1
|
Busch C, Rau S, Sekulic A, Perie L, Huber C, Gehrke M, Joussen AM, Zipfel PF, Wildner G, Skerka C, Strauß O. Increased plasma level of terminal complement complex in AMD patients: potential functional consequences for RPE cells. Front Immunol 2023; 14:1200725. [PMID: 37359546 PMCID: PMC10287163 DOI: 10.3389/fimmu.2023.1200725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose Polymorphisms in complement genes are risk-associated for age-related macular degeneration (AMD). Functional analysis revealed a common deficiency to control the alternative complement pathway by risk-associated gene polymorphisms. Thus, we investigated the levels of terminal complement complex (TCC) in the plasma of wet AMD patients with defined genotypes and the impact of the complement activation of their plasma on second-messenger signaling, gene expression, and cytokine/chemokine secretion in retinal pigment epithelium (RPE) cells. Design Collection of plasma from patients with wet AMD (n = 87: 62% female and 38% male; median age 77 years) and controls (n = 86: 39% female and 61% male; median age 58 years), grouped for risk factor smoking and genetic risk alleles CFH 402HH and ARMS2 rs3750846, determination of TCC levels in the plasma, in vitro analysis on RPE function during exposure to patients' or control plasma as a complement source. Methods Genotyping, measurement of TCC concentrations, ARPE-19 cell culture, Ca2+ imaging, gene expression by qPCR, secretion by multiplex bead analysis of cell culture supernatants. Main outcome measures TCC concentration in plasma, intracellular free Ca2+, relative mRNA levels, cytokine secretion. Results TCC levels in the plasma of AMD patients were five times higher than in non-AMD controls but did not differ in plasma from carriers of the two risk alleles. Complement-evoked Ca2+ elevations in RPE cells differed between patients and controls with a significant correlation between TCC levels and peak amplitudes. Comparing the Ca2+ signals, only between the plasma of smokers and non-smokers, as well as heterozygous (CFH 402YH) and CFH 402HH patients, revealed differences in the late phase. Pre-stimulation with complement patients' plasma led to sensitization for complement reactions by RPE cells. Gene expression for surface molecules protective against TCC and pro-inflammatory cytokines increased after exposure to patients' plasma. Patients' plasma stimulated the secretion of pro-inflammatory cytokines in the RPE. Conclusion TCC levels were higher in AMD patients but did not depend on genetic risk factors. The Ca2+ responses to patients' plasma as second-messenger represent a shift of RPE cells to a pro-inflammatory phenotype and protection against TCC. We conclude a substantial role of high TCC plasma levels in AMD pathology.
Collapse
Affiliation(s)
- Catharina Busch
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Saskia Rau
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Andjela Sekulic
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Luce Perie
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Christian Huber
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Miranda Gehrke
- Section of Immunobiology, Department of Ophthalmology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Antonia M. Joussen
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| |
Collapse
|
2
|
Akter T, Annamalai B, Obert E, Simpson KN, Rohrer B. Dabigatran and Wet AMD, Results From Retinal Pigment Epithelial Cell Monolayers, the Mouse Model of Choroidal Neovascularization, and Patients From the Medicare Data Base. Front Immunol 2022; 13:896274. [PMID: 35784301 PMCID: PMC9248746 DOI: 10.3389/fimmu.2022.896274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background Age-related macular degeneration (AMD), the leading cause of irreversible blindness in elderly Caucasian populations, includes destruction of the blood-retina barrier (BRB) generated by the retinal pigment epithelium-Bruch's membrane complex (RPE/BrM), and complement activation. Thrombin is likely to get access to those structures upon BRB integrity loss. Here we investigate the potential role of thrombin in AMD by analyzing effects of the thrombin inhibitor dabigatran. Material and Methods MarketScan data for patients aged ≥65 years on Medicare was used to identify association between AMD and dabigatran use. ARPE-19 cells grown as mature monolayers were analyzed for thrombin effects on barrier function (transepithelial resistance; TER) and downstream signaling (complement activation, expression of connective tissue growth factor (CTGF), and secretion of vascular endothelial growth factor (VEGF)). Laser-induced choroidal neovascularization (CNV) in mouse is used to test the identified downstream signaling. Results Risk of new wet AMD diagnosis was reduced in dabigatran users. In RPE monolayers, thrombin reduced TER, generated unique complement C3 and C5 cleavage products, led to C3d/MAC deposition on cell surfaces, and increased CTGF expression via PAR1-receptor activation and VEGF secretion. CNV lesion repair was accelerated by dabigatran, and molecular readouts suggest that downstream effects of thrombin include CTGF and VEGF, but not the complement system. Conclusions This study provides evidence of association between dabigatran use and reduced exudative AMD diagnosis. Based on the cell- and animal-based studies, we suggest that thrombin modulates wound healing and CTGF and VEGF expression, making dabigatran a potential novel treatment option in AMD.
Collapse
Affiliation(s)
- Tanjina Akter
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
| | | | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
| | - Kit N. Simpson
- Department of Healthcare Leadership and Management, Medical University of South Carolina, Charleston, SC, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, United States
| |
Collapse
|
3
|
Shah N, Ishii M, Brandon C, Ablonczy Z, Cai J, Liu Y, Chou CJ, Rohrer B. Extracellular vesicle-mediated long-range communication in stressed retinal pigment epithelial cell monolayers. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2610-2622. [PMID: 29684588 DOI: 10.1016/j.bbadis.2018.04.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Retinal pigment epithelium (RPE) alterations in age-related macular degeneration occur in patches, potentially involving long-distance communication between damaged and healthy areas. Communication along the epithelium might be mediated by extracellular vesicles (EVs). To test this hypothesis, EVs were collected from supernatants of polarized ARPE-19 and primary porcine RPE monolayers for functional and biochemical assays. EVs from oxidatively stressed donor cells reduced barrier function in recipient RPE monolayers when compared to control EVs. The effect on barrier function was dependent on EV uptake, which occurred rapidly with EVs from oxidatively stressed donor cells. Mass spectrometry-based proteomic analysis of EVs identified HDAC6, which is known to reduce tight junction stability. Activity assays confirmed the presence of HDAC6 in EVs, and EV transfer assays using HDAC6 inhibitors confirmed its effect in monolayers. These findings demonstrate that EVs can communicate stress messages to healthy RPE cells, potentially contributing to RPE dysfunction.
Collapse
Affiliation(s)
- Navjot Shah
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, United States; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States
| | - Masakii Ishii
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, United States; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Jingwen Cai
- Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Yutao Liu
- Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, United States
| | - C James Chou
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, United States; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
4
|
Busch C, Annamalai B, Abdusalamova K, Reichhart N, Huber C, Lin Y, Jo EAH, Zipfel PF, Skerka C, Wildner G, Diedrichs-Möhring M, Rohrer B, Strauß O. Anaphylatoxins Activate Ca 2+, Akt/PI3-Kinase, and FOXO1/FoxP3 in the Retinal Pigment Epithelium. Front Immunol 2017; 8:703. [PMID: 28663750 PMCID: PMC5472091 DOI: 10.3389/fimmu.2017.00703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The retinal pigment epithelium (RPE) is a main target for complement activation in age-related macular degeneration (AMD). The anaphylatoxins C3a and C5a have been thought to mostly play a role as chemoattractants for macrophages and immune cells; here, we explore whether they trigger RPE alterations. Specifically, we investigated the RPE as a potential immunoregulatory gate, allowing for active changes in the RPE microenvironment in response to complement. DESIGN In vitro and in vivo analysis of signaling pathways. METHODS Individual activities of and interaction between the two anaphylatoxin receptors were tested in cultured RPE cells by fluorescence microscopy, western blot, and immunohistochemistry. MAIN OUTCOME MEASURES Intracellular free calcium, protein phosphorylation, immunostaining of tissues/cells, and multiplex secretion assay. RESULTS Similar to immune cells, anaphylatoxin exposure resulted in increases in free cytosolic Ca2+, PI3-kinase/Akt activation, FoxP3 and FOXO1 phosphorylation, and cytokine/chemokine secretion. Differential responses were elicited depending on whether C3a and C5a were co-administered or applied consecutively, and response amplitudes in co-administration experiments ranged from additive to driven by C5a (C3a + C5a = C5a) or being smaller than those elicited by C3a alone (C3a + C5a < C3a). CONCLUSION We suggest that this combination of integrative signaling between C3aR and C5aR helps the RPE to precisely adopt its immune regulatory function. These data further contribute to our understanding of AMD pathophysiology.
Collapse
Affiliation(s)
- Catharina Busch
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - Khava Abdusalamova
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Nadine Reichhart
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Christian Huber
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
- Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany
| | - Yuchen Lin
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Emeraldo A. H. Jo
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Gerhild Wildner
- Department of Ophthalmology, Section of Immunobiology, Clinic of the LMU Munich, Munich, Germany
| | - Maria Diedrichs-Möhring
- Department of Ophthalmology, Section of Immunobiology, Clinic of the LMU Munich, Munich, Germany
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, United States
| | - Olaf Strauß
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
5
|
Schnabolk G, Beon MK, Tomlinson S, Rohrer B. New Insights on Complement Inhibitor CD59 in Mouse Laser-Induced Choroidal Neovascularization: Mislocalization After Injury and Targeted Delivery for Protein Replacement. J Ocul Pharmacol Ther 2017; 33:400-411. [PMID: 28333572 DOI: 10.1089/jop.2016.0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The membrane attack complex (MAC) in choriocapillaris (CC) and retinal pigment epithelium (RPE) increase with age and disease (age-related macular degeneration). MAC assembly can be inhibited by CD59, a membrane-bound regulator. Here we further investigated the role of CD59 in murine choroidal neovascularization (CNV), a model involving both CC and RPE, and tested whether CR2-CD59, a soluble targeted form of CD59, provides protection. METHODS Laser-induced CNV was generated in wild type and CD59a-deficient mice (CD59-/-). CNV size was measured by optical coherence tomography, and CR2-CD59 was injected intraperitoneally. Endogenous CD59 localization and MAC deposition were identified by immunohistochemistry and quantified by confocal microscopy. Cell-type-specific responses to MAC were examined in retinal pigment epithelial cells (ARPE-19) and microvascular endothelial cells (HMEC-1). RESULTS CD59 levels were severely reduced and protein was mislocalized in the RPE surrounding the lesion. CNV lesion size and subretinal fluid accumulation were exacerbated in CD59-/- when compared with those in WT mice, and an increase in MAC deposition was noted. In contrast, CR2-CD59 significantly reduced both structural features of CNV severity. In vitro, MAC inhibition in ARPE-19 cells prevented barrier function loss and accelerated wound healing and cell adhesion, whereas in HMEC-1 cells, CR2-CD59 decelerated wound healing and cell adhesion. CONCLUSION These data further support the importance of CD59 in controlling ocular injury responses and indicate that pharmacological inhibition of the MAC with CR2-CD59 may be a viable therapeutic approach for reducing complement-mediated ocular pathology.
Collapse
Affiliation(s)
- Gloriane Schnabolk
- 1 Division of Research, Ralph H. Johnson VA Medical Center , Charleston, South Carolina.,2 Department of Opthalmology, Medical University of South Carolina , Charleston, South Carolina
| | - Mee Keong Beon
- 2 Department of Opthalmology, Medical University of South Carolina , Charleston, South Carolina
| | - Stephen Tomlinson
- 1 Division of Research, Ralph H. Johnson VA Medical Center , Charleston, South Carolina.,3 Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| | - Bärbel Rohrer
- 1 Division of Research, Ralph H. Johnson VA Medical Center , Charleston, South Carolina.,2 Department of Opthalmology, Medical University of South Carolina , Charleston, South Carolina.,4 Department of Neurosciences Division of Research, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
6
|
Pharmacology of the retinal pigment epithelium, the interface between retina and body system. Eur J Pharmacol 2016; 787:84-93. [PMID: 27044435 DOI: 10.1016/j.ejphar.2016.03.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Abstract
The retinal pigment epithelium (RPE) is a close, interactive partner to the photoreceptors as well as an interface with the endothelium of the choroid and thus with the body's circulatory system. To fulfill these roles, the RPE communicates with neighboring tissue by secretion of a large variety of factors and is able to react to secreted factors via a plethora of transmembrane receptors. Clinically relevant local pharmacological effects are caused by anti-VEGF-A treatment in choroidal neovascularization or by carboanhydrase inhibitors reducing fluid accumulation in the macula. Being exposed to the bloodstream, the RPE reacts to systemic disease, such as diabetes or hypertension, but also to systemic pharmacological intervention, for example to hypotensive drugs acting on the renin-angiotensin-system. Sustained pharmacological treatments, in particular, cause side effects at the RPE with consequences for both RPE function and photoreceptor survival. Among these are systemic inhibition of angiotensin-converting enzyme, insulin treatment in diabetes and anti-VEGF-A therapy. Given the special anatomical and functional relationships of the RPE, pharmacological intervention targeting either the eye or the body systemically should take potential alteration of RPE and subsequently photoreceptor function into account.
Collapse
|
7
|
Activation of endogenously expressed ion channels by active complement in the retinal pigment epithelium. Pflugers Arch 2014; 467:2179-91. [PMID: 25427445 DOI: 10.1007/s00424-014-1656-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
Defective regulation of the alternative pathway of the complement system is believed to contribute to damage of retinal pigment epithelial (RPE) cells in age-related macular degeneration. Thus we investigated the effect of complement activation on the RPE cell membrane by analyzing changes in membrane conductance via patch-clamp techniques and Ca(2+) imaging. Exposure of human ARPE-19 cells to complement-sufficient normal human serum (NHS) (25 %) resulted in a biphasic increase in intracellular free Ca(2+) ([Ca(2+)]i); an initial peak followed by sustained Ca(2+) increase. C5- or C7-depleted sera did not fully reproduce the signal generated by NHS. The initial peak of the Ca(2+) response was reduced by sarcoplasmic Ca(2+)-ATPase inhibitor thapsigargin, L-type channel blockers (R)-(+)-BayK8644 and isradipine, transient-receptor-potential (TRP) channel blocker ruthenium-red and ryanodine receptor blocker dantrolene. The sustained phase was carried by CaV1.3 L-type channels via tyrosine-phosphorylation. Changes in [Ca(2+)]I were accompanied by an abrupt hyperpolarization, resulting from a transient increase in membrane conductance, which was absent under extracellular Ca(2+)- or K(+)-free conditions and blocked by (R)-(+)-BayK8644 or paxilline, a maxiK channel inhibitor. Single-channel recordings confirmed the contribution of maxiK channels. Primary porcine RPE cells responded to NHS in a comparable manner. Pre-incubation with NHS reduced H2O2-induced cell death. In summary, in a concerted manner, C3a, C5a and sC5b-9 increased [Ca(2+)]i by ryanodine-receptor-dependent activation of L-type channels in addition to maxi-K channels and TRP channels absent from any insertion of a lytic pore.
Collapse
|
8
|
Kunchithapautham K, Atkinson C, Rohrer B. Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation. J Biol Chem 2014; 289:14534-46. [PMID: 24711457 PMCID: PMC4031511 DOI: 10.1074/jbc.m114.564674] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/02/2014] [Indexed: 01/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD.
Collapse
Affiliation(s)
| | - Carl Atkinson
- Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Bärbel Rohrer
- From the Departments of Ophthalmology and the Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| |
Collapse
|
9
|
Qiu W, Zhou J, Zhu G, Zhao D, He F, Zhang J, Lu Y, Yu T, Liu L, Wang Y. Sublytic C5b-9 triggers glomerular mesangial cell apoptosis via XAF1 gene activation mediated by p300-dependent IRF-1 acetylation. Cell Death Dis 2014; 5:e1176. [PMID: 24743731 PMCID: PMC4001307 DOI: 10.1038/cddis.2014.153] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 11/10/2022]
Abstract
The apoptosis of glomerular mesangial cells (GMCs) in rat Thy-1 nephritis (Thy-1N), a model of human mesangioproliferative glomerulonephritis (MsPGN), is accompanied by sublytic C5b-9 deposition. However, the mechanism by which sublytic C5b-9 induces GMC apoptosis is unclear. In the present studies, the effect of X-linked inhibitor of apoptosis-associated factor 1 (XAF1) expression on GMC apoptosis and the role of p300 and interferon regulatory factor-1 (IRF-1) in mediating XAF1 gene activation were determined, both in the GMCs induced by sublytic C5b-9 (in vitro) and in the renal tissues of rats with Thy-1N (in vivo). The in vitro studies demonstrated that IRF-1-enhanced XAF1 gene activation and its regulation by p300-mediated IRF-1 acetylation were involved in GMC apoptosis induced by sublytic C5b-9. The element of IRF-1 binding to XAF1 promoter and two acetylated sites of IRF-1 protein were also revealed. In vivo, silence of p300, IRF-1 or XAF1 genes in the renal tissues diminished GMC apoptosis and secondary GMC proliferation as well as urinary protein secretion in Thy-1N rats. Together, these data implicate that sublytic C5b-9 induces the expression of both p300 and IRF-1, as well as p300-dependent IRF-1 acetylation that may contribute to XAF1 gene activation and subsequent GMC apoptosis in Thy-1N rats.
Collapse
Affiliation(s)
- W Qiu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - J Zhou
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - G Zhu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - D Zhao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - F He
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - J Zhang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Y Lu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - T Yu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - L Liu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Y Wang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Birke MT, Lipo E, Adhi M, Birke K, Kumar-Singh R. AAV-mediated expression of human PRELP inhibits complement activation, choroidal neovascularization and deposition of membrane attack complex in mice. Gene Ther 2014; 21:507-13. [PMID: 24670995 DOI: 10.1038/gt.2014.24] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 01/17/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Approximately 50% of AMD patients have a polymorphism in the negative regulator of complement known as Factor H. Individuals homozygous for a Y402H polymorphism in Factor H have elevated levels of membrane attack complex (MAC) in their choroid and retinal pigment epithelium relative to individuals homozygous for the wild-type allele. An inability to form MAC due to a polymorphism in C9 is protective against the formation of choroidal neovascularization (CNV) in AMD patients. Hence, blocking MAC in AMD patients may be protective against CNV. Here we investigate the potential of human proline/arginine-rich end leucine-rich repeat protein (PRELP) as an inhibitor of complement-mediated damage when delivered via the subretinal route using an AAV2/8 vector. In a fluorescence-activated cell sorting (FACS) lysis assay, PRELP inhibited normal human serum-mediated lysis of Hepa-1c1c7 cells by 18.7%. Unexpectedly, PRELP enhanced the formation of tubes by human umbilical vein endothelial cells (HUVECs) by approximately 240%, but, when delivered via an AAV vector to the retina of mice, PRELP inhibited laser-induced CNV by 60%. PRELP reduced deposition of MAC in vivo by 25.5%. Our results have implications for the development of complement inhibitors as a therapy for AMD.
Collapse
Affiliation(s)
- M T Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - E Lipo
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - M Adhi
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - K Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - R Kumar-Singh
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Birke K, Lipo E, Birke MT, Kumar-Singh R. Topical application of PPADS inhibits complement activation and choroidal neovascularization in a model of age-related macular degeneration. PLoS One 2013; 8:e76766. [PMID: 24130789 PMCID: PMC3793916 DOI: 10.1371/journal.pone.0076766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly. AMD patients have elevated levels of membrane attack complex (MAC) in their choroidal blood vessels and retinal pigment epithelium (RPE). MAC forms pores in cell membranes. Low levels of MAC result in an elevation of cytokine release such as vascular endothelial growth factor (VEGF) that promotes the formation of choroidal neovascularization (CNV). High levels of MAC result in cell lysis and RPE degeneration is a hallmark of advanced AMD. The current standard of care for CNV associated with wet AMD is intravitreal injection of anti-VEGF molecules every 4 to 12 weeks. Such injections have significant side effects. Recently, it has been found that membrane pore-forming proteins such as α-haemolysin can mediate their toxic effects through auto- and paracrine signaling and that complement-induced lysis is amplified through ATP release followed by P2X receptor activation. We hypothesized that attenuation of P2X receptor activation may lead to a reduction in MAC deposition and consequent formation of CNV. Hence, in this study we investigated topical application of the purinergic P2X antagonist Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) as a potential treatment for AMD. We found that 4.17 µM PPADS inhibited formation of HUVEC master junctions and master segments by 74.7%. In a human complement mediated cell lysis assay, 104 µM PPADS enabled almost complete protection of Hepa1c1c7 cells from 1% normal human serum mediated cell lysis. Daily topical application of 4.17 mM PPADS for 3 days attenuated the progression of laser induced CNV in mice by 41.8% and attenuated the deposition of MAC at the site of the laser injury by 19.7%. Our data have implications for the future treatment of AMD and potentially other ocular disorders involving CNV such as angioid streaks, choroidal rupture and high myopia.
Collapse
Affiliation(s)
- Kerstin Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Erion Lipo
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Marco T. Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Rajendra Kumar-Singh
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|