1
|
Langellotti CA, Gammella M, Soria I, Bellusci C, Quattrocchi V, Vermeulen M, Mongini C, Zamorano PI. An Improved DNA Vaccine Against Bovine Herpesvirus-1 Using CD40L and a Chemical Adjuvant Induces Specific Cytotoxicity in Mice. Viral Immunol 2020; 34:68-78. [PMID: 33146595 DOI: 10.1089/vim.2020.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bovine herpesvirus-1 (BoHV-1) uses many mechanisms to elude the immune system; one of them is spreading intracellularly, even in the presence of specific antiviral antibodies. Cytotoxic T lymphocytes (CTLs) are necessary to eliminate the virus. The main preventive strategy is vaccination based on inactivated virus. These vaccines are poor inducers of cellular immune responses, and complicate serological diagnosis and determination of the real prevalence of infection. DNA vaccines are a good option because of the capacity of Differentiating Infected from Vaccinated Animals-(DIVA vaccine)-and may be the best way to induce cytotoxic responses. Although this type of vaccines leads to only weak "in vivo" expression and poor immune responses, incorporation of molecular and/or chemical adjuvants can improve the latter, both in magnitude and in direction. In this study, we have investigated the specific immune responses elicited in mice by DNA vaccines based on the BoHV-1 glycoprotein D (pCIgD) with and without two different adjuvants: a plasmid encoding for murine CD40L (pCD40L) or Montanide™ 1113101PR (101). Mice vaccinated with pCIgD+CD40L, pCIgD+101, and pCIgD+CD40L+101 developed significantly higher specific antibody titers against BoHV-1 than the pCIgD group (p < 0.01). The animals vaccinated with pCgD+pCD40L+101 raised significantly higher levels of IgG2a and IgG2b (p < 0.01 and p < 0.001, respectively) than mice vaccinated with pCIgD alone. On the contrary, when the activity of CTL against cells infected with BoHV-1 was measured, the vaccine pCgD+pCD40L+101 induced significantly higher levels of cytotoxicity activity (p < 0.001) than pCIgD alone. A significant increase in the CD4+ populations in the group receiving pCIgD+CD40L+101 in comparison with the pCIgD group was observed and, also, interferon gamma, interleukin (IL)-6, and IL-17A levels were higher. Considering the results obtained from this study for humoral and cellular responses in mice, the inclusion of pCD40L and 101 as adjuvants in a BoHV-1 DNA vaccine for cattle is highly recommendable.
Collapse
Affiliation(s)
| | - Mariela Gammella
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Carolina Bellusci
- Universidad Nacional de Rio Negro, Sede Atlántica, Viedma, Río Negro, Argentina
| | | | - Monica Vermeulen
- Laboratorio de células presentadoras de antígeno y respuesta inflamatoria. Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Claudia Mongini
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Patricia I Zamorano
- Cátedra de Inmunología Aplicada, Universidad del Salvador, Buenos Aires, Argentina
| |
Collapse
|
2
|
Hart J, MacHugh ND, Sheldrake T, Nielsen M, Morrison WI. Identification of immediate early gene products of bovine herpes virus 1 (BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle. J Gen Virol 2017; 98:1843-1854. [PMID: 28671533 DOI: 10.1099/jgv.0.000823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In common with other herpes viruses, bovine herpes virus 1 (BHV-1) induces strong virus-specific CD8 T-cell responses. However, there is a paucity of information on the antigenic specificity of the responding T-cells. The development of a system to generate virus-specific CD8 T-cell lines from BHV-1-immune cattle, employing Theileria-transformed cell lines for antigen presentation, has enabled us to address this issue. Use of this system allowed the study to screen for CD8 T-cell antigens that are efficiently presented on the surface of virus-infected cells. Screening of a panel of 16 candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens were presented by two or three class I MHC alleles in each animal. Six CD8 T-cell epitopes were identified in the three IE proteins by screening of synthetic peptides. Use of an algorithm (NetMHCpan) that predicts the peptide-binding characteristics of restricting MHC alleles confirmed and, in some cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV-I-immune cattle and hence are prime-candidate antigens for the generation of a subunit vaccine.
Collapse
Affiliation(s)
- Jane Hart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Niall D MacHugh
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Tara Sheldrake
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Morten Nielsen
- Department of Bio and Health Informatics, Centre for Biological Science Sequence Analysis, The Technical University, Lyngby, Denmark
| | - W Ivan Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.,Biotechnological Research Institute, National University of San Martin, San Martin, Buenos Aires, Argentina
| |
Collapse
|
3
|
Pawar SS, Meshram CD, Singh NK, Sonwane AA, Saini M, Rautmare SS, Muglikar DM, Mishra BP, Gupta PK. Rapid detection of bovine herpesvirus 1 in bovine semen by loop-mediated isothermal amplification (LAMP) assay. Arch Virol 2013; 159:641-8. [DOI: 10.1007/s00705-013-1869-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/12/2013] [Indexed: 11/27/2022]
|
4
|
Biswas S, Bandyopadhyay S, Dimri U, H. Patra P. Bovine herpesvirus-1 (BHV-1) – a re-emerging concern in livestock: a revisit to its biology, epidemiology, diagnosis, and prophylaxis. Vet Q 2013; 33:68-81. [DOI: 10.1080/01652176.2013.799301] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Suman Biswas
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Umesh Dimri
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Pabitra H. Patra
- Department of Pharmacology & Toxicology, C.V.Sc. & AH, Tripura, India
| |
Collapse
|
5
|
Zbrun MV, Zielinski GC, Piscitelli HC, Descarga C, Urbani LA. Dynamics of Moraxella bovis infection and humoral immune response to bovine herpes virus type 1 during a natural outbreak of infectious bovine keratoconjunctivitis in beef calves. J Vet Sci 2012; 12:347-52. [PMID: 22122901 PMCID: PMC3232394 DOI: 10.4142/jvs.2011.12.4.347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bovine keratoconjunctivitis (IBK) is an acute disease caused by Moraxella bovis (Mb). Several factors may predispose animals to an IBK outbreak; one commonly observed is infection with bovine herpes virus type 1 (BHV-1). The aim of this study was to investigate the dynamics of BHV-1 virus infection and its relation with clinical cases of IBK in weaned calves from a beef herd with a high prevalence of lesions caused by Mb. Sampling was carried out in six stages and included conjunctival swabs for isolating Mb as well as blood samples for identifying antibodies specific for BHV-1. A score for IBK lesions after observing each eye was determined. The findings of this study showed a high prevalence of BHV-1 virus infection (100% of animals were infected at the end of the trial); 67% of animals were culture-positive for Mb, but low rates of clinical IBK (19% of calves affected) were detected at the end of the trial. These results suggest that infection with BHV-1 did not predispose these animals to IBK, and that Mb infection produced clinical and subclinical disease in the absence of BHV-1 co-infection.
Collapse
Affiliation(s)
- M V Zbrun
- Departamento de Salud Publica Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza, C.P. S3080HOF, Provincia de Santa Fe, Argentina.
| | | | | | | | | |
Collapse
|
6
|
Dias JA, Alfieri AA, Ferreira-Neto JS, Gonçalves VSP, Muller EE. Seroprevalence and risk factors of bovine herpesvirus 1 infection in cattle herds in the state of Paraná, Brazil. Transbound Emerg Dis 2012; 60:39-47. [PMID: 22364224 DOI: 10.1111/j.1865-1682.2012.01316.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epidemiological data describing bovine herpesvirus 1 (BoHV-1) infection in Brazilian cattle herds are scarce. A cross-sectional study was conducted in the state of Paraná between December 2001 and July 2002 with the objective of estimating the apparent prevalence of BoHV-1-seropositive herds and animals and identifying the potential risk factors for infection in farms with breeding animals in the state of Paraná in Southern Brazil. The state was divided into seven regions based on the livestock production dynamics of the different areas. Sampling was performed in two stages. Initially, herds were randomly selected, followed by a random selection of animals within the selected herds. Blood samples were collected from 14803 females, aged ≥24 months, from 2018 BoHV-1 non-vaccinated herds. Serum samples were tested for antibodies against BoHV-1 using an indirect enzyme-linked immunosorbent assay (ELISA). The apparent prevalence of seropositivity in the herds and animals in Paraná was 71.3% (95% CI: 69.3-73.3) and 59.0% (95% CI: 56.2-61.8), respectively. Multiple logistic regression analysis revealed that risk factors associated with the presence of the infection were as follows: beef herds [OR = 1.58 (1.12-2.23)], natural service [OR = 1.48 (1.02-2.14)], purchase of animals [OR = 1.90 (1.52-2.37)], pasture rental [OR = 2.24 (1.51-3.33)], existence of calving pens [OR = 1.56 (1.20-2.03)] and records of abortion in the last 12 months [OR = 1.45 (1.08-1.95)]. These results indicate that BoHV-1 infection is widespread in the state of Paraná.
Collapse
Affiliation(s)
- J A Dias
- Brazilian Agricultural Research Corporation, Embrapa-Rondônia, Porto Velho, Rondônia, Brazil
| | | | | | | | | |
Collapse
|
7
|
Multiplex PCR for rapid detection of minute virus of mice, bovine parvovirus, and bovine herpesvirus during the manufacture of cell culture-derived biopharmaceuticals. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-009-3137-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
A bovine herpesvirus type 1 mutant virus with truncated glycoprotein E cytoplasmic tail has defective anterograde neuronal transport in rabbit dorsal root ganglia primary neuronal cultures in a microfluidic chamber system. J Neurovirol 2010; 16:457-65. [PMID: 21080783 DOI: 10.1007/bf03210851] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bovine herpesvirus type 1 (BHV-1) is an important component of the bovine respiratory disease complex (BRDC) in cattle. Following primary intranasal and ocular infection of cattle, BHV-1 establishes lifelong latent infection in trigeminal ganglia (TG). Upon reactivation from latency, the virus is transported from neuronal cell bodies in the TG to projected nerve endings in nose and cornea of latently infected cattle where the virus shedding occurs. This property of BHV-1 plays a significant role in the pathogenesis of BRDC and maintenance of BHV-1 in the cattle population. Recently, we have reported that a glycoprotein E (gE) cytoplasmic tail-truncated BHV-1 (BHV-1 gEAm453) did not reactivate from latency and was not shed in the nasal and ocular secretions of calves and rabbits. Here we describe the methods to establish rabbit primary dorsal root ganglia (DRG) neuron cultures in a microfluidic chamber system and to characterize in vitro anterograde and retrograde axonal transport properties of BHV-1 gE-deleted and BHV-1 cytoplasmic tail-truncated gEAm453 mutant viruses relative to BHV-1 gEAm453-rescued/wild-type viruses. The results clearly demonstrated that whereas the BHV-1 gE-deleted, BHV-1 gEAm453, and BHV-1 gEAm453-rescued/wild-type viruses were transported equally efficiently in the retrograde direction, only the BHV-1 gEAm453-rescued/wild-type virus was transported anterogradely. Therefore, we have concluded that sequences within the BHV-1 gE cytoplasmic tail are essential for anterograde axonal transport and that primary rabbit DRG neuronal cultures in the microfluidic chambers are suitable for BHV-1 neuronal transport studies.
Collapse
|
9
|
Woodbine KA, Medley GF, Moore SJ, Ramirez-Villaescusa AM, Mason S, Green LE. A four year longitudinal sero-epidemiological study of bovine herpesvirus type-1 (BHV-1) in adult cattle in 107 unvaccinated herds in south west England. BMC Vet Res 2009; 5:5. [PMID: 19183476 PMCID: PMC2657118 DOI: 10.1186/1746-6148-5-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 01/30/2009] [Indexed: 11/25/2022] Open
Abstract
Background Bovine herpesvirus type-1 (BHV-1) is an important pathogen of cattle that presents with a variety of clinical signs, including the upper respiratory tract infection infectious bovine rhinotracheitis (IBR). A seroepidemiological study of BHV-1 antibodies was conducted in England from 2002 – 2004: 29,782 blood samples were taken from 15,736 cattle from 114 herds which were visited on up to three occasions. Antibody concentration was measured using a commercial ELISA. Farm management information was collected using an interview questionnaire, and herd size and cattle movements were obtained from the cattle tuberculosis testing database and the British Cattle Movement Service. Hierarchical statistical models were used to investigate associations between cattle and herd variables and the continuous outcome percentage positive (PP) values from the ELISA test in unvaccinated herds. Results There were 7 vaccinated herds, all with at least one seropositive bovine. In unvaccinated herds 83.2% had at least one BHV-1 seropositive bovine, and the mean cattle and herd BHV-1 seroprevalence were 42.5% and 43.1% respectively. There were positive associations between PP value, age, herd size, presence of dairy cattle. Adult cattle in herds with grower cattle had lower PP values than those in herds without grower cattle. Purchased cattle had significantly lower PP values than homebred cattle, whereas cattle in herds that were totally restocked after the foot-and-mouth epidemic in 2001 had significantly higher PP values than those in continuously stocked herds. Samples taken in spring and summer had significantly lower PP values than those taken in winter, whereas those taken in autumn had significantly higher PP values than those taken in winter. The risks estimated from a logistic regression model with a binary outcome (seropositive yes/no) were similar. Conclusion The prevalence of BHV-1 seropositivity in cattle and herds has increased since the 1970s. Although the study population prevalence of BHV-1 was temporally stable during study period, the associations between serological status and cattle age, herd size, herd type, presence of young stock and restocked versus continuously stocked herds indicate that there is heterogeneity between herds and so potential for further spread of BHV-1 within and between herds.
Collapse
Affiliation(s)
- Kerry A Woodbine
- Department of Biological Science, University of Warwick, Coventry, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Cusack PMV, McMeniman NP, Lean IJ. The physiological and production effects of increased dietary intake of vitamins E and C in feedlot cattle challenged with bovine herpesvirus 1. J Anim Sci 2008; 83:2423-33. [PMID: 16160055 DOI: 10.2527/2005.83102423x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The physiological and production effects of feeding additional vitamin E and ruminally protected vitamin C were examined in cattle challenged with bovine herpesvirus 1 (BHV 1). Forty-eight individually penned 6-mo-old Angus and Angus crossbred heifer calves with a mean BW of 151 kg were allocated randomly to four diets in a 2 x 2 factorial arrangement of treatments. Pelleted diets provided either 15 or 185 IU/kg of DM of vitamin E, with or without 3.7 g of ruminally protected vitamin C/kg of DM. Blood samples were taken at start of the experiment and at wk 4, 5, and 6. At the start of wk 5, half of each of the dietary groups was challenged with BHV 1. Feeding additional vitamin E was associated with greater (P < 0.001) mean plasma alpha-tocopherol. In contrast, feeding ruminally protected vitamin C was not associated with greater (P = 0.59) mean plasma ascorbate concentration; however, feeding ruminally protected vitamin C was associated with lower (P = 0.03) mean blood total superoxide dismutase (Cu/Zn SOD and Mn SOD) concentration. Calves fed additional vitamin E had greater (P = 0.05) mean plasma beta-carotene concentrations. There were interactions between dietary intake of vitamins E and C with respect to serum ceruloplasmin concentration (P = 0.01) and G:F (P = 0.05). Bovine herpesvirus 1 challenge was associated with lower white cell count (P = 0.007), lymphocyte count (P < 0.001), and DMI (P = 0.03). Feeding additional vitamin E to calves challenged with BHV 1 was associated with a lower (P = 0.03) serum ceruloplasmin concentration. There was a non-significant trend towards an interaction (P = 0.06) between the feeding of vitamins E and C, with virus-challenged calves fed additional vitamin E alone having greater plasma retinol concentrations. The feeding of vitamins E and/or C in calves challenged with BHV 1 was associated with alterations in the concentrations of other antioxidants. More severe disease may have translated these cellular effects to changes in health and performance.
Collapse
Affiliation(s)
- P M V Cusack
- Australian Livestock Production Services, Cowra, NSW, Australia.
| | | | | |
Collapse
|
11
|
Muylkens B, Thiry J, Kirten P, Schynts F, Thiry E. Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis. Vet Res 2007; 38:181-209. [PMID: 17257569 DOI: 10.1051/vetres:2006059] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/15/2006] [Indexed: 12/12/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), classified as an alphaherpesvirus, is a major pathogen of cattle. Primary infection is accompanied by various clinical manifestations such as infectious bovine rhinotracheitis, abortion, infectious pustular vulvovaginitis, and systemic infection in neonates. When animals survive, a life-long latent infection is established in nervous sensory ganglia. Several reactivation stimuli can lead to viral re-excretion, which is responsible for the maintenance of BoHV-1 within a cattle herd. This paper focuses on an updated pathogenesis based on a molecular characterization of BoHV-1 and the description of the virus cycle. Special emphasis is accorded to the impact of the latency and reactivation cycle on the epidemiology and the control of BoHV-1. Several European countries have initiated BoHV-1 eradication schemes because of the significant losses incurred by disease and trading restrictions. The vaccines used against BoHV-1 are described in this context where the differentiation of infected from vaccinated animals is of critical importance to achieve BoHV-1 eradication.
Collapse
Affiliation(s)
- Benoît Muylkens
- Virology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, B43b, 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
12
|
Nuotio L, Neuvonen E, Hyytiäinen M. Epidemiology and eradication of infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV) virus in Finland. Acta Vet Scand 2007; 49:3. [PMID: 17222341 PMCID: PMC1781457 DOI: 10.1186/1751-0147-49-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 01/12/2007] [Indexed: 11/12/2022] Open
Abstract
Background Infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV) is a significant disease among domestic and wild cattle. The BHV-1 infection was first detected in Finland in 1970; presumably it was imported in 1968. The infection reappeared in the large-scale bulk-tank milk surveillances which started in 1990, and was eradicated in 1994. Our aim is to describe the epidemiology of this infection in Finland, and its eradication. Materials and methods The official sources of pertinent information, the legal basis for the disease control and the serological methods for the detection of the infection are described. Results and conclusion Ten AI bulls were found to be seropositive in 1970–1971. The total number of herds with BHV-1 antibody positive animals in the large-scale surveillance in 1990 and subsequent epidemiological investigations in 1991 was five, and the total number of seropositive animals was 90. The five herds formed three epidemiological units; semen of at least one bull seropositive in 1971 had been used in each unit. This remained the only plausible route of infection in each of the three units. Using the 'test and slaughter' approach and total stamping out in one herd the infection was eradicated in 1994.
Collapse
Affiliation(s)
- Lasse Nuotio
- Department of Virology, National Veterinary and Food Research Institute EELA, PO Box 45, FI-00581 Helsinki, Finland
| | - Erkki Neuvonen
- Department of Virology, National Veterinary and Food Research Institute EELA, PO Box 45, FI-00581 Helsinki, Finland
| | - Mauno Hyytiäinen
- retired from State Provincial Office of Southern Finland, P.O. Box 150, 13101 Hämeenlinna, Finland
| |
Collapse
|
13
|
Marfè G, De Martino L, Filomeni G, Di Stefano C, Giganti MG, Pagnini U, Napolitano F, Iovane G, Ciriolo MR, Salimei PS. Degenerate PCR method for identification of an antiapoptotic gene in BHV-1. J Cell Biochem 2006; 97:813-23. [PMID: 16237705 DOI: 10.1002/jcb.20636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To investigate on the hypothetical presence of an antiapoptotic gene, we utilized the CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primers) strategy amplifying unknown sequences from a background of genomic (bovine herpesvirus type-1) BHV-1 DNA. An alignment of carboxyl-terminal domains belonging to three proteins encoded by gamma34.5, MyD116 and GADD34 genes, was carried out to design degenerate PCR primers in highly conserved regions. This allowed the amplification of a 110 bp fragment. This fragment was subjected to automatic sequencing and DNA sequence analysis revealed that its position resided between the nt 14363 and the nt 14438 in bovine herpesvirus type-1 (BHV-1) Cooper strain sharing an identity of 86% (UL14). Transient transfections showed that UL14 protein is efficient in protecting MDBK and K562 cells from sorbitol induced apoptosis. The protein's anti-apoptotic function may derive from its heat shock protein-like properties.
Collapse
Affiliation(s)
- G Marfè
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata-Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Keuser V, Detry B, Thiry J, de Fays K, Schynts F, Pastoret PP, Vanderplasschen A, Thiry E. Characterization of caprine herpesvirus 1 glycoprotein D gene and its translation product. Virus Res 2006; 115:112-21. [PMID: 16140410 DOI: 10.1016/j.virusres.2005.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Caprine herpesvirus 1 (CpHV-1) is responsible of systemic infection in neonatal kids as well as abortion and fertility disorders in adult goats. This virus is closely related to bovine herpesvirus 1 (BoHV-1) which causes infectious bovine rhinotracheitis. Glycoprotein D (gD) mediates important functions in alphaherpesviruses and is also a main immunogen. The sequence of CpHV-1 gD gene and the biochemical properties of its translation product were analyzed and compared to those of BoHV-1 and other alphaherpesviruses. A relatively high homology was found between CpHV-1 and BoHV-1 glycoproteins D amino acid sequences (similarity of 68.8%). Moreover, six cysteine residues are conserved by CpHV-1 gD and the other studied alphaherpesviruses. CpHV-1 gD has a molecular mass similar to BoHV-1 gD and contains complex N-linked oligosaccharides. In contrast to the BoHV-1 gD, CpHV-1 gD is expressed as a late protein. In spite of the observed differences which could influence its biological functions, CpHV-1 gD shares most characteristics with other alphaherpesviruses and especially BoHV-1.
Collapse
Affiliation(s)
- Véronique Keuser
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission on a Definition of a BoHV-1-free animal and a BoHV-1-free holding, and the procedures to verify and maintain this status. EFSA J 2006. [DOI: 10.2903/j.efsa.2006.311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Huang Y, Babiuk LA, van Drunen Littel-van den Hurk S. Immunization with a bovine herpesvirus 1 glycoprotein B DNA vaccine induces cytotoxic T-lymphocyte responses in mice and cattle. J Gen Virol 2005; 86:887-898. [PMID: 15784883 DOI: 10.1099/vir.0.80533-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTLs) are considered to be important in protection against and recovery from viral infections. In this study, several approaches to induce cytotoxicity against bovine herpesvirus 1 (BHV-1) were evaluated. Vaccination of C57BL/6 mice with BHV-1 induced a strong humoral, but no CTL, response, which may be due to downregulation of major histocompatibility complex class I molecules. In contrast, vaccinia virus expressing glycoprotein B (gB) elicited a weaker antibody response, but strong cytotoxicity, in mice. As an approach to inducing both strong humoral and cellular immune responses, a plasmid vector was then used to express gB. Both antibody and CTL responses were induced by the plasmid encoding gB in C57BL/6 and C3H mice, regardless of the type of vector backbone. This demonstrated that DNA immunization induces a broad-based immune response to BHV-1 gB. Interestingly, removal of the membrane anchor, which resulted in secretion of gB from transfected cells, did not result in reduced cytotoxicity. Here, it is shown that, compared with the cell-associated counterpart, plasmid-encoded secreted protein may induce enhanced immune responses in cattle. Therefore, calves were immunized intradermally with pMASIAtgB, a plasmid encoding the secreted form of gB (tgB), using a needle-free injection system. This demonstrated that pMASIAtgB elicited both humoral responses and activated gamma interferon-secreting CD8+ CTLs, suggesting that a DNA vaccine expressing tgB induces a CTL response in the natural host of BHV-1.
Collapse
Affiliation(s)
- Y Huang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - L A Babiuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - S van Drunen Littel-van den Hurk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| |
Collapse
|
17
|
Gogev S, de Fays K, Versali MF, Gautier S, Thiry E. Glycol chitosan improves the efficacy of intranasally administrated replication defective human adenovirus type 5 expressing glycoprotein D of bovine herpesvirus 1. Vaccine 2004; 22:1946-53. [PMID: 15121307 DOI: 10.1016/j.vaccine.2003.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Revised: 09/19/2003] [Accepted: 11/04/2003] [Indexed: 11/18/2022]
Abstract
The ability of two soluble formulations, namely chitosan and glycol chitosan, when used as an intranasal adjuvant, to improve the immunogenicity of an intranasal human adenovirus type 5 replication defective expressing bovine herpesvirus 1 (BoHV-1) glycoprotein D based vaccine, was investigated in cattle. Their adjuvant effects on immune response by increasing clinical and especially virological protection against an intranasal BoHV-1 challenge were then evaluated. The best virological protection was obtained in calves immunized with the vaccine vector adjuvanted with glycol chitosan which decreased the challenge BoHV-1 virus excretion titres by 0.5-1.5 log when compared to those obtained in calves immunized with the vaccine vector alone or adjuvanted with chitosan. A slight difference in clinical scores was observed in calves immunized with the adjuvanted vaccine vector compared to calves immunized with the vaccine vector alone. The obtained data suggest that the tested soluble formulation of glycol chitosan has promising potential use as an intranasal adjuvant for recombinant viral vector vaccines in cattle.
Collapse
Affiliation(s)
- Sacha Gogev
- Virology-Immunology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
18
|
Al-Mubarak A, Zhou Y, Chowdhury SI. A glycine-rich bovine herpesvirus 5 (BHV-5) gE-specific epitope within the ectodomain is important for BHV-5 neurovirulence. J Virol 2004; 78:4806-16. [PMID: 15078962 PMCID: PMC387723 DOI: 10.1128/jvi.78.9.4806-4816.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine herpesvirus 5 (BHV-5) gE ectodomain contains a glycine-rich epitope coding region (gE5 epitope), residues 204 to 218, that is significantly different from the corresponding gE region of BHV-1. Deletion of the gE epitope significantly reduced the neurovirulence of BHV-5 in rabbits. Pulse-chase analyses revealed that the epitope-deleted and wild-type gE were synthesized as N-glycosylated endoglycosidase H-sensitive precursors with approximate molecular masses of 85 kDa and 86 kDa, respectively. Like the wild-type gE, epitope-deleted gE complexed with gI and was readily transported from the endoplasmic reticulum. Concomitantly, the epitope-deleted and wild-type gE acquired posttranslational modifications in the Golgi leading to an increased apparent molecular mass of 93-kDa (epitope-deleted gE) and 94-kDa (wild-type gE). The kinetics of mutant and wild-type gE processing were similar, and both mature proteins were resistant to endoglycosidase H but sensitive to glycopeptidase F. The gE epitope-deleted BHV-5 formed wild-type-sized plaques in MDBK cells, and the epitope-deleted gE was expressed on the cell surface. However, rabbits infected intranasally with gE epitope-deleted BHV-5 did not develop seizures, and only 20% of the infected rabbits showed mild neurological signs. The epitope-deleted virus replicated efficiently in the olfactory epithelium. However, within the brains of these rabbits there was a 10- to 20-fold reduction in infected neurons compared with the number of infected neurons within the brains of rabbits infected with the gE5 epitope-reverted and wild-type BHV-5. In comparison, 70 to 80% of the rabbits exhibited severe neurological signs when infected with the gE5 epitope-reverted and wild-type BHV-5. These results indicated that anterograde transport of the gE epitope-deleted virus from the olfactory receptor neurons to the olfactory bulb is defective and that, within the central nervous system, the gE5 epitope-coding region was required for expression of the full virulence potential of BHV-5.
Collapse
Affiliation(s)
- A Al-Mubarak
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
19
|
Meurens F, Schynts F, Keil GM, Muylkens B, Vanderplasschen A, Gallego P, Thiry E. Superinfection prevents recombination of the alphaherpesvirus bovine herpesvirus 1. J Virol 2004; 78:3872-9. [PMID: 15047803 PMCID: PMC374301 DOI: 10.1128/jvi.78.8.3872-3879.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination between strains of the same alphaherpesvirus species occurs frequently both in vitro and in vivo. This process has been described between strains of herpes simplex virus type 1, herpes simplex virus type 2, pseudorabies virus, feline herpesvirus 1, varicella-zoster virus, and bovine herpesvirus 1 (BoHV-1). In vivo, the rise of recombinant viruses can be modulated by different factors, such as the dose of the inoculated viruses, the distance between inoculation sites, the time interval between inoculation of the first and the second virus, and the genes in which the mutations are located. The effect of the time interval between infections with two distinguishable BoHV-1 on recombination was studied in three ways: (i) recombination at the level of progeny viruses, (ii) interference induced by the first virus infection on beta-galactosidase gene expression of a superinfecting virus, and (iii) recombination at the level of concatemeric DNA. A time interval of 2 to 8 h between two successive infections allows the establishment of a barrier, which reduces or prevents any successful superinfection needed to generate recombinant viruses. The dramatic effect of the time interval on the rise of recombinant viruses is particularly important for the risk assessment of recombination between glycoprotein E-negative marker vaccine and field strains that could threaten BoHV-1 control and eradication programs.
Collapse
Affiliation(s)
- François Meurens
- Department of Infectious and Parasitic Diseases, Virology, and Immunology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
20
|
Abril C, Engels M, Liman A, Hilbe M, Albini S, Franchini M, Suter M, Ackermann M. Both viral and host factors contribute to neurovirulence of bovine herpesviruses 1 and 5 in interferon receptor-deficient mice. J Virol 2004; 78:3644-53. [PMID: 15016885 PMCID: PMC371052 DOI: 10.1128/jvi.78.7.3644-3653.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) type 1 and bovine herpesviruses 1 and 5 (BHV-1 and BHV-5) can use the same cellular receptor for entry, but only HSV is known to cause disease in mice. We hypothesized that components of either the innate or the adaptive immune system, or a combination of both, were responsible for curbing replication of BHVs in mice. Therefore, wild-type mice as well as mice with various combined genetic deficiencies in the alpha/beta interferon receptor or gamma interferon receptor and in the ability to produce mature B and T lymphocytes (RAG-2 deletion) were infected with BHV-1 and BHV-5 and monitored clinically, serologically, histopathologically, and virologically. A functional immune system protected the mice from disease and death due to BHV infection, and the immune response was Th1 like. BHV-5 was transported to the central nervous system by the axonal pathway, whereas viremia was required for this outcome with BHV-1. The alpha/beta interferon system was able to obstruct quantitative spread of the viruses in the infected organism. The gamma interferon system had a protective effect against BHV-1, even in mice with the RAG-2 deletion. In contrast, the same mice succumbed to neurological disease and death upon infection with BHV-5. Productively infected neurons were detected only in BHV-5-infected mice with an intact gamma interferon system. We conclude that the alpha/beta interferon system had a protective effect, while an intact gamma interferon system was required for efficient replication of BHV-5 in mouse neurons and for the development of neurological disease.
Collapse
MESH Headings
- Animals
- Axonal Transport
- Brain/virology
- Cattle
- DNA, Viral/analysis
- DNA, Viral/genetics
- Disease Models, Animal
- Herpesviridae Infections/immunology
- Herpesviridae Infections/virology
- Herpesvirus 1, Bovine/genetics
- Herpesvirus 1, Bovine/immunology
- Herpesvirus 1, Bovine/pathogenicity
- Herpesvirus 1, Bovine/physiology
- Herpesvirus 5, Bovine/genetics
- Herpesvirus 5, Bovine/immunology
- Herpesvirus 5, Bovine/pathogenicity
- Herpesvirus 5, Bovine/physiology
- Interferon-gamma/immunology
- Mice
- Neurons/virology
- Receptors, Interferon/deficiency
- Th1 Cells/immunology
- Viremia
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Carlos Abril
- Institute of Virology. Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Schynts F, Meurens F, Detry B, Vanderplasschen A, Thiry E. Rise and survival of bovine herpesvirus 1 recombinants after primary infection and reactivation from latency. J Virol 2004; 77:12535-42. [PMID: 14610176 PMCID: PMC262584 DOI: 10.1128/jvi.77.23.12535-12542.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombination is thought to be an important source of genetic variation in herpesviruses. Several studies, performed in vitro or in vivo, detected recombinant viruses after the coinoculation of two distinguishable strains of the same herpesvirus species. However, none of these studies investigated the evolution of the relative proportions of parental versus recombinant progeny populations after coinoculation of the natural host, both during the excretion and the reexcretion period. In the present study, we address this by studying the infection of cattle with bovine herpesvirus 1 (BoHV-1). The recombination of two BoHV-1 mutants lacking either glycoprotein C (gC(-)/gE(+)) or E (gC(+)/gE(-)) was investigated after inoculation of cattle by the natural route of infection. The results demonstrated that (i) recombination is a frequent event in vivo since recombinants (gC(+)/gE(+) and gC(-)/gE(-)) were detected in all coinoculated calves, (ii) relative proportions of progeny populations evolved during the excretion period toward a situation where two populations (gC(+)/gE(+) and gC(-)/gE(+)) predominated without fully outcompeting the presence of the two other detected populations (gC(+)/gE(-) and gC(-)/gE(-)), and (iii) after reactivation from latency, no gC(+)/gE(-) and gC(-)/gE(-) progeny viruses were detected, although gC(+)/gE(-) mutants, when inoculated alone, were detected after reactivation treatment. In view of these data, the importance of gE in the biology of BoHV-1 infection and the role of recombination in herpesvirus evolution are discussed.
Collapse
Affiliation(s)
- Frédéric Schynts
- Department of Infectious and Parasitic Diseases, Laboratory of Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
22
|
Abstract
Bovine Respiratory Disease (BRD) results from a complex, multifactorial interaction of stressors, animal susceptibility, and respiratory pathogens. The infectious agents associated with BRD are ubiquitous among cattle populations. Typically, one or a combination of stressors are necessary to initiate BRD. Prevention of BRD should, therefore, address management procedures to minimise stressors. Administration of vaccines against BRD agents may help reduce the incidence of BRD but is unlikely to eliminate the condition. The effectiveness of antimicrobials in the treatment of BRD depends primarily on early recognition and treatment. The use of antioxidant vitamins, minerals or other agents in the prevention and treatment of BRD warrants further research.
Collapse
Affiliation(s)
- P M V Cusack
- Australian Livestock Production Services, 102 Darling Street, Cowra, New South Wales 2794
| | | | | |
Collapse
|
23
|
De Martino L, Marfé G, Di Stefano C, Pagnini U, Florio S, Crispino L, Iovane G, Macaluso M, Giordano A. Interference of bovine herpesvirus 1 (BHV-1) in sorbitol-Induced apoptosis. J Cell Biochem 2003; 89:373-80. [PMID: 12704800 DOI: 10.1002/jcb.10518] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In order to determine the ability of bovine herpesvirus type 1 (BHV-1) to suppress apoptosis, we examined the effects of BHV-1 infection on sorbitol-induced apoptosis on Madin-Darby bovine kidney (MDBK) cells. BHV-1 suppresses sorbitol-induced apoptosis in a manner similar to that of herpes simplex virus type 1 (HSV-1), indicating that BHV-1 has one or more anti-apoptotic genes. To elucidate the molecular mechanisms of apoptosis, expression of some genes encoding apoptosis-inhibiting and -promoting factors were analyzed on BHV-1 infected cells during the process of sorbitol-induced apoptosis. Our results revealed that the expression of bcl-2 and bcl-x(L) decreased after 5 and 3 h p.i., respectively; while bax and procaspase-3 expression increased with respect to control as a function of p.i. times and at 7 h p.i. they were not observed. We further show that the expression of p53 gene was also enhanced, suggesting that this apoptotic mechanism is p53 dependent. From these results, we propose that BHV-1 has one or more genes encoding apoptosis-inhibiting factors which interfere with the involvement of bcl-2 gene family members and apoptotic pathway, depending upon caspase-3, triggered by sorbitol.
Collapse
Affiliation(s)
- L De Martino
- Department of Pathology and Animal Health, School of Veterinary Medicine, University of Naples Federico II, 80137 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lovato L, Inman M, Henderson G, Doster A, Jones C. Infection of cattle with a bovine herpesvirus 1 strain that contains a mutation in the latency-related gene leads to increased apoptosis in trigeminal ganglia during the transition from acute infection to latency. J Virol 2003; 77:4848-57. [PMID: 12663791 PMCID: PMC152160 DOI: 10.1128/jvi.77.8.4848-4857.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Accepted: 01/14/2003] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1) is an important pathogen of cattle and infection is usually initiated via the ocular or nasal cavity. After acute infection, the primary site for BHV-1 latency is sensory neurons in the trigeminal ganglia (TG). Reactivation from latency occurs sporadically, resulting in virus shedding and transmission to uninfected cattle. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. An LR mutant was constructed by inserting three stop codons near the beginning of the LR RNA. This mutant grows to wild-type (wt) efficiency in bovine kidney cells and in the nasal cavity of acutely infected calves. However, shedding of infectious virus from the eye and TG was dramatically reduced in calves infected with the LR mutant. Calves latently infected with the LR mutant do not reactivate after dexamethasone treatment. In contrast, all calves latently infected with wt BHV-1 or the LR rescued mutant reactivate from latency after dexamethasone treatment. In the present study, we compared the frequency of apoptosis in calves infected with the LR mutant to calves infected with wt BHV-1 because LR gene products inhibit apoptosis in transiently transfected cells. A sensitive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay and an antibody that detects cleaved caspase-3 were used to identify apoptotic cells in TG. Both assays demonstrated that calves infected with the LR mutant for 14 days had higher levels of apoptosis in TG compared to calves infected with wt BHV-1 or to mock-infected calves. Viral gene expression, except for the LR gene, is extinguished by 14 days after infection, and thus this time frame is operationally defined as the establishment of latency. Real-time PCR analysis indicated that lower levels of viral DNA were present in the TG of calves infected with the LR mutant throughout acute infection. Taken together, these results suggest that the antiapoptotic properties of the LR gene play an important role during the establishment of latency.
Collapse
Affiliation(s)
- Luciane Lovato
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska at Lincoln, Lincoln, Nebraska 68583-0905,USA
| | | | | | | | | |
Collapse
|
25
|
Zamorano P, Taboga O, Domínguez M, Romera A, Puntel M, Tami C, Mongini C, Waldner C, Palma E, Sadir A. BHV-1 DNA vaccination: effect of the adjuvant RN-205 on the modulation of the immune response in mice. Vaccine 2002; 20:2656-64. [PMID: 12034090 DOI: 10.1016/s0264-410x(02)00211-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well documented that adjuvants improve the immune response generated by traditional viral vaccines, but less is known about the effects of adjuvants on the immune response elicited by DNA vaccines. In this study, we have investigated the use of RN-205 (immunomodulator containing a membrane rich in lipopolysaccharide from gram-negative bacteria) as an adjuvant and analyzed the humoral and cellular specific immune responses elicited by DNA vaccines based on the bovine herpesvirus-1 (BHV-1) glycoprotein D (gD). The comparison of the antibody response induced in mice by a mixture of the three different versions of DNA gD (membrane-anchored, secreted and cytosolic) formulated with or without RN-205 showed that the immunomodulator did not affect the total specific humoral response. The cellular immune response induced in mice immunized with vaccines plus RN-205 was higher than that obtained in mice vaccinated without RN-205, not only in the indexes of proliferation tests but in the number of IL-4 and gammaIFN secreting cells. When total spleen cells were marked with specific monoclonal antibodies against surface markers, a significant increase in the macrophage population of all the groups receiving RN-205 was observed. CD8 and CD4 positive cells were also increased but to a lesser extent. Our results indicate that the incorporation of RN-205 into DNA vaccines induces an increase of the cellular specific immune response in mice.
Collapse
Affiliation(s)
- P Zamorano
- Centro de Investigación en Ciencias Veterinarias y Agronómicas, INTA, CC25, (1712) Castelar, Serrano 669, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Winkler MTC, Doster A, Sur JH, Jones C. Analysis of bovine trigeminal ganglia following infection with bovine herpesvirus 1. Vet Microbiol 2002; 86:139-55. [PMID: 11888697 DOI: 10.1016/s0378-1135(01)00498-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Following primary infection of the eye, oral cavity, and/or nasal cavity, bovine herpesvirus 1 (BHV-1) establishes latency in trigeminal ganglionic (TG) neurons. Virus reactivation and spread to other susceptible animals occur after natural or corticosteroid-induced stress. Infection of calves with BHV-1 leads to infiltration of lymphocytes in TG and expression of IFN-gamma (interferon-gamma), even in latently infected calves. During latency, virus antigen and nucleic acid positive non-neural cells were occasionally detected in TG suggesting there is a low level of spontaneous reactivation. Since we could not detect virus in ocular or nasal swabs, these rare cells do not support high levels of productive infection and virus release or they do not support virus production at all. Dexamethasone (DEX) was used to initiate reactivation in latently infected calves. Foci of mononuclear or satellite cells undergoing apoptosis were detected 6h after DEX treatment, as judged by the appearance of TUNEL+ cells (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling). BHV-1 antigen expression was initially detected in lymphocytes and other non-neural cells in latently infected calves following DEX treatment. At 24h after DEX treatment, viral antigen expression and nucleic acid were readily detected in neurons. Our data suggest that persistent lymphocyte infiltration and cytokine expression occur during latency because a low number of cells in TG express BHV-1 proteins. Induction of apoptosis and changes in cytokine expression following DEX treatment correlates with reactivation from latency. We hypothesize that inflammatory infiltration of lymphoid cells in TG plays a role in regulating latency.
Collapse
Affiliation(s)
- M T C Winkler
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| | | | | | | |
Collapse
|
27
|
Inman M, Lovato L, Doster A, Jones C. A mutation in the latency-related gene of bovine herpesvirus 1 leads to impaired ocular shedding in acutely infected calves. J Virol 2001; 75:8507-15. [PMID: 11507196 PMCID: PMC115096 DOI: 10.1128/jvi.75.18.8507-8515.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1) is an important pathogen of cattle, and infection is usually initiated in the ocular or nasal cavity. Like other alphaherpesviruses, BHV-1 establishes latency in sensory neurons but has the potential of reactivating from latency and spreading. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA, which is alternatively spliced in trigeminal ganglia during acute infection (L. R. Devireddy and C. Jones, J. Virol. 72:7294-7301, 1998). LR gene products inhibit cell cycle progression (Y. Jiang, A. Hossain, M. T. Winkler, T. Holt, A. Doster, and C. Jones, J. Virol. 72:8133-8142, 1998) and chemically induced apoptosis (J. Ciacci-Zannela, M. Stone, G. Henderson, and C. Jones. J. Virol. 73:9734-9740, 1999). Although these studies suggest that LR gene products play an important role in the latency/pathogenesis of BHV-1, construction of a mutant is necessary to test this hypothesis. Because the bICP0 gene overlaps and is antisense to the LR gene, it was necessary to mutate the LR gene without altering bICP0 expression. This was accomplished by inserting three stop codons near the beginning of the LR RNA, thus interfering with expression of proteins expressed by the LR RNA. The LR mutant virus grew with wild-type (WT) efficiency in bovine kidney (MDBK) cells and expressed bICP0 at least as efficiently as WT BHV-1 or the LR rescued virus. When calves were infected with the LR mutant, we observed a dramatic decrease (3 to 4 log units) in ocular shedding during acute infection relative to WT or the LR rescued virus. In contrast, shedding of the LR mutant from the nasal cavity was not significantly different from that of the WT or the LR rescued virus. Calves infected with the LR mutant exhibited mild clinical symptoms, but they seroconverted. Neutralizing antibody titers were lower in calves infected with the LR mutant, confirming reduced growth. In summary, this study suggests that an LR protein promotes ocular shedding during acute infection of calves.
Collapse
Affiliation(s)
- M Inman
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583-0905, USA
| | | | | | | |
Collapse
|
28
|
Wang P, Hurley DJ, Braun LJ, Chase CC. Detection of bovine herpesvirus-1 in peripheral blood mononuclear cells eight months postinfection. J Vet Diagn Invest 2001; 13:424-7. [PMID: 11580067 DOI: 10.1177/104063870101300512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) from 5 calves (3 controls and 2 vaccinates) used in a bovine herpesvirus 1 (BHV-1) vaccine study with a BHV-1 Cooper strain challenge were collected 6 months after challenge. The PBMCs from the control animals were positive by immunofluorescence for the BHV-1 glycoprotein D (gD) while the vaccinates were negative. The PBMC samples from 4 of the 5 animals were examined for BHV-1 DNA by polymerase chain reaction (PCR) and for gD immunofluorescence at 8 months after challenge. The BHV-1 DNA and viral antigen were detected in PBMC samples at 8 months postinfection, but no virus was isolated.
Collapse
Affiliation(s)
- P Wang
- Department of Veterinary Science, South Dakota State University, Brookings 57007, USA
| | | | | | | |
Collapse
|
29
|
Borchers K, Field HJ. Neuronal latency in human and animal herpesvirus infections. Curr Top Microbiol Immunol 2001; 253:61-94. [PMID: 11417140 DOI: 10.1007/978-3-662-10356-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- K Borchers
- Institut für Virologie, Freie Universität Berlin, Königin-Luise-Strasse 49, 14195 Berlin, Germany.
| | | |
Collapse
|
30
|
Gupta PK, Saini M, Gupta LK, Rao VD, Bandyopadhyay SK, Butchaiah G, Garg GK, Garg SK. Induction of immune responses in cattle with a DNA vaccine encoding glycoprotein C of bovine herpesvirus-1. Vet Microbiol 2001; 78:293-305. [PMID: 11182496 DOI: 10.1016/s0378-1135(00)00304-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A DNA vaccine expressing glycoprotein C (gC) of bovine herpesvirus-1 (BHV-1) was evaluated for inducing immunity in bovines. The plasmid encoding gC of BHV-1 was injected six times intramuscularly or intradermally into calves at monthly intervals. After immunization by both routes neutralizing antibody and lymphoproliferative responses developed. The responses in the intradermally immunized calves were better than those in calves immunized intramuscularly. However, the intradermal (i.d.) route was found to be less efficacious when protection against BHV-1 challenge was compared. Following intranasal BHV-1 challenge, all immunized calves demonstrated a rise in IgG antibody titre on day 3, indicating an anamnestic response. The control non-immunized calf developed a neutralizing antibody response on day 7 post-challenge. The immunized calves showed a slight rise in temperature and mild clinical symptoms after challenge. The intramuscularly immunized calves showed earlier clearance of challenge virus compared with intradermally immunized calves. These results indicate that DNA immunization with gC could induce neutralizing antibody and lymphoproliferative responses with BHV-1 responsive memory B cells in bovines. However, the immunity developed was not sufficient to protect calves completely from BHV-1 challenge.
Collapse
Affiliation(s)
- P K Gupta
- National Biotechnology Center, Indian Veterinary Research Institute, 243 122, Izatnagar, India.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lemaire M, Meyer G, Baranowski E, Schynts F, Wellemans G, Kerkhofs P, Thiry E. Production of bovine herpesvirus type 1-seronegative latent carriers by administration of a live-attenuated vaccine in passively immunized calves. J Clin Microbiol 2000; 38:4233-8. [PMID: 11060097 PMCID: PMC87570 DOI: 10.1128/jcm.38.11.4233-4238.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The consequences of the vaccination of neonatal calves with the widely used live-attenuated temperature-sensitive (ts) bovine herpesvirus type 1 (BHV-1) were investigated. The ts strain established acute and latent infections in all vaccinated calves either with or without passive immunity. Four of seven calves vaccinated under passive immunity became clearly BHV-1 seronegative by different serological tests, as did uninfected control calves after the disappearance of maternal antibodies, and they remained so for long periods. A cell-mediated immune response was detected by a BHV-1 gamma interferon assay, but this test failed to detect the seronegative latent carriers (SNLCs). While they are not detected, SNLCs represent a threat for BHV-1-free herds or countries. This study demonstrates that SNLCs can be easily obtained by inoculation with a live-attenuated BHV-1 under passive immunity and that latent carrier animals without any antibody do exist. Consequently, this situation could represent a good model to experimentally produce SNLCs.
Collapse
Affiliation(s)
- M Lemaire
- Department of Infectious and Parasitic Diseases, Virology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
Raggo C, Habermehl M, Babiuk LA, Griebel P. The in vivo effects of recombinant bovine herpesvirus-1 expressing bovine interferon-gamma. J Gen Virol 2000; 81:2665-2673. [PMID: 11038378 DOI: 10.1099/0022-1317-81-11-2665] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the biological relevance of using bovine herpesvirus-1 (BHV-1) as a vector for expressing cytokines, a BHV-1 virus that expressed bovine interferon-gamma (IFN-gamma) was constructed. This recombinant virus (BHV-1/IFNgamma) was then used to infect the natural host in a respiratory disease model. In vitro characterization of the recombinant interferon-gamma confirmed that the cytokine expressed in BHV-1-infected cells was biologically active. The in vivo effects of the recombinant IFN-gamma were then analysed during a primary infection and after reactivation of a latent infection. During the primary infection, similar body temperature, clinical responses and virus shedding were observed for calves infected with either recombinant BHV-1/IFNgamma or parental gC(-)/LacZ(+) virus. An analysis of cellular and humoral responses did not reveal any significant immunomodulation by BHV-1/IFNgamma during the primary infection. The stability and activity of recombinant IFN-gamma was also analysed following the establishment of a latent infection. The presence of recombinant IFN-gamma did not significantly alter virus shedding following reactivation. The isolation of reactivated BHV-1/IFNgamma virus confirmed that a functional IFN-gamma gene was retained during latency. Thus, herpesviruses may provide virus vectors that retain functional genes during latency and recrudescence.
Collapse
Affiliation(s)
- Camilo Raggo
- Department of Veterinary Microbiology1 and Veterinary Infectious Disease Organization2, 120 Veterinary Road, University of Saskatchewan, Canada S7N 5E3
| | - Monique Habermehl
- Department of Veterinary Microbiology1 and Veterinary Infectious Disease Organization2, 120 Veterinary Road, University of Saskatchewan, Canada S7N 5E3
| | - Lorne A Babiuk
- Department of Veterinary Microbiology1 and Veterinary Infectious Disease Organization2, 120 Veterinary Road, University of Saskatchewan, Canada S7N 5E3
| | - Philip Griebel
- Department of Veterinary Microbiology1 and Veterinary Infectious Disease Organization2, 120 Veterinary Road, University of Saskatchewan, Canada S7N 5E3
| |
Collapse
|
33
|
Winkler MT, Doster A, Jones C. Persistence and reactivation of bovine herpesvirus 1 in the tonsils of latently infected calves. J Virol 2000; 74:5337-46. [PMID: 10799611 PMCID: PMC110889 DOI: 10.1128/jvi.74.11.5337-5346.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1), like other members of the Alphaherpesvirinae subfamily, establishes latent infection in sensory neurons. Reactivation from latency can occur after natural or corticosteroid-induced stress culminating in recurrent disease and/or virus transmission to uninfected animals. Our previous results concluded that CD4(+) T cells in the tonsil and other adjacent lymph nodes are infected and undergo apoptosis during acute infection (M. T. Winkler, A. Doster, and C. Jones, J. Virol. 73:8657-8668, 1999). To test whether BHV-1 persisted in lymphoreticular tissue, we analyzed tonsils of latently infected calves for the presence of viral DNA and gene expression. BHV-1 DNA was consistently detected in the tonsils of latently infected calves. Detection of the latency-related transcript (LRT) in tonsils of latently infected calves required nested reverse transcription-PCR (RT-PCR) suggesting that only a few cells contained viral DNA or that LRT is not an abundant transcript. bICP0 (immediate-early and early transcripts), ribonucleotide reductase (early transcript), and glycoprotein C (late transcript) were not detected by RT-PCR in latently infected calves. When reactivation was initiated by dexamethasone, bICP0 and ribonucleotide reductase transcripts were detected. Following dexamethasone treatment, viral nucleic acid was detected simultaneously in trigeminal ganglionic neurons and lymphoid follicles of tonsil. LRT was detected at 6 and 24 h after dexamethasone treatment but not at 48 h. Dexamethasone-induced reactivation led to apoptosis that was localized to tonsillar lymphoid follicles. Taken together, these findings suggest that the tonsil is a site for persistence or latency from which virus can be reactivated by dexamethasone. We further hypothesize that the shedding of virus from the tonsil during reactivation plays a role in virus transmission.
Collapse
Affiliation(s)
- M T Winkler
- Center for Biotechnology, Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | | | |
Collapse
|
34
|
Lemaire M, Weynants V, Godfroid J, Schynts F, Meyer G, Letesson JJ, Thiry E. Effects of bovine herpesvirus type 1 infection in calves with maternal antibodies on immune response and virus latency. J Clin Microbiol 2000; 38:1885-94. [PMID: 10790117 PMCID: PMC86615 DOI: 10.1128/jcm.38.5.1885-1894.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of maternally derived antibodies can interfere with the development of an active antibody response to antigen. Infection of seven passively immunized young calves with a virulent strain of bovine herpesvirus type 1 (BHV-1) was performed to determine whether they could become seronegative after the disappearance of maternal antibodies while latently infected with BHV-1. Four uninfected calves were controls. All calves were monitored serologically for 13 to 18 months. In addition, the development of a cell-mediated immune response was assessed by an in vitro antigen-specific gamma interferon (IFN-gamma) production assay. All calves had positive IFN-gamma responses as early as 7 days until at least 10 weeks after infection. However, no antibody rise was observed after infection in the three calves with the highest titers of maternal antibodies. One of the three became seronegative by virus neutralization test at 7 months of age like the control animals. This calf presented negative IFN-gamma results at the same time and was classified seronegative by enzyme-linked immunosorbent assay at around 10 months of age. This calf was latently infected, as proven by virus reexcretion after dexamethasone treatment at the end of the experiment. In conclusion, this study demonstrated that BHV-1-seronegative latent carriers can be obtained experimentally. In addition, the IFN-gamma assay was able to discriminate calves possessing only passively acquired antibodies from those latently infected by BHV-1, but it could not detect seronegative latent carriers. The failure to easily detect such animals presents an epidemiological threat for the control of BHV-1 infection.
Collapse
Affiliation(s)
- M Lemaire
- Department of Virology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
35
|
Chowdhury SI, Lee BJ, Ozkul A, Weiss ML. Bovine herpesvirus 5 glycoprotein E is important for neuroinvasiveness and neurovirulence in the olfactory pathway of the rabbit. J Virol 2000; 74:2094-106. [PMID: 10666239 PMCID: PMC111690 DOI: 10.1128/jvi.74.5.2094-2106.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein E (gE) is important for full virulence potential of the alphaherpesviruses in both natural and laboratory hosts. The gE sequence of the neurovirulent bovine herpesvirus 5 (BHV-5) was determined and compared with that of the nonneurovirulent BHV-1. Alignment of the predicted amino acid sequences of BHV-1 and BHV-5 gE open reading frames showed that they had 72% identity and 77% similarity. To determine the role of gE in the differential neuropathogenesis of BHV-1 and BHV-5, we have constructed BHV-1 and BHV-5 recombinants: gE-deleted BHV-5 (BHV-5gEDelta), BHV-5 expressing BHV-1 gE (BHV-5gE1), and BHV-1 expressing BHV-5 gE (BHV-1gE5). Neurovirulence properties of these recombinant viruses were analyzed using a rabbit seizure model (S. I. Chowdhury et al., J. Comp. Pathol. 117:295-310, 1997) that distinguished wild-type BHV-1 and -5 based on their differential neuropathogenesis. Intranasal inoculation of BHV-5 gEDelta and BHV-5gE1 produced significantly reduced neurological signs that affected only 10% of the infected rabbits. The recombinant BHV-1gE5 did not invade the central nervous system (CNS). Virus isolation and immunohistochemistry data suggest that these recombinants replicate and spread significantly less efficiently in the brain than BHV-5 gE revertant or wild-type BHV-5, which produced severe neurological signs in 70 to 80% rabbits. Taken together, the results of neurological signs, brain lesions, virus isolation, and immunohistochemistry indicate that BHV-5 gE is important for efficient neural spread and neurovirulence within the CNS and could not be replaced by BHV-1 gE. However, BHV-5 gE is not required for initial viral entry into olfactory pathway.
Collapse
Affiliation(s)
- S I Chowdhury
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | |
Collapse
|
36
|
Lewis PJ, Babiuk LA. Altering the cellular location of an antigen expressed by a DNA-based vaccine modulates the immune response. J Virol 1999; 73:10214-23. [PMID: 10559338 PMCID: PMC113075 DOI: 10.1128/jvi.73.12.10214-10223.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential for DNA vaccines encoding mutated versions of the same antigen to modulate immune responses in C3H/HeN mice was investigated. We created expression plasmids that encoded several versions of glycoprotein D (gD) from bovine herpesvirus 1, including authentic membrane-anchored glycoprotein (pSLRSV.AgD), a secreted glycoprotein (pSLRSV.SgD), and an intracellular protein (pSLRSV.CgD). Immunization of an inbred strain of mice with these plasmids resulted in highly efficacious and long-lasting humoral and cell-mediated immunity. We also demonstrated that the cell compartment in which plasmid-encoded gD was expressed caused a deviation in the serum immunoglobulin (Ig) isotype profile as well as the predominant cytokines secreted from the draining lymph node. Immunization of C3H/HeN mice with DNA vaccines encoding cell-associated forms of gD resulted in a predominance of serum IgG2a and gamma interferon-secreting cells within the spleens and draining lymph nodes. In contrast, mice immunized with a secreted form of this same antigen displayed immune responses characterized by greater levels of interleukin 4 in the draining lymph node and IgG1 as the predominant serum isotype. We also showed evidence of compartmentalization of distinct immune responses within different lymphoid organs.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- COS Cells
- Cattle
- Cell Line
- Female
- Gene Expression
- Herpesvirus 1, Bovine/genetics
- Herpesvirus 1, Bovine/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunoglobulin Isotypes/blood
- Immunoglobulin Isotypes/immunology
- Immunophenotyping
- Lymph Nodes
- Mice
- Mice, Inbred C3H
- Neutralization Tests
- Spleen/cytology
- Spleen/immunology
- Th1 Cells/immunology
- Transfection
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/metabolism
Collapse
Affiliation(s)
- P J Lewis
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | | |
Collapse
|
37
|
Schmitt J, Becher P, Thiel HJ, Keil GM. Expression of bovine viral diarrhoea virus glycoprotein E2 by bovine herpesvirus-1 from a synthetic ORF and incorporation of E2 into recombinant virions. J Gen Virol 1999; 80 ( Pt 11):2839-2848. [PMID: 10580045 DOI: 10.1099/0022-1317-80-11-2839] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression cassettes containing the codons for the pestivirus E (rns) signal peptide (Sig) followed by a chemically synthesized ORF that encoded the bovine viral diarrhoea virus (BVDV) strain C86 glycoprotein E2, a class I membrane glycoprotein, were constructed with and without a chimeric intron sequence immediately upstream of the translation start codon, and incorporated into the genome of bovine herpesvirus-1 (BHV-1). The resulting recombinants, BHV- 1/SigE2(syn) and BHV-1/SigE2(syn)-intron, expressed comparable quantities of glycoprotein E2, and Northern blot hybridizations indicated that the presence of the intron did not increase significantly the steady-state levels of transcripts encompassing the SigE2(syn) ORF. In BHV-1/SigE2(syn)- infected cells, the 54 kDa E2 glycoprotein formed a dimer with an apparent molecular mass of 94 kDa, which was further modified to a 101 kDa form found in the envelope of recombinant virus particles. Penetration kinetics and single-step growth curves indicated that the incorporation of the BVDV E2 glycoprotein in the BHV-1 envelope, which apparently did not require BHV-1-specific signals, interfered with entry into target cells and egress of progeny virions. These results demonstrate that a pestivirus glycoprotein can be expressed efficiently by BHV-1 and incorporated into the viral envelope. BHV-1 thus represents a promising tool for the development of efficacious live and inactivated BHV-1-based vector vaccines.
Collapse
Affiliation(s)
- Jutta Schmitt
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| | - Paul Becher
- Institut für Virologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universit ät Giessen, D-35392 Giessen, Germany 2
| | - Heinz-Jürgen Thiel
- Institut für Virologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universit ät Giessen, D-35392 Giessen, Germany 2
| | - Günther M Keil
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| |
Collapse
|
38
|
Winkler MT, Doster A, Jones C. Bovine herpesvirus 1 can infect CD4(+) T lymphocytes and induce programmed cell death during acute infection of cattle. J Virol 1999; 73:8657-68. [PMID: 10482619 PMCID: PMC112886 DOI: 10.1128/jvi.73.10.8657-8668.1999] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute infection of cattle with bovine herpesvirus 1 (BHV-1) represses cell-mediated immunity, which can lead to secondary bacterial infections. Since BHV-1 can induce apoptosis of cultured lymphocytes, we hypothesized that these virus-host interactions occur in cattle. To test this hypothesis, we analyzed lymph nodes and peripheral blood mononuclear cells (PBMC) after calves were infected with BHV-1. In situ terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) staining of lymphoid tissues (pharyngeal tonsil, cervical, retropharyngeal, and inguinal) was used to detect apoptotic cells. Calves infected with BHV-1 for 7 days revealed increased apoptotic cells near the corticomedullary junction in lymphoid follicles and in the subcapsular region. Increased frequency of apoptotic cells was also observed in the mucosa-associated lymphoid tissue lining the trachea and turbinate. Immunohistochemistry of consecutive sections from pharyngeal tonsil revealed that CD2(+) T lymphocytes were positive for the BHV-1 envelope glycoprotein gD. The location of these CD2(+) T lymphocytes in the germinal center suggested that they were CD4(+) T cells. Electron microscopy and TUNEL also revealed apoptotic and herpesvirus-infected lymphocytes from this area. Fluorescence-activated cell sorting analyses demonstrated that CD4(+) and CD8(+) T cells decreased in lymph nodes and PBMC after infection. The decrease in CD4(+) T cells correlated with an increase in apoptosis. CD4(+) but not CD8(+) lymphocytes were infected by BHV-1 as judged by in situ hybridization and PCR, respectively. Immediate-early (bovine ICP0) and early (ribonucleotide reductase) transcripts were detected in PBMC and CD4(+) lymphocytes prepared from infected calves. In contrast, a late transcript (glycoprotein C) was not consistently detected suggesting productive infection was not efficient. Taken together, these results indicate that BHV-1 can infect CD4(+) T cells in cattle, leading to apoptosis and suppression of cell-mediated immunity.
Collapse
Affiliation(s)
- M T Winkler
- Department of Veterinary and Biomedical Sciences, Center for Biotechnology, University of Nebraska, Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | | | |
Collapse
|
39
|
Fuchs M, Hübert P, Detterer J, Rziha HJ. Detection of bovine herpesvirus type 1 in blood from naturally infected cattle by using a sensitive PCR that discriminates between wild-type virus and virus lacking glycoprotein E. J Clin Microbiol 1999; 37:2498-507. [PMID: 10405392 PMCID: PMC85268 DOI: 10.1128/jcm.37.8.2498-2507.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we report for the first time on the detection of bovine herpesvirus type 1 (BHV-1) in whole-blood samples derived from naturally infected cattle. Sensitive PCR assays specific for glycoprotein B (gB), gC, and gE of BHV-1 allow the detection of one BHV-1 DNA copy in 10(5) to 10(7) peripheral blood leukocytes (PBLs). The incidence of BHV-1-positive PBLs in naturally infected cattle appears to be quite high (92.2% positive PBLs among all samples tested), although in most cases only between 10(-5) and 10(-7) positive leukocytes were present. The results demonstrate that the viral DNA is detectable not only in the peripheral blood of acutely infected animals but, more importantly, also in the peripheral blood of subclinically infected cattle. The gE-specific PCR described in the report allows discrimination between wild-type (WT) virus-infected and vaccinated animals, which is of importance for control programs that use the recently introduced vaccination strategy with a gE-negative virus. The results further show that doubtful serological results can be verified or falsified and that individual animals can be monitored for the presence or absence of WT BHV-1 or gE-negative virus in cattle herds. The PCR protocols allow the detection of BHV-1 prior to seroconversion or in BHV-1-seronegative cattle. Finally, the results indicate the simultaneous presence of WT and gE-negative vaccine virus in the PBLs of several cattle. Therefore, investigations of viremia in naturally and experimentally infected cattle and on the identification of infected cell types of bovine PBLs can be now performed.
Collapse
Affiliation(s)
- M Fuchs
- Federal Research Centre for Virus Diseases of Animals, Institute for Vaccines, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
40
|
Ros C, Belák S. Studies of genetic relationships between bovine, caprine, cervine, and rangiferine alphaherpesviruses and improved molecular methods for virus detection and identification. J Clin Microbiol 1999; 37:1247-53. [PMID: 10203465 PMCID: PMC84742 DOI: 10.1128/jcm.37.5.1247-1253.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1998] [Accepted: 01/19/1999] [Indexed: 11/20/2022] Open
Abstract
The glycoprotein B (gB) and D (gD) genes from five ruminant alphaherpesviruses, bovine herpesvirus 1 (BHV-1), bovine herpesvirus 5 (BHV-5), caprine herpesvirus 1 (CapHV-1), cervine herpesvirus 1, and rangiferine herpesvirus 1, were partially sequenced. The nucleotide sequence alignments revealed a highly conserved gB gene, with homologies ranging between 87.2 and 99.6%, and a more variable gD gene, with homologies ranging between 71.3 and 98.9%. The phylogenetic analysis of the gB and gD nucleotide and deduced amino acid sequences revealed that BHV-5 is the most closely related virus to the BHV-1 subtype 1 and BHV-1 subtype 2 cluster and that CapHV-1 is the most distantly related virus. The phylogenetic data showed a close relationship of all the studied viruses with suid herpesvirus 1. On the basis of sequence data for the gB gene, a nested PCR combined with restriction enzyme analysis (REA) of the PCR products was developed for the simultaneous detection and identification of the viruses that were studied. Nested primers from highly conserved sequence stretches were selected in order to amplify a region of 294 bp in all five viruses, and a subsequent REA of the PCR products allowed specific identification. A mimic molecule that served as an internal standard of the amplification efficiency was constructed. The practical diagnostic applicability of the assay was evaluated with clinical samples consisting of semen and organ specimens from experimentally infected animals.
Collapse
Affiliation(s)
- C Ros
- Department of Virology, The National Veterinary Institute, Biomedical Center, S-751 23, Uppsala, Sweden.
| | | |
Collapse
|
41
|
Zhu X, Wu S, Letchworth GJ. A chimeric protein comprised of bovine herpesvirus type 1 glycoprotein D and bovine interleukin-6 is secreted by yeast and possesses biological activities of both molecules. Vaccine 1999; 17:269-82. [PMID: 9987163 DOI: 10.1016/s0264-410x(98)00127-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bovine herpesvirus type 1 (BHV-1) glycoprotein D (gD) engenders mucosal and systemic immunity and protects cattle from viral infection. Chimerization of cytokines with gD is being explored to confer intrinsic adjuvanticity on gD. Addition of the appropriate cytokine may convert gD into an antigen that specifically engenders protective mucosal immunity. Here DNA coding for the mature bovine interleukin-6 (IL-6) protein was fused through a synthetic glycine linker to the 3' end of DNA coding for the mature BHV-1 gD (tgD) external domain. It was cloned behind the yeast alpha prepro signal sequence and transfected into Pichia pastoris which secreted the chimeric protein (tgD-IL-6) as a 100 kDa molecule. This chimera combined the immunogenic properties of native gD and the in vitro biological activity of bovine IL-6 based on the following observations. A panel of BHV-1 gD-specific monoclonal antibodies recognizing five neutralizing epitopes on native gD reacted with tgD-IL-6. Sera from yeast tgD-IL-6-immunized mice neutralized BHV-1 infection in vitro. The chimeric protein enhanced total bovine immunoglobulin production 16-fold above tgD alone in pokeweed-stimulated bovine peripheral blood mononuclear cells (P < 0.05). This chimeric protein may be a potent mucosal immunogen.
Collapse
Affiliation(s)
- X Zhu
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
42
|
Jiang Y, Hossain A, Winkler MT, Holt T, Doster A, Jones C. A protein encoded by the latency-related gene of bovine herpesvirus 1 is expressed in trigeminal ganglionic neurons of latently infected cattle and interacts with cyclin-dependent kinase 2 during productive infection. J Virol 1998; 72:8133-42. [PMID: 9733854 PMCID: PMC110151 DOI: 10.1128/jvi.72.10.8133-8142.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 06/23/1998] [Indexed: 11/20/2022] Open
Abstract
Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807-3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation.
Collapse
Affiliation(s)
- Y Jiang
- Department of Veterinary and Biomedical Sciences, Center for Biotechnology, University of Nebraska, Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | | | | | | | | | |
Collapse
|
43
|
Chung YT, Hsu W. Functional expression of the bovine herpesvirus 1 alkaline deoxyribonuclease (UL12) in Escherichia coli. Arch Virol 1998; 141:2457-64. [PMID: 9526549 DOI: 10.1007/bf01718643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sequence analysis within the unique long segment of the bovine herpesvirus 1 (BHV-1; infectious bovine rhinotracheitis virus) genome identified an open reading frame whose deduced protein product of 487 amino acids exhibited homology to alkaline deoxyribonucleases (DNases) of other herpesviruses. To determine this BHV-1 gene product has nuclease activity, the gene designated UL12 was inserted into the vector pET-28a(+) and expressed in Escherichia coli as an oligohistidine-tagged protein. Upon induction with isopropyl beta-D-thiogalactopyranoside E. coli BL21 (DE3) [pLysS] cells carrying this recombinant plasmid produced a 57-kDa protein, the molecular mass of which was in accordance with the prediction from the DNA sequence. The recombinant UL12 protein purified by nickel-chelating affinity chromatography exhibited both exonuclease and endonuclease activity, each with an alkaline pH optimum.
Collapse
Affiliation(s)
- Y T Chung
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | | |
Collapse
|
44
|
Hinkley S, Hill AB, Srikumaran S. Bovine herpesvirus-1 infection affects the peptide transport activity in bovine cells. Virus Res 1998; 53:91-6. [PMID: 9617772 DOI: 10.1016/s0168-1702(97)00128-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infection of cattle with bovine herpesvirus-1 (BHV-1) impairs the cell-mediated immune response (CMI) of the affected host. We investigated the location of interference of BHV-1 with the major histocompatibility complex (MHC) class I antigen presentation pathway by employing an assay that allows assessment of the peptide transport activity of the Transporter associated with Antigen Presentation (TAP) from the cytoplasm into the endoplasmic reticulum (ER). We found a considerable down-regulation of the peptide transport activity in bovine epithelial cells, taking place as early as 2 h after virus infection. This down-regulation was also dose-dependent, and, at high multiplicities of infection (moi), led to an almost complete shutdown of TAP. By inhibiting peptide transport into the ER, the virus impairs loading of MHC class I molecules and their subsequent egress from the ER to the cell surface. This may lead to defective priming of cytotoxic T lymphocytes. Thus, BHV-1 is yet another member of its family Herpesviridae that selectively interferes with the host's antigen presentation machinery to evade the host's immune response in vivo.
Collapse
Affiliation(s)
- S Hinkley
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583-0905, USA
| | | | | |
Collapse
|
45
|
Schang LM, Jones C. Analysis of bovine herpesvirus 1 transcripts during a primary infection of trigeminal ganglia of cattle. J Virol 1997; 71:6786-95. [PMID: 9261403 PMCID: PMC191959 DOI: 10.1128/jvi.71.9.6786-6795.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During an infection of nonneuronal cells, bovine herpesvirus 1 (BHV-1) gene expression proceeds in a well-defined cascade. Products of immediate-early (IE) genes are expressed first, and they activate expression of early (E) and late (L) genes. Although the same cascade is assumed to occur during an infection of neurons in trigeminal ganglia (TG) of cattle, no experimental data is available to support this hypothesis. Consequently, we analyzed BHV-1 gene expression in bovine TG at 1, 2, 4, 7, and 15 days postinfection (dpi). Infectious virus was detected in ocular swabs from 1 to 7 dpi but not 15 dpi. By reverse transcription (RT)-PCR, IE (bICP4), E (thymidine kinase, ribonucleotide reductase [RR]), L (glycoprotein C, and alpha trans-inducing factor), and dual-kinetic (bICP0 and bICP22) transcripts were analyzed. When cDNA synthesis was primed with random hexamers, IE and E transcripts were detected at the same time. However, full-length and poly(A)+ (FL&P) RR or bICP22 RNAs were detected before FL&P IE RNAs. Furthermore, FL&P IE transcripts were not detected until viral DNA increased in TG. IE transcripts were detected before E or L RNAs when rabbit kidney cells were infected with a low multiplicity of infection and the same RT-PCR detection method was used. These studies suggested that expression of full-length and polyadenylated IE transcripts in trigeminal ganglia was not efficient compared to that of RR and bICP22 transcripts.
Collapse
Affiliation(s)
- L M Schang
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583-0905, USA
| | | |
Collapse
|
46
|
Schang LM, Hossain A, Jones C. The latency-related gene of bovine herpesvirus 1 encodes a product which inhibits cell cycle progression. J Virol 1996; 70:3807-14. [PMID: 8648716 PMCID: PMC190257 DOI: 10.1128/jvi.70.6.3807-3814.1996] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bovine herpesvirus 1 (BHV-1) establishes a latent infection in the sensory ganglionic neurons of cattle. The exclusive viral RNA expressed in a latent infection is the latency-related (LR) RNA, suggesting that it regulates some aspect of a latent infection. During the course of a productive infection, alphaherpesviruses induce certain events which occur during cell cycle progression. Consequently, we hypothesized that a BHV-1 infection might induce events in neurons which occur during cell cycle progression. In agreement with this hypothesis, cyclin A was detected in neurons of trigeminal ganglia when rabbits were infected. Neuronal cell cycle progression or inappropriate expression of cyclin A leads to apoptosis, suggesting that a viral factor inhibits the deleterious effects of cyclin A expression. The BHV-1 LR gene inhibited cell cycle progression and proliferation of human osteosarcoma cells. Antibodies directed against cyclin A or the LR protein coprecipitated the LR protein or cyclin A, respectively, suggesting that the two proteins interact with each other. We conclude that LR gene products inhibit cell cycle progression and hypothesize that this activity enhances the survival of infected neurons.
Collapse
Affiliation(s)
- L M Schang
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, 68583-0905, USA
| | | | | |
Collapse
|
47
|
Cox GJ, Zamb TJ, Babiuk LA. Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J Virol 1993; 67:5664-7. [PMID: 8350420 PMCID: PMC237973 DOI: 10.1128/jvi.67.9.5664-5667.1993] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mice and cattle injected with plasmids encoding bovine herpesvirus 1 (BHV-1) glycoproteins developed gene-specific antibody responses capable of neutralizing BHV-1. The ability of animals to respond serologically to DNA injections was in part dependent on the quantity of DNA injected and was also negatively affected by carrier DNA. Calves injected with a plasmid encoding BHV-1 gIV developed significant antibody titers to gIV and shed less virus than did the control calf after challenge. This report indicates the potential of DNA injection as a method of vaccination.
Collapse
Affiliation(s)
- G J Cox
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
48
|
Fraefel C, Wirth UV, Vogt B, Schwyzer M. Immediate-early transcription over covalently joined genome ends of bovine herpesvirus 1: the circ gene. J Virol 1993; 67:1328-33. [PMID: 8382298 PMCID: PMC237501 DOI: 10.1128/jvi.67.3.1328-1333.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Herpesvirus genomes are linear molecules in virions. Prior to replication in host cells, they form circular templates by unknown mechanisms. Examining lytic infection with bovine herpesvirus 1, we observed immediate-early transcription over joined genome ends, which suggested that circles are present at the initial stage of infection. Among the transcripts was a spliced immediate-early RNA (1.5 kb) sharing exon 1 with previously described major immediate-early transcripts from the right genome end and exon 2 with a late transcript located near the left genome end. Exon 2 encodes a putative circ-encoded protein with homology to the varicella-zoster virus open reading frame 2 and equine herpesvirus 1 open reading frame 3 products. The novel features reported here for bovine herpesvirus 1 may constitute a more general property of herpesviruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cattle
- Cells, Cultured
- DNA, Circular/genetics
- Genes, Viral/genetics
- Genome, Viral
- Herpesvirus 1, Bovine/genetics
- Herpesvirus 3, Human/genetics
- Molecular Sequence Data
- Open Reading Frames/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Splicing/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- C Fraefel
- Institute of Virology, Faculty of Veterinary Medicine, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
49
|
Bratanich AC, Jones CJ. Localization of cis-acting sequences in the latency-related promoter of bovine herpesvirus 1 which are regulated by neuronal cell type factors and immediate-early genes. J Virol 1992; 66:6099-106. [PMID: 1326660 PMCID: PMC241487 DOI: 10.1128/jvi.66.10.6099-6106.1992] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1) establishes a latent infection in sensory ganglionic neurons of cattle. During a latent infection, a single latency-related (LR) transcript is expressed. This observation suggested that DNA sequences in the LR promoter are positively regulated by neural cell type factors. The regulation of the LR gene was examined in neural cells as well as nonneural cells in transient assays. A 258-bp XbaI-SphI fragment from the LR promoter cis activated the herpes simplex virus type 1 thymidine kinase promoter in rat pheochromocytoma (PC-12) cells and differentiated human (HCN1A) neurons. In contrast, cis activation was not observed with rat (Rat-2) fibroblasts, undifferentiated HCN1A cells, or bovine turbinate cells. Treatment of PC-12 cells with nerve growth factor increased transcriptional activity of the XbaI-SphI fragment. Exonuclease III footprinting experiments suggested that nuclear factors bind to the XbaI-SphI fragment. The immediate-early genes of BHV-1 trans activated the LR promoter, and DNA sequences 5' to the XbaI-SphI fragment were necessary for maximal stimulation. These results imply that neural-cell-type-specific factors and BHV-1 immediate-early genes positively regulate LR gene expression.
Collapse
Affiliation(s)
- A C Bratanich
- Department of Veterinary Science, University of Nebraska, Lincoln 68583-0905
| | | |
Collapse
|
50
|
Williams JR, Evermann JF, Beede RF, Scott ES, Dilbeck PM, Whetstone CA, Stone DM. Association of bovine herpesvirus type 1 in a llama with bronchopneumonia. J Vet Diagn Invest 1991; 3:258-60. [PMID: 1655063 DOI: 10.1177/104063879100300315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- J R Williams
- College of Veterinary Medicine, Washington State University, Pullman 99164
| | | | | | | | | | | | | |
Collapse
|