sequence analysis showed that the open reading frame of AjHPPD was 1149 bp and encoded a 382-amino-acid residue polyprotein with glyoxalase_4 (residues 20-133) and glyoxalase (residues 180-335) domains. The spatial expression analysis revealed that AjHPPD was ubiquitously expressed in all examined tissues with large-magnitude in the respiratory tree and was minimally expressed in coelomocytes. Compared with a control group, the significant increase in transcription of AjHPPD mRNA in the Vibrio splendidus-challenged sea cucumber was 2.10-fold (p < 0.01) at 48 h and returned to the normal level at 72 and 96 h. Similarly, compared with a control group, the significant increase in the transcription of AjHPPD mRNA was 3.36-fold (p < 0.01) at 24 h after stimulation with 10 mg mL-1 of LPS. On the one hand, silencing AjHPPD in vitro could inhibit the expression of pentose phosphate pathway (PPP) flux enzyme glucose-6-phosphate dehydrogenase (G6PD) at the mRNA level and prevent the clearance of reactive oxygen species (ROS) in sea cucumbers. On the other hand, interference of AjHPPD by using specific siRNA can result in the significant promotion of coelomocyte apoptosis with a 1.61-fold increase in vitro. AjHPPD negatively regulated ROS levels by modulating tyrosine catabolism on AjG6PD expression and coelomocyte apoptosis in response to pathogen infection.
Collapse
Affiliation(s)
- Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
42
|
Wahltinez SJ, Newton AL, Harms CA, Lahner LL, Stacy NI. Coelomic Fluid Evaluation in Pisaster ochraceus Affected by Sea Star Wasting Syndrome: Evidence of Osmodysregulation, Calcium Homeostasis Derangement, and Coelomocyte Responses. Front Vet Sci 2020; 7:131. [PMID: 32211434 PMCID: PMC7069445 DOI: 10.3389/fvets.2020.00131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/20/2020] [Indexed: 11/18/2022] Open
Abstract
Sea Star Wasting Syndrome (SSWS) is one of the largest marine wildlife die-offs ever recorded, killing millions of sea stars from more than 20 Asteroid species from Alaska to Mexico from 2013 to 2015 from yet undetermined cause(s). Coelomic fluid surrounds the sea star's organs, playing critical roles in numerous systemic processes, including nutrient transportation and immune functions. Coelomocytes, which are cellular components of coelomic fluid and considered functionally equivalent to vertebrate leukocytes, are responsible for innate cell-mediated immunity. The objectives of this study were to (1) evaluate changes in coelomic fluid chemistry, coelomocyte counts, and cytology from ochre sea stars (Pisaster ochraceus) (n = 55) with clinical signs consistent with SSWS at varying intensity (SSWS score 1: n = 4, score 2: n = 2, score 3: n = 3, score 4: n = 18, score 5: n = 26) in comparison to coelomic fluid from clinically normal sea stars (n = 26) and to (2) correlate SSWS score with cellular and biochemical analytes. SSWS-affected sea stars had wider ranges of all electrolytes, except calcium; statistically significantly higher chloride, osmolality, and total protein; lower calcium; and higher coelomocyte counts when compared to clinically normal sea stars maintained under identical environmental conditions. Free and/or phagocytized bacteria were noted in 29% (16 of 55) coelomic fluid samples from SSWS-affected sea stars but were absent in clinically normal sea stars. SSWS score correlated significantly with increasing chloride concentration, osmolality, and coelomocyte counts. These chemistry and cytological findings in coelomic fluid of SSWS-affected sea stars provide insight into the pathophysiology of SSWS as these results suggest osmo- and calcium dysregulation, coelomocyte responses, and presumptive opportunistic bacterial infection in SSWS-affected sea stars. This information provides potential future research applications for the development of treatment strategies for sea stars in managed care and for understanding the complexity of various biochemical and cellular pathophysiological mechanisms involved in sea star wasting.
Collapse
Affiliation(s)
- Sarah J. Wahltinez
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | | | - Craig A. Harms
- Department of Clinical Sciences and Center for Marine Sciences and Technology, College of Veterinary Medicine, North Carolina State University, Morehead, NC, United States
| | | | - Nicole I. Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Yamamori L, Kato M. Shift of Feeding Mode in an Epizoic Stalked Barnacle Inducing Gall Formation of Host Sea Urchin. iScience 2020; 23:100885. [PMID: 32105636 PMCID: PMC7113561 DOI: 10.1016/j.isci.2020.100885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
Among diverse stalked barnacles, Rugilepas pearsei (Thoracica: Cirripedia: Arthropoda) is a rare unique species that is associated with echinoids and has highly atrophied cirri. We rediscovered the barnacle for the first time from description and verified that the barnacles live obligately in half-open galls formed on the test of the sea urchin Echinothrix diadema (Diadematidae: Echinodermata). A molecular phylogenetic analysis demonstrated that the obligate association with echinoids derived from epizoic life on crustaceans. A stable isotope analysis suggests that the barnacle feeds on particulate organic matter (POM) without parasitizing the host echinoids. These findings suggest that the host shift caused losses of plates and feather-like cirri, changes in the attachment device from cementation to anchoring, and a shift in feeding mode from filter feeding to POM collection. The barnacle's epizoic, superficially sub-endozoic, communal life in stout but narrow galls causes repetitive reproduction at the cost of reduced growth. Rugilepas is the first stalked barnacle that induces gall formation on echinoids The epizoic barnacle feeds on particulate organic matter by using atrophied cirri The obligate association with echinoids derived from epizoic life on crustaceans The host shift caused changes of morphology, attaching device, and feeding mode
Collapse
Affiliation(s)
- Luna Yamamori
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8313, Japan.
| | - Makoto Kato
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8313, Japan
| |
Collapse
|
44
|
Changes in the proteome of sea urchin Paracentrotus lividus coelomocytes in response to LPS injection into the body cavity. PLoS One 2020; 15:e0228893. [PMID: 32074628 PMCID: PMC7030939 DOI: 10.1371/journal.pone.0228893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background The immune system of echinoderm sea urchins is characterised by a high degree of complexity that is not completely understood. The Mediterranean sea urchin Paracentrotus lividus coelomocytes mediate immune responses through phagocytosis, encapsulation of non-self particles, and production of diffusible factors including antimicrobial molecules. Details of these processes, and molecular pathways driving these mechanisms, are still to be fully elucidated. Principal findings In the present study we treated the sea urchin P. lividus with the bacterial lipopolysaccharide (LPS) and collected coelomocytes at different time-points (1, 3, 6 and 24 hours). We have shown, using label-free quantitative mass spectrometry, how LPS is able to modulate the coelomocyte proteome and to effect cellular pathways, such as endocytosis and phagocytosis, as soon as the immunomodulating agent is injected. The present study has also shown that treatment can modulate various cellular processes such as cytoskeleton reorganisation, and stress and energetic homeostasis. Conclusions Our data demonstrates, through mass spectrometry and the following functional annotation bioinformatics analysis, how the bacterial wall constituent is sufficient to set off an immune response inducing cytoskeleton reorganisation, the appearance of clusters of heat shock proteins (Hsp) and histone proteins and the activation of the endocytic and phagocytic pathways. Data are available via ProteomeXchange with identifier PXD008439.
Collapse
|
45
|
Rosental B, Raveh T, Voskoboynik A, Weissman IL. Evolutionary perspective on the hematopoietic system through a colonial chordate: allogeneic immunity and hematopoiesis. Curr Opin Immunol 2020; 62:91-98. [PMID: 31954962 PMCID: PMC7136747 DOI: 10.1016/j.coi.2019.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 01/27/2023]
Abstract
Evolution and selection have shaped diverse immune systems throughout phylogeny, the vast majority of which remain unexplored. Botryllus schlosseri is a colonial tunicate, a sister group to vertebrates, that develops as a chordate, then metamorphoses to an asexually reproductive invertebrate that every week makes the same body plan from budded stem cells. Genetically distinct B. schlosseri colonies can fuse to form a chimera, or reject each other based on allogeneic recognition. In chimeras, circulating germline and somatic stem cells participate in development; stem cells compete in all individuals in the fused colonies, with rejection preventing germline parasitism. Here we review the isolation and characterization of B. schlosseri hematopoietic stem cells (HSC) and their niches, and the role of the immune effector cells in allorecognition.
Collapse
Affiliation(s)
- Benyamin Rosental
- Ben Gurion University of the Negev, The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, P.O.B. 653 Beer-Sheva, Israel.
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center for Cancer Stem Cell Research, Stanford University School of Medicine, CA, USA
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center for Cancer Stem Cell Research, Stanford University School of Medicine, CA, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; Chan Zuckerberg Biohub, San Francisco CA 94158, USA.
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center for Cancer Stem Cell Research, Stanford University School of Medicine, CA, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; Chan Zuckerberg Biohub, San Francisco CA 94158, USA.
| |
Collapse
|
46
|
Zhang Y, Shao Y, Lv Z, Zhang W, Zhao X, Guo M, Li C. Molecular cloning and functional characterization of MYC transcription factor in pathogen-challenged Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103487. [PMID: 31472172 DOI: 10.1016/j.dci.2019.103487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Myelocytomatosis viral oncogene (MYC), a transcription factor in the MYC family, plays vital roles in vertebrate innate immunity by regulating related immune gene expressions. In this study, we cloned and characterized an MYC gene from sea cucumber Apostichopus japonicus via RNA-seq and RACE approaches (designated as AjMYC). A 2074 bp fragment representing the full-length cDNA of AjMYC was obtained. This gene includes an open reading frame (ORF) of 1296 bp encoding a polypeptide of 432 amino acid residues with the molecular weight of 48.85 kDa and theoretical pI of 7.22. SMART analysis indicated that AjMYC shares an MYC common HLH motif (354-406 aa) at the C-terminal. Spatial expression analysis revealed that AjMYC is constitutively expressed in all detected tissues with peak expression in the tentacle. Vibrio splendidus-challenged sea cucumber could significantly boost the expression of AjMYC transcripts by a 5.58-fold increase in the first stage. Similarly, 2.75- and 3.23-fold increases were detected in LPS-exposed coelomocytes at 1 and 24 h, respectively. In this condition, coelomocyte apoptotic rate increased from 11.98% to 56.23% at 1 h and to 59.08% at 24 h. MYC inhibitor treatment could not only inhibit the expression of AjMYC and Ajcaspase3, but also depress the coelomocyte apoptosis. Furthermore, AjMYC overexpression in EPC cells for 24 h also promoted the cell apoptosis rate from 21.31% to 45.85%. Collectively, all these results suggested that AjMYC is an important immune factor in coelomocyte apoptosis toward pathogen-challenged sea cucumber.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
47
|
Shen S, Che Z, Zhao X, Shao Y, Zhang W, Guo M, Li C. Characterization of a gC1qR homolog from sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:216-222. [PMID: 31336155 DOI: 10.1016/j.fsi.2019.07.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
gC1qR is a multifunctional and multiligand binding protein that plays important roles in inflammation and infection. In this study, a novel gC1qR homolog called AjgC1qR from the invertebrate sea cucumber Apostichopus japonicus was cloned and characterized. The open reading frame of AjgC1qR encoded 292 amino acid residues with a conserved mitochondrial targeting sequence and MAM33 domain. Multiple sequence alignment and phylogenetic analyses proved that AjgC1qR is a homolog of the gC1qR family. Spatial mRNA transcription in five tissues revealed the ubiquitous expression of AjgC1qR. The highest and lowest levels of expression were found in the tentacle and muscle, respectively, and AjgC1qR expression was remarkably up-regulated in coelomocytes after Vibrio splendidus challenge. Moreover, the recombinant rAjgC1qR protein exhibited high binding activity toward pathogen-associated molecules, such as lipopolysaccharides, peptidoglycan, and mannan. These findings demonstrate that AjgC1qR may play important roles in innate immunity and function as a pathogen recognition receptor.
Collapse
Affiliation(s)
- Sikou Shen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhongjie Che
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
48
|
Che Z, Shao Y, Zhang W, Zhao X, Guo M, Li C. Cloning and functional analysis of scavenger receptor B gene from the sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103404. [PMID: 31152761 DOI: 10.1016/j.dci.2019.103404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Scavenger receptor (SR) class B (SR-B) is a transmembrane protein that belongs to the SR family with a wide range of functions in innate immunity. Here, an SR-B homologue, designated as AjSR-B, was cloned from the sea cucumber Apostichopus japonicus. AjSR-B comprised 2519 nucleotides with a 5'-untranslated region (UTR) of 153 bp, an open reading frame of 1581 bp encoding a 526 amino acid protein, and a 3'-UTR of 785 bp. SMART analysis indicated that AjSR-B has two transmembrane regions and a cluster determinant 36 domain. Multiple alignments and phylogenetic analysis supported that AjSR-B is a novel member of the SR-B protein family. Moreover, AjSR-B was constitutively expressed in all detected tissues, with the highest levels recorded in the intestine. Both were significantly induced in coelomocytes and the intestine after Vibrio splendidus challenge. Functionally, the recombinant rAjSR-B that corresponds to a large extracellular loop can bind pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan, and mannan, with a high binding affinity to LPS. Bacterial agglutination assay showed that rAjSR-B can agglutinate the four tested bacteria (Gram-negative and Gram-positive bacteria) with calcium dependence. However, the agglutination ability for Gram-negative bacteria completely disappeared in the presence of PAMPs but a weak ability to bind Gram-positive bacteria (Micrococcus luteus) was still exhibited, suggesting there might exist a competition between Gram-positive bacteria and PAMPs under same condition. Our current study indicated that AjSR-B is a PAMP that plays important roles in the innate immune process of sea cucumbers.
Collapse
Affiliation(s)
- Zhongjie Che
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
49
|
Wahltinez SJ, Stacy NI, Lahner LL, Newton AL. Coelomic Fluid Evaluation in Clinically Normal Ochre Sea Stars Pisaster ochraceus: Cell Counts, Cytology, and Biochemistry Reference Intervals. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:239-243. [PMID: 31170775 DOI: 10.1002/aah.10072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Coelomic fluid sampling is a noninvasive technique that is used to access the body fluid of sea stars for diagnostics and research. Given recent mortality events including sea star wasting disease, which has killed millions of sea stars along the Pacific coast since 2013, there is a need for validated diagnostic tests to evaluate sea star health. The objectives of this study were to establish coelomic fluid reference intervals for clinically normal ochre sea stars Pisaster ochraceus in an open system aquarium, to describe the cytologic findings, and to compare the chemistries of coelomic fluid with open system tank water. Coelomic fluid from 26 clinically normal sea stars was sampled for coelomocyte counts, cytologic evaluation, and biochemical analysis including magnesium, sodium, potassium, chloride, calcium, and total protein. The number of coelomocytes and total protein did not fit normal distribution and were excluded from analyses. Reference intervals were established for other chemistry analytes. There was no statistical difference in biochemistries between sea star coelomic fluid and water from five open system tanks, which supports previous evidence that sea stars are osmoconformers. Very low numbers of coelomocytes were observed cytologically. These results provide a useful baseline and diagnostic tool for health assessments of sea stars.
Collapse
Affiliation(s)
- Sarah J Wahltinez
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, Florida, 32608, USA
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, Florida, 32608, USA
| | - Lesanna L Lahner
- Minnesota Zoo, 13000 Zoo Boulevard, Apple Valley, Minnesota, 55124, USA
| | - Alisa L Newton
- Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York, 10460, USA
| |
Collapse
|
50
|
Martino C, Chiarelli R, Roccheri MC, Matranga V, Byrne M. Effects of magnesium deprivation on development and biomineralization in the sea urchin Arbacia lixula. INVERTEBR REPROD DEV 2019. [DOI: 10.1080/07924259.2019.1611670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chiara Martino
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy
| | - Roberto Chiarelli
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Maria Carmela Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy
| | - Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|