1
|
Ruzzi F, Cappello C, Semprini MS, Scalambra L, Angelicola S, Pittino OM, Landuzzi L, Palladini A, Nanni P, Lollini PL. Lipid rafts, caveolae, and epidermal growth factor receptor family: friends or foes? Cell Commun Signal 2024; 22:489. [PMID: 39394159 PMCID: PMC11468060 DOI: 10.1186/s12964-024-01876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
Lipid rafts are dynamic microdomains enriched with cholesterol and sphingolipids that play critical roles in cellular processes by organizing and concentrating specific proteins involved in signal transduction. The interplay between lipid rafts, raft-associated caveolae and the human epidermal growth factor receptors has significant implications in cancer biology, particularly in breast and gastric cancer therapy resistance. This review examines the structural and functional characteristics of lipid rafts, their involvement in EGFR and HER2 signaling, and the impact of lipid rafts/CXCL12/CXCR4/HER2 axis on bone metastasis. We also discuss the potential of targeting lipid rafts and caveolin-1 to enhance therapeutic strategies against HER2-positive cancers and the impact of co-localization of trastuzumab or antibody drug conjugates with caveolin-1 on therapy response. Emerging evidence suggests that disrupting lipid raft integrity or silencing caveolin-1, through several strategies including cholesterol-lowering molecules, can influence HER2 availability and internalization, enhancing anti-HER2 targeted therapy and offering a novel approach to counteract drug resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Chiara Cappello
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
- IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, 40138, Italy
| | - Olga Maria Pittino
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, 27100, Italy
- Unità Operativa di Oncologia, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy.
- IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, 40138, Italy.
| |
Collapse
|
2
|
Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2300319. [PMID: 37384827 PMCID: PMC11469107 DOI: 10.1002/adhm.202300319] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
A key aspect for successful drug delivery via lipid-based nanoparticles is their internalization in target cells. Two prominent examples of such drug delivery systems are artificial phospholipid-based carriers, such as liposomes, and their biological counterparts, the extracellular vesicles (EVs). Despite a wealth of literature, it remains unclear which mechanisms precisely orchestrate nanoparticle-mediated cargo delivery to recipient cells and the subsequent intracellular fate of therapeutic cargo. In this review, internalization mechanisms involved in the uptake of liposomes and EVs by recipient cells are evaluated, also exploring their intracellular fate after intracellular trafficking. Opportunities are highlighted to tweak these internalization mechanisms and intracellular fates to enhance the therapeutic efficacy of these drug delivery systems. Overall, literature to date shows that both liposomes and EVs are predominantly internalized through classical endocytosis mechanisms, sharing a common fate: accumulation inside lysosomes. Studies tackling the differences between liposomes and EVs, with respect to cellular uptake, intracellular delivery and therapy efficacy, remain scarce, despite its importance for the selection of an appropriate drug delivery system. In addition, further exploration of functionalization strategies of both liposomes and EVs represents an important avenue to pursue in order to control internalization and fate, thereby improving therapeutic efficacy.
Collapse
Affiliation(s)
- Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
3
|
Foodborne compounds that alter plasma membrane architecture can modify the response of intestinal cells to shear stress in vitro. Toxicol Appl Pharmacol 2022; 446:116034. [DOI: 10.1016/j.taap.2022.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 01/25/2023]
|
4
|
Watkins OC, Yong HEJ, Sharma N, Chan SY. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit Rev Food Sci Nutr 2020; 62:1626-1673. [PMID: 33280430 DOI: 10.1080/10408398.2020.1845604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositols, a group of 6-carbon polyols, are highly bioactive molecules derived from diet and endogenous synthesis. Inositols and their derivatives are involved in glucose and lipid metabolism and participate in insulin-signaling, with perturbations in inositol processing being associated with conditions involving insulin resistance, dysglycemia and dyslipidemia such as polycystic ovary syndrome and diabetes. Pregnancy is similarly characterized by substantial and complex changes in glycemic and lipidomic regulation as part of maternal adaptation and is also associated with physiological alterations in inositol processing. Disruptions in maternal adaptation are postulated to have a critical pathophysiological role in pregnancy complications such as gestational diabetes and pre-eclampsia. Inositol supplementation has shown promise as an intervention for the alleviation of symptoms in conditions of insulin resistance and for gestational diabetes prevention. However, the mechanisms behind these affects are not fully understood. In this review, we explore the role of inositols in conditions of insulin dysregulation and in pregnancy, and identify priority areas for research. We particularly examine the role and function of inositols within the maternal-placental-fetal axis in both uncomplicated and pathological pregnancies. We also discuss how inositols may mediate maternal-placental-fetal cross-talk, and regulate fetal growth and development, and suggest that inositols play a vital role in promoting healthy pregnancy.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
5
|
Yurtsever D, Lorent JH. Structural Modifications Controlling Membrane Raft Partitioning and Curvature in Human and Viral Proteins. J Phys Chem B 2020; 124:7574-7585. [PMID: 32813532 PMCID: PMC7476027 DOI: 10.1021/acs.jpcb.0c03435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Membrane
proteins and lipids have the capacity to associate into
lateral domains in cell membranes through mutual or collective interactions.
Lipid rafts are functional lateral domains that are formed through
collective interactions of certain lipids and which can include or
exclude proteins. These domains have been implicated in cell signaling
and protein trafficking and seem to be of importance for virus–host
interactions. We therefore want to investigate if raft and viral membrane
proteins present similar structural features, and how these features
are distributed throughout viruses. For this purpose, we performed
a bioinformatics analysis of raft and viral membrane proteins from
available online databases and compared them to nonraft proteins.
In general, transmembrane proteins of rafts and viruses had higher
proportions of palmitoyl and phosphoryl residues compared to nonraft
proteins. They differed in terms of transmembrane domain length and
thickness, with viral proteins being generally shorter and having
a smaller accessible surface area per residue. Nontransmembrane raft
proteins had increased amounts of palmitoyl, prenyl, and phosphoryl
moieties while their viral counterparts were largely myristoylated
and phosphorylated. Several of these structural determinants such
as phosphorylation are new to the raft field and are extensively discussed
in terms of raft functionality and phase separation. Surprisingly,
the proportion of palmitoylated viral transmembrane proteins was inversely
correlated to the virus size which indicated the implication of palmitoylation
in virus membrane curvature and possibly budding. The current results
provide new insights into the raft–virus interplay and unveil
possible targets for antiviral compounds.
Collapse
Affiliation(s)
- Deniz Yurtsever
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, NL-3584CH Utrecht, The Netherlands
| | - Joseph Helmuth Lorent
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, NL-3584CH Utrecht, The Netherlands
| |
Collapse
|
6
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
7
|
Proteomic Analysis of Lipid Rafts from RBL-2H3 Mast Cells. Int J Mol Sci 2019; 20:ijms20163904. [PMID: 31405203 PMCID: PMC6720779 DOI: 10.3390/ijms20163904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are highly ordered membrane microdomains enriched in cholesterol, glycosphingolipids, and certain proteins. They are involved in the regulation of cellular processes in diverse cell types, including mast cells (MCs). The MC lipid raft protein composition was assessed using qualitative mass spectrometric characterization of the proteome from detergent-resistant membrane fractions from RBL-2H3 MCs. Using two different post-isolation treatment methods, a total of 949 lipid raft associated proteins were identified. The majority of these MC lipid raft proteins had already been described in the RaftProtV2 database and are among highest cited/experimentally validated lipid raft proteins. Additionally, more than half of the identified proteins had lipid modifications and/or transmembrane domains. Classification of identified proteins into functional categories showed that the proteins were associated with cellular membrane compartments, and with some biological and molecular functions, such as regulation, localization, binding, catalytic activity, and response to stimulus. Furthermore, functional enrichment analysis demonstrated an intimate involvement of identified proteins with various aspects of MC biological processes, especially those related to regulated secretion, organization/stabilization of macromolecules complexes, and signal transduction. This study represents the first comprehensive proteomic profile of MC lipid rafts and provides additional information to elucidate immunoregulatory functions coordinated by raft proteins in MCs.
Collapse
|
8
|
Ares MA, Sansabas A, Rodríguez-Valverde D, Siqueiros-Cendón T, Rascón-Cruz Q, Rosales-Reyes R, Jarillo-Quijada MD, Alcántar-Curiel MD, Cedillo ML, Torres J, Girón JA, De la Cruz MA. The Interaction of Klebsiella pneumoniae With Lipid Rafts-Associated Cholesterol Increases Macrophage-Mediated Phagocytosis Due to Down Regulation of the Capsule Polysaccharide. Front Cell Infect Microbiol 2019; 9:255. [PMID: 31380298 PMCID: PMC6650577 DOI: 10.3389/fcimb.2019.00255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Klebsiella pneumoniae successfully colonizes host tissues by recognizing and interacting with cholesterol present on membrane-associated lipid rafts. In this study, we evaluated the role of cholesterol in the expression of capsule polysaccharide genes of K. pneumoniae and its implication in resistance to phagocytosis. Our data revealed that exogenous cholesterol added to K. pneumoniae increases macrophage-mediated phagocytosis. To explain this event, the expression of capsular galF, wzi, and manC genes was determined in the presence of cholesterol. Down-regulation of these capsular genes occurred leading to increased susceptibility to phagocytosis by macrophages. In contrast, depletion of cholesterol from macrophage membranes led to enhanced expression of galF, wzi, and manC genes and to capsule production resulting in resistance to macrophage-mediated phagocytosis. Cholesterol-mediated repression of capsular genes was dependent on the RcsA and H-NS global regulators. Finally, cholesterol also down-regulated the expression of genes responsible for LPS core oligosaccharides production and OMPs. Our results suggest that cholesterol plays an important role for the host by reducing the anti-phagocytic properties of the K. pneumoniae capsule facilitating bacterial engulfment by macrophages during the bacteria-eukaryotic cell interaction mediated by lipid rafts.
Collapse
Affiliation(s)
- Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alejandro Sansabas
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | | | - Quintín Rascón-Cruz
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María D Alcántar-Curiel
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María L Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
9
|
Burke LC, Ezeribe HO, Kwon AY, Dockery D, Lyons PJ. Carboxypeptidase O is a lipid droplet-associated enzyme able to cleave both acidic and polar C-terminal amino acids. PLoS One 2018; 13:e0206824. [PMID: 30388170 PMCID: PMC6214572 DOI: 10.1371/journal.pone.0206824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/19/2018] [Indexed: 11/18/2022] Open
Abstract
Carboxypeptidase O (CPO) is a member of the M14 family of metallocarboxypeptidases with a preference for the cleavage of C-terminal acidic amino acids. CPO is largely expressed in the small intestine, although it has been detected in other tissues such as the brain and ovaries. CPO does not contain a prodomain, nor is it strongly regulated by pH, and hence appears to exist as a constitutively active enzyme. The goal of this study was to investigate the intracellular distribution and activity of CPO in order to predict physiological substrates and function. The distribution of CPO, when expressed in MDCK cells, was analyzed by immunofluorescence microscopy. Soon after addition of nutrient-rich media, CPO was found to associate with lipid droplets, causing an increase in lipid droplet quantity. As media became depleted, CPO moved to a broader ER distribution, no longer impacting lipid droplet numbers. Membrane cholesterol levels played a role in the distribution and in vitro enzymatic activity of CPO, with cholesterol enrichment leading to decreased lipid droplet association and enzymatic activity. The ability of CPO to cleave C-terminal amino acids within the early secretory pathway (in vivo) was examined using Gaussia luciferase as a substrate, C-terminally tagged with variants of an ER retention signal. While no effect of cholesterol was observed, these data show that CPO does function as an active enzyme within the ER where it removes C-terminal glutamates and aspartates, as well as a number of polar amino acids.
Collapse
Affiliation(s)
- Linnea C. Burke
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Hazel O. Ezeribe
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Anna Y. Kwon
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Donnel Dockery
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Peter J. Lyons
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
- * E-mail:
| |
Collapse
|
10
|
Canonico B, Di Sario G, Cesarini E, Campana R, Luchetti F, Zamai L, Ortolani C, Nasoni MG, Baffone W, Papa S. Monocyte Response to Different Campylobacter jejuni Lysates Involves Endoplasmic Reticulum Stress and the Lysosomal⁻Mitochondrial Axis: When Cell Death Is Better Than Cell Survival. Toxins (Basel) 2018; 10:E239. [PMID: 29899248 PMCID: PMC6024708 DOI: 10.3390/toxins10060239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is a Gram-negative spiral-shaped bacterium, commonly associated with gastroenteritis in humans. It explicates its virulence also by the cytolethal distending toxin (CDT), able to cause irreversible cell cycle arrest. Infection by C. jejuni may result in the development of the Guillain⁻Barré Syndrome, an acute peripheral neuropathy. Symptoms of this disease could be caused by CDT-induced cell death and a subsequent inflammatory response. We tested C. jejuni lysates from different strains on donor monocytes: in fact, monocytes are potent producers of both pro- and anti-inflammatory cytokines, playing a major role in innate immunity and in non-specific host responses. We found, by cytometric and confocal analyses, that mitochondria and lysosomes were differently targeted: The C. jejuni strain that induced the most relevant mitochondrial alterations was the ATCC 33291, confirming an intrinsic apoptotic pathway, whereas the C. jejuni ISS 1 wild-type strain mostly induced lysosomal alterations. Lysates from all strains induced endoplasmic reticulum (ER) stress in monocytes, suggesting that ER stress was not associated with CDT but to other C. jejuni virulence factors. The ER data were consistent with an increase in cytosolic Ca2+ content induced by the lysates. On the contrary, the changes in lysosomal acidic compartments and p53 expression (occurring together from time 0, T0, to 24 h) were mainly due to CDT. The loss of p53 may prevent or impede cell death and it was not observable with the mutant strain. CDT not only was responsible for specific death effects but also seemed to promote an apoptotic stimuli-resisting pathway.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Gianna Di Sario
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Erica Cesarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Wally Baffone
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| |
Collapse
|
11
|
Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K. Raman and infrared spectroscopy of carbohydrates: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017. [PMID: 28599236 DOI: 10.1002/jrs.4607] [Citation(s) in RCA: 607] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Carbohydrates are widespread and naturally occurring compounds, and essential constituents for living organisms. They are quite often reported when biological systems are studied and their role is discussed. However surprisingly, up till now there is no database collecting vibrational spectra of carbohydrates and their assignment, as has been done already for other biomolecules. So, this paper serves as a comprehensive review, where for selected 14 carbohydrates in the solid state both FT-Raman and ATR FT-IR spectra were collected and assigned. Carbohydrates can be divided into four chemical groups and in the same way is organized this review. First, the smallest molecules are discussed, i.e. monosaccharides (d-(-)-ribose, 2-deoxy-d-ribose, l-(-)-arabinose, d-(+)-xylose, d-(+)-glucose, d-(+)-galactose and d-(-)-fructose) and disaccharides (d-(+)-sucrose, d-(+)-maltose and d-(+)-lactose), and then more complex ones, i.e. trisaccharides (d-(+)-raffinose) and polysaccharides (amylopectin, amylose, glycogen). Both Raman and IR spectra were collected in the whole spectral range and discussed looking at the specific regions, i.e. region V (3600-3050cm-1), IV (3050-2800cm-1) and II (1200-800cm-1) assigned to the stretching vibrations of the OH, CH/CH2 and C-O/C-C groups, respectively, and region III (1500-1200cm-1) and I (800-100cm-1) dominated by deformational modes of the CH/CH2 and CCO groups, respectively. In spite of the fact that vibrational spectra of saccharides are significantly less specific than spectra of other biomolecules (e.g. lipids or proteins), marker bands of the studied molecules can be identified and correlated with their structure.
Collapse
Affiliation(s)
- Ewelina Wiercigroch
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Ewelina Szafraniec
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Krzysztof Czamara
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Marta Z Pacia
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Kamila Kochan
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| |
Collapse
|
12
|
Callera GE, Bruder-Nascimento T, Touyz RM. Assessment of Caveolae/Lipid Rafts in Isolated Cells. Methods Mol Biol 2017; 1527:251-269. [PMID: 28116722 DOI: 10.1007/978-1-4939-6625-7_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter outlines protocols to evaluate protein localization, recruitment or phosphorylation levels in cholesterol/sphingolipids-enriched cell membrane domains and recommends experimental designs with pharmacological tolls to evaluate potential cell functions associated with these domains. We emphasize the need for the combination of several approaches towards understanding the protein components and cellular functions attributed to these distinct microdomains.
Collapse
Affiliation(s)
- G E Callera
- Kidney Research Centre, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Thiago Bruder-Nascimento
- Kidney Research Centre, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - R M Touyz
- Kidney Research Centre, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada. .,Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK.
| |
Collapse
|
13
|
Entry of Classical Swine Fever Virus into PK-15 Cells via a pH-, Dynamin-, and Cholesterol-Dependent, Clathrin-Mediated Endocytic Pathway That Requires Rab5 and Rab7. J Virol 2016; 90:9194-208. [PMID: 27489278 DOI: 10.1128/jvi.00688-16] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Classical swine fever virus (CSFV), a member of the genus Pestivirus within the family Flaviviridae, is a small, enveloped, positive-strand RNA virus. Due to its economic importance to the pig industry, the biology and pathogenesis of CSFV have been investigated extensively. However, the mechanisms of CSFV entry into cells are not well characterized. In this study, we used systematic approaches to dissect CSFV cell entry. We first observed that CSFV infection was inhibited by chloroquine and NH4Cl, suggesting that viral entry required a low-pH environment. By using the specific inhibitor dynasore, or by expressing the dominant negative (DN) K44A mutant, we verified that dynamin is required for CSFV entry. CSFV particles were observed to colocalize with clathrin at 5 min postinternalization, and CSFV infection was significantly reduced by chlorpromazine treatment, overexpression of a dominant negative form of the EPS15 protein, or knockdown of the clathrin heavy chain by RNA interference. These results suggested that CSFV entry depends on clathrin. Additionally, we found that endocytosis of CSFV was dependent on membrane cholesterol, while neither the overexpression of a dominant negative caveolin mutant nor the knockdown of caveolin had an effect. These results further suggested that CSFV entry required cholesterol and not caveolae. Importantly, the effect of DN mutants of three Rab proteins that regulate endosomal traffic on CSFV infection was examined. Expression of DN Rab5 and Rab7 mutants, but not the DN Rab11 mutant, significantly inhibited CSFV replication. These results were confirmed by silencing of Rab5 and Rab7. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab7 during the early phase of infection within 45 min after virus entry. These results indicated that after internalization, CSFV moved to early and late endosomes before releasing its RNA. Taken together, our findings demonstrate for the first time that CSFV enters cells through the endocytic pathway, providing new insights into the life cycle of pestiviruses. IMPORTANCE Bovine viral diarrhea virus (BVDV), a single-stranded, positive-sense pestivirus within the family Flaviviridae, is internalized by clathrin-dependent receptor-mediated endocytosis. However, the detailed mechanism of cell entry is unknown for other pestiviruses, such as classical swine fever (CSF) virus (CSFV). CSFV is the etiological agent of CSF, a highly contagious disease of swine that causes numerous deaths in pigs and enormous economic losses in China. Understanding the entry pathway of CSFV will not only advance our knowledge of CSFV infection and pathogenesis but also provide novel drug targets for antiviral intervention. Based on this objective, we used systematic approaches to dissect the pathway of entry of CSFV into PK-15 cells. This is the first report to show that the entry of CSFV into PK-15 cells requires a low-pH environment and involves dynamin- and cholesterol-dependent, clathrin-mediated endocytosis that requires Rab5 and Rab7.
Collapse
|
14
|
Porter E, Ma DC, Alvarez S, Faull KF. Antimicrobial lipids: Emerging effector molecules of innate host defense. World J Immunol 2015; 5:51-61. [DOI: 10.5411/wji.v5.i2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/28/2015] [Accepted: 07/17/2015] [Indexed: 02/05/2023] Open
Abstract
The antimicrobial properties of host derived lipids have become increasingly recognized and evidence is mounting that antimicrobial lipids (AMLs), like antimicrobial peptides, are effector molecules of the innate immune system and are regulated by its conserved pathways. This review, with primary focus on the human body, provides some background on the biochemistry of lipids, summarizes their biological functions, expands on their antimicrobial properties and site-specific composition, presents modes of synergism with antimicrobial peptides, and highlights the more recent reports on the regulation of AML production as well as bacterial resistance mechanisms. Based on extant data a concept of innate epithelial defense is proposed where epithelial cells, in response to microbial products and proinflammatory cytokines and through activation of conserved innate signaling pathways, increase their lipid uptake and up-regulate transcription of enzymes involved in lipid biosynthesis, and induce transcription of antimicrobial peptides as well as cytokines and chemokines. The subsequently secreted antimicrobial peptides and lipids then attack and eliminate the invader, assisted by or in synergism with other antimicrobial molecules delivered by other defense cells that have been recruited to the site of infection, in most of the cases. This review invites reconsideration of the interpretation of cholesteryl ester accumulation in macrophage lipid droplets in response to infection as a solely proinflammatory event, and proposes a direct antimicrobial role of lipid droplet- associated cholesteryl esters. Finally, for the interested, but new- to- the-field investigator some starting points for the characterization of AMLs are provided. Before it is possible to utilize AMLs for anti-infectious therapeutic and prophylactic approaches, we need to better understand pathogen responses to these lipids and their role in the pathogenesis of chronic infectious disease.
Collapse
|
15
|
Platt FM, Wassif C, Colaco A, Dardis A, Lloyd-Evans E, Bembi B, Porter FD. Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease. Annu Rev Genomics Hum Genet 2015; 15:173-94. [PMID: 25184529 DOI: 10.1146/annurev-genom-091212-153412] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cholesterol plays a key role in many cellular processes, and is generated by cells through de novo biosynthesis or acquired from exogenous sources through the uptake of low-density lipoproteins. Cholesterol biosynthesis is a complex, multienzyme-catalyzed pathway involving a series of sequentially acting enzymes. Inherited defects in genes encoding cholesterol biosynthetic enzymes or other regulators of cholesterol homeostasis result in severe metabolic diseases, many of which are rare in the general population and currently without effective therapy. Historically, these diseases have been viewed as discrete disorders, each with its own genetic cause and distinct pathogenic cascades that lead to its specific clinical features. However, studies have recently shown that three of these diseases have an unanticipated mechanistic convergence. This surprising finding is not only shedding light on details of cellular cholesterol homeostasis but also suggesting novel approaches to therapy.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom;
| | | | | | | | | | | | | |
Collapse
|
16
|
Ratajczak MZ, Adamiak M. Membrane lipid rafts, master regulators of hematopoietic stem cell retention in bone marrow and their trafficking. Leukemia 2015; 29:1452-7. [PMID: 25748684 DOI: 10.1038/leu.2015.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 12/28/2022]
Abstract
Cell outer membranes contain glycosphingolipids and protein receptors, which are integrated into glycoprotein microdomains, known as lipid rafts, which float freely in the membrane bilayer. These structures have an important role in assembling signaling molecules (e.g., Rac-1, RhoH and Lyn) together with surface receptors, such as the CXCR4 receptor for α-chemokine stromal-derived factor-1, the α4β1-integrin receptor (VLA-4) for vascular cell adhesion molecule-1 and the c-kit receptor for stem cell factor, which together regulate several aspects of hematopoietic stem/progenitor cell (HSPC) biology. Here, we discuss the role of lipid raft integrity in the retention and quiescence of normal HSPCs in bone marrow niches as well as in regulating HSPC mobilization and homing. We will also discuss the pathological consequences of the defect in lipid raft integrity seen in paroxysmal nocturnal hemoglobinuria and the emerging evidence for the involvement of lipid rafts in hematological malignancies.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - M Adamiak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
17
|
Kim HY, Kim S, Pyun HJ, Maeng J, Lee K. Cellular uptake mechanism of TCTP-PTD in human lung carcinoma cells. Mol Pharm 2014; 12:194-203. [PMID: 25423047 DOI: 10.1021/mp500547f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We reported previously that human translationally controlled tumor protein (TCTP) contains, at its NH2-terminus, a protein transduction domain (PTD), which we called TCTP-PTD, with the amino acid sequence MIIYRDLISH. In this report we describe how TCTP-PTD penetrates A549 human lung cancer cell membranes and promotes protein internalization. Cellular uptake of fluorescent TCTP-PTD and a recombinant fusion protein consisting of TCTP-PTD and GFP (green fluorescent protein) was analyzed by confocal fluorescence microscopy and flow cytometry. Inhibitor assays using several agents that perturb the internalization process revealed that TCTP-PTD transduces the cells partly via lipid-raft/caveola-dependent endocytosis and partly by macropinocytosis in a dynamin/actin/microtubule-dependent pathway. To trace the pathway followed by the penetration of TCTP-PTD, the localization of PTDs was investigated in the lipid-raft, subcellular, and ER fractions. We found that, after entry, TCTP-PTD is localized in the cytoplasm and cytoskeleton, but not in the nucleus, and is transported into endoplasmic reticulum (ER). Expression levels of caveolin-1 in A549 and HeLa cells are different, and these differences appear to contribute to the sensitivity of TCTP-PTD uptake inhibition, against lipid-raft depleter, nystatin. This elucidation of the underlying mechanism of TCTP-PTD translocation may help the design of approaches that employ TCTP-PTD in the cellular delivery of bioactive molecules.
Collapse
Affiliation(s)
- Hyo Young Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University , Seoul 120-750, Republic of Korea
| | | | | | | | | |
Collapse
|
18
|
Abstract
UNLABELLED A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis. IMPORTANCE In this work, we provide the first description of a new form of programmed cell death in erythrocytes (RBCs) that occurs as a consequence of cellular attack by human-specific bacterial toxins. By defining a new RBC death pathway that shares important components with necroptosis, a programmed necrosis module that occurs in nucleated cells, these findings expand our understanding of RBC biology and RBC-pathogen interactions. In addition, our work provides a link between cholesterol-dependent cytolysin (CDC) host restriction and promotion of bacterial growth in the presence of RBCs, which may provide a selective advantage to human-associated bacterial strains that elaborate such toxins and a potential explanation for the narrowing of host range observed in this toxin family.
Collapse
|
19
|
Nastou KC, Tsaousis GN, Kremizas KE, Litou ZI, Hamodrakas SJ. The human plasma membrane peripherome: visualization and analysis of interactions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:397145. [PMID: 25057483 PMCID: PMC4095733 DOI: 10.1155/2014/397145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
A major part of membrane function is conducted by proteins, both integral and peripheral. Peripheral membrane proteins temporarily adhere to biological membranes, either to the lipid bilayer or to integral membrane proteins with noncovalent interactions. The aim of this study was to construct and analyze the interactions of the human plasma membrane peripheral proteins (peripherome hereinafter). For this purpose, we collected a dataset of peripheral proteins of the human plasma membrane. We also collected a dataset of experimentally verified interactions for these proteins. The interaction network created from this dataset has been visualized using Cytoscape. We grouped the proteins based on their subcellular location and clustered them using the MCL algorithm in order to detect functional modules. Moreover, functional and graph theory based analyses have been performed to assess biological features of the network. Interaction data with drug molecules show that ~10% of peripheral membrane proteins are targets for approved drugs, suggesting their potential implications in disease. In conclusion, we reveal novel features and properties regarding the protein-protein interaction network created by peripheral proteins of the human plasma membrane.
Collapse
Affiliation(s)
- Katerina C. Nastou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Georgios N. Tsaousis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Kimon E. Kremizas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Zoi I. Litou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Stavros J. Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| |
Collapse
|
20
|
The complement inhibitor CD59 regulates insulin secretion by modulating exocytotic events. Cell Metab 2014; 19:883-90. [PMID: 24726385 DOI: 10.1016/j.cmet.2014.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/22/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes is triggered by reduced insulin production, caused by genetic and environmental factors such as inflammation originating from the innate immune system. Complement proteins are a component of innate immunity and kill non-self cells by perforating the plasma membrane, a reaction prevented by CD59. Human pancreatic islets express CD59 at very high levels. CD59 is primarily known as a plasma membrane protein in membrane rafts, but most CD59 protein in pancreatic β cells is intracellular. Removing extracellular CD59 disrupts membrane rafts and moderately stimulates insulin secretion, whereas silencing intracellular CD59 markedly suppresses regulated secretion by exocytosis, as demonstrated by TIRF imaging. CD59 interacts with the exocytotic proteins VAMP2 and Syntaxin-1. CD59 expression is reduced by glucose and in rodent diabetes models but upregulated in human diabetic islets, potentially reflecting compensatory reactions. This unconventional action of CD59 broadens the established view of innate immunity in type 2 diabetes.
Collapse
|
21
|
García Cordero J, León Juárez M, González-Y-Merchand JA, Cedillo Barrón L, Gutiérrez Castañeda B. Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells. PLoS One 2014; 9:e90704. [PMID: 24643062 PMCID: PMC3958351 DOI: 10.1371/journal.pone.0090704] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/18/2014] [Indexed: 01/10/2023] Open
Abstract
Lipid rafts are ordered microdomains within cellular membranes that are rich in cholesterol and sphingolipids. Caveolin (Cav-1) and flotillin (Flt-1) are markers of lipid rafts, which serve as an organizing center for biological phenomena and cellular signaling. Lipid rafts involvement in dengue virus (DENV) processing, replication, and assembly remains poorly characterized. Here, we investigated the role of lipid rafts after DENV endocytosis in human microvascular endothelial cells (HMEC-1). The non-structural viral proteins NS3 and NS2B, but not NS5, were associated with detergent-resistant membranes. In sucrose gradients, both NS3 and NS2B proteins appeared in Cav-1 and Flt-1 rich fractions. Additionally, double immunofluorescence staining of DENV-infected HMEC-1 cells showed that NS3 and NS2B, but not NS5, colocalized with Cav-1 and Flt-1. Furthermore, in HMEC-1cells transfected with NS3 protease, shown a strong overlap between NS3 and Cav-1, similar to that in DENV-infected cells. In contrast, double-stranded viral RNA (dsRNA) overlapped weakly with Cav-1 and Flt-1. Given these results, we investigated whether Cav-1 directly interacted with NS3. Cav-1 and NS3 co-immunoprecipitated, indicating that they resided within the same complex. Furthermore, when cellular cholesterol was depleted by methyl-beta cyclodextrin treatment after DENV entrance, lipid rafts were disrupted, NS3 protein level was reduced, besides Cav-1 and NS3 were displaced to fractions 9 and 10 in sucrose gradient analysis, and we observed a dramatically reduction of DENV particles release. These data demonstrate the essential role of caveolar cholesterol-rich lipid raft microdomains in DENV polyprotein processing and replication during the late stages of the DENV life cycle.
Collapse
Affiliation(s)
- Julio García Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas IPN, México City, México
| | - Moisés León Juárez
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
| | | | - Leticia Cedillo Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
- * E-mail: (BGC); (LCB)
| | - Benito Gutiérrez Castañeda
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala Universidad Autónoma de México, Tlalnepantla Estado de México, México
- * E-mail: (BGC); (LCB)
| |
Collapse
|
22
|
Lallès JP. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev 2013; 72:82-94. [DOI: 10.1111/nure.12082] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique; UR1341; Alimentation et Adaptations Digestives, Nerveuses et Comportementales (ADNC); Saint-Gilles France
| |
Collapse
|
23
|
Abstract
This article describes a procedure to prepare a raft-like intracellular membrane fraction enriched for the trans-Golgi network (TGN) and endosomal compartments. The initial step in this technique involves cell disruption by homogenization, followed by clearance of the plasma membrane, late endosomes, mitochondria and the endoplasmic reticulum by differential sedimentation. Carbonate treatment, sonication and sucrose density-gradient ultracentrifugation are subsequently used to isolate the target membranes. The isolated subcellular fraction contains less than 1% of the total cellular proteins, but it is highly enriched for syntaxin-6 and Rab11. Typically, 40-60% of the cellular pool of GM1 glycosphingolipid and 10-20% of the total cellular cholesterol cofractionate with this buoyant membrane fraction. Given the role of GM1 as a cell-surface receptor for the cholera toxin and that levels of both GM1 and cholesterol in the TGN-endosomal compartment are upregulated in some inherited diseases, this protocol can potentially be applied to the analysis of disease-associated changes to GM1-enriched intracellular membranes. The isolated membranes are very well separated from caveolin-rich domains of the plasma membrane, the TGN and recycling endosomes. The entire protocol can be completed in as little as 1 d.
Collapse
Affiliation(s)
- Mark G Waugh
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| |
Collapse
|
24
|
Boese AS, Majer A, Saba R, Booth SA. Small RNA drugs for prion disease: a new frontier. Expert Opin Drug Discov 2013; 8:1265-84. [DOI: 10.1517/17460441.2013.818976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Caré BR, Soula HA. Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012720. [PMID: 23410372 DOI: 10.1103/physreve.87.012720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/19/2012] [Indexed: 06/01/2023]
Abstract
Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors' spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.
Collapse
Affiliation(s)
- Bertrand R Caré
- Université de Lyon, LIRIS UMR 5205 CNRS-INSA, F-69621, Villeurbanne, France.
| | | |
Collapse
|
26
|
Jobling MG, Yang Z, Kam WR, Lencer WI, Holmes RK. A single native ganglioside GM1-binding site is sufficient for cholera toxin to bind to cells and complete the intoxication pathway. mBio 2012; 3:e00401-12. [PMID: 23111873 PMCID: PMC3487775 DOI: 10.1128/mbio.00401-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/05/2012] [Indexed: 01/02/2023] Open
Abstract
Cholera toxin (CT) from Vibrio cholerae is responsible for the majority of the symptoms of the diarrheal disease cholera. CT is a heterohexameric protein complex with a 240-residue A subunit and a pentameric B subunit of identical 103-residue B polypeptides. The A subunit is proteolytically cleaved within a disulfide-linked loop to generate the A1 and A2 fragments. The B subunit of wild-type (wt) CT binds 5 cell surface ganglioside GM(1) (GM(1)) molecules, and the toxin-GM(1) complex traffics from the plasma membrane (PM) retrograde through endosomes and the Golgi apparatus to the endoplasmic reticulum (ER). From the ER, the enzymatic A1 fragment retrotranslocates to the cytosol to cause disease. Clustering of GM(1) by multivalent toxin binding can structurally remodel cell membranes in ways that may assist toxin uptake and retrograde trafficking. We have recently found, however, that CT may traffic from the PM to the ER by exploiting an endogenous glycosphingolipid pathway (A. A. Wolf et al., Infect. Immun. 76:1476-1484, 2008, and D. J. F. Chinnapen et al., Dev. Cell 23:573-586, 2012), suggesting that multivalent binding to GM(1) is dispensable. Here we formally tested this idea by creating homogenous chimeric holotoxins with defined numbers of native GM(1) binding sites from zero (nonbinding) to five (wild type). We found that a single GM(1) binding site is sufficient for activity of the holotoxin. Therefore, remodeling of cell membranes by mechanisms that involve multivalent binding of toxin to GM(1) receptors is not essential for toxicity of CT. Through multivalent binding to its lipid receptor, cholera toxin (CT) can remodel cell membranes in ways that may assist host cell invasion. We recently found that CT variants which bind no more than 2 receptor molecules do exhibit toxicity, suggesting that CT may be able to enter cells by coopting an endogenous lipid sorting pathway without clustering receptors. We tested this idea directly by using purified variants of CT with zero to five functional receptor-binding sites (BS). One BS enabled CT to intoxicate cells, supporting the conclusion that CT can enter cells by coopting an endogenous lipid-sorting pathway. Although multivalent receptor binding is not essential, it does increase CT toxicity. These findings suggest that achieving higher receptor binding avidity or affecting membrane dynamics by lipid clustering and membrane remodeling may be driving forces for evolution of AB(5) subunit toxins that can bind multivalently to cell membrane lipid receptors.
Collapse
Affiliation(s)
- Michael G. Jobling
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - ZhiJie Yang
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Wendy R. Kam
- GI Cell Biology, Department of Pediatrics, Children’s Hospital, Boston, Massachusetts, USA; and
| | | | - Randall K. Holmes
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|