1
|
Wang Y, Liu X, Quan X, Qin X, Zhou Y, Liu Z, Chao Z, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor and its role in microvascular-related diseases. Biochimie 2022; 200:153-171. [DOI: 10.1016/j.biochi.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
|
2
|
Hu L, Xu G. Potential Protective Role of TRPM7 and Involvement of PKC/ERK Pathway in Blue Light-Induced Apoptosis in Retinal Pigment Epithelium Cells in Vitro. Asia Pac J Ophthalmol (Phila) 2021; 10:572-578. [PMID: 34789674 PMCID: PMC8673846 DOI: 10.1097/apo.0000000000000447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Blue light triggers apoptosis of retinal pigment epithelium (RPE) cells and causes retinal damage. The aim of this study was to elucidate the protective role of transient receptor potential melastatin 7 (TRPM7) in photodamaged RPE cells. METHODS RPE cells were isolated from Sprague-Dawley (SD) rats and exposed to varying intensities of blue light (500-5000 lux) in vitro. Cell proliferation and metabolic activity were respectively assessed by bromodeoxyuridine (BrdU) incorporation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. Real-time polymerase chain reaction (RT-PCR) and western blotting were used to analyze the TRPM7, protein kinase C (PKC), extracellular signal-regulated kinase (ERK) and Bcl2-associated x/B-cell lymphoma 2 (Bax/Bcl-2) messenger RNA (mRNA) and protein expression levels. The cells were transfected with TRPM7 small interfering RNA (siRNA) or transduced with TRPM7-overexpressing lentiviruses and cultured with or without the pigment epithelium-derived factor (PEDF). RESULTS Blue light inhibited the proliferation and metabolic activity of RPE cells in an intensity-dependent manner when compared to nonirradiated controls (P < 0.05). Compared to the control, photodamaged RPE cells showed decreased levels of TRPM7, PKC, ERK, and Bax, and an increase in Bcl-2 levels (P < 0.01). Forced expression of TRPM7 partially rescued the proliferative capacity of RPE cells (P < 0.01) and restored the levels of TRPM7, PKC, ERK, and Bax (P < 0.01), whereas TRPM7 knockdown had the opposite effects (P < 0.01). TRPM7 and PEDF synergistically alleviated the damaging effects of blue light. CONCLUSIONS Blue light triggers apoptosis of RPE cells, and its deleterious effects can be partially attenuated by the synergistic action of TRPM7 and PEDF via the PKC/ERK signaling pathway.
Collapse
Affiliation(s)
- Luping Hu
- First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou City 350005, China
| | | |
Collapse
|
3
|
Miralles de Imperial-Ollero JA, Gallego-Ortega A, Ortín-Martínez A, Villegas-Pérez MP, Valiente-Soriano FJ, Vidal-Sanz M. Animal Models of LED-Induced Phototoxicity. Short- and Long-Term In Vivo and Ex Vivo Retinal Alterations. Life (Basel) 2021; 11:life11111137. [PMID: 34833013 PMCID: PMC8617611 DOI: 10.3390/life11111137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
Phototoxicity animal models have been largely studied due to their degenerative communalities with human pathologies, e.g., age-related macular degeneration (AMD). Studies have documented not only the effects of white light exposure, but also other wavelengths using LEDs, such as blue or green light. Recently, a blue LED-induced phototoxicity (LIP) model has been developed that causes focal damage in the outer layers of the superior-temporal region of the retina in rodents. In vivo studies described a progressive reduction in retinal thickness that affected the most extensively the photoreceptor layer. Functionally, a transient reduction in a- and b-wave amplitude of the ERG response was observed. Ex vivo studies showed a progressive reduction of cones and an involvement of retinal pigment epithelium cells in the area of the lesion and, in parallel, an activation of microglial cells that perfectly circumscribe the damage in the outer retinal layer. The use of neuroprotective strategies such as intravitreal administration of trophic factors, e.g., basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or pigment epithelium-derived factor (PEDF) and topical administration of the selective alpha-2 agonist (Brimonidine) have demonstrated to increase the survival of the cone population after LIP.
Collapse
Affiliation(s)
- Juan A. Miralles de Imperial-Ollero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Arturo Ortín-Martínez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada;
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V-S.); +34-868-88-4330 (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V-S.); +34-868-88-4330 (M.V.-S.)
| |
Collapse
|
4
|
Zhou B, Fang L, Dong Y, Yang J, Chen X, Zhang N, Zhu Y, Huang T. Mitochondrial quality control protects photoreceptors against oxidative stress in the H 2O 2-induced models of retinal degeneration diseases. Cell Death Dis 2021; 12:413. [PMID: 33879768 PMCID: PMC8058096 DOI: 10.1038/s41419-021-03660-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
Retinal degeneration diseases (RDDs) are common and devastating eye diseases characterized by the degeneration of photoreceptors, which are highly associated with oxidative stress. Previous studies reported that mitochondrial dysfunction is associated with various neurodegenerative diseases. However, the role of mitochondrial proteostasis mainly regulated by mitophagy and mitochondrial unfolded protein response (mtUPR) in RDDs is unclear. We hypothesized that the mitochondrial proteostasis is neuroprotective against oxidative injury in RDDs. In this study, the data from our hydrogen peroxide (H2O2)-treated mouse retinal cone cell line (661w) model of RDDs showed that nicotinamide riboside (NR)-activated mitophagy increased the expression of LC3B II and PINK1, and promoted the co-localization of LC3 and mitochondria, as well as PINK1 and Parkin in the H2O2-treated 661w cells. However, the NR-induced mitophagy was remarkably reversed by chloroquine (CQ) and cyclosporine A (CsA), mitophagic inhibitors. In addition, doxycycline (DOX), an inducer of mtUPR, up-regulated the expression of HSP60 and CHOP, the key proteins of mtUPR. Activation of both mitophagy and mtUPR increased the cell viability and reduced the level of apoptosis and oxidative damage in the H2O2-treated 661w cells. Furthermore, both mitophagy and mtUPR played a protective effect on mitochondria by increasing mitochondrial membrane potential and maintaining mitochondrial mass. By contrast, the inhibition of mitophagy by CQ or CsA reversed the beneficial effect of mitophagy in the H2O2-treated 661w cells. Together, our study suggests that the mitophagy and mtUPR pathways may serve as new therapeutic targets to delay the progression of RDDs through enhancing mitochondrial proteostasis.
Collapse
Affiliation(s)
- Biting Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lijun Fang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanli Dong
- Qiqihaer Food and Drug Control Center, Qiqihaer, Heilongjiang, China
| | - Juhua Yang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaole Chen
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Nanwen Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yihua Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Tianwen Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
- Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Pigment Epithelium-Derived Factor (PEDF) Fragments Prevent Mouse Cone Photoreceptor Cell Loss Induced by Focal Phototoxicity In Vivo. Int J Mol Sci 2020; 21:ijms21197242. [PMID: 33008127 PMCID: PMC7582775 DOI: 10.3390/ijms21197242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Here, we evaluated the effects of PEDF (pigment epithelium-derived factor) and PEDF peptides on cone-photoreceptor cell damage in a mouse model of focal LED-induced phototoxicity (LIP) in vivo. Swiss mice were dark-adapted overnight, anesthetized, and their left eyes were exposed to a blue LED placed over the cornea. Immediately after, intravitreal injection of PEDF, PEDF-peptide fragments 17-mer, 17-mer[H105A] or 17-mer[R99A] (all at 10 pmol) were administered into the left eye of each animal. BDNF (92 pmol) and bFGF (27 pmol) injections were positive controls, and vehicle negative control. After 7 days, LIP resulted in a consistent circular lesion located in the supratemporal quadrant and the number of S-cones were counted within an area centered on the lesion. Retinas treated with effectors had significantly greater S-cone numbers (PEDF (60%), 17-mer (56%), 17-mer [H105A] (57%), BDNF (64%) or bFGF (60%)) relative to their corresponding vehicle groups (≈42%). The 17-mer[R99A] with no PEDF receptor binding and no neurotrophic activity, PEDF combined with a molar excess of the PEDF receptor blocker P1 peptide, or with a PEDF-R enzymatic inhibitor had undetectable effects in S-cone survival. The findings demonstrated that the cone survival effects were mediated via interactions between the 17-mer region of the PEDF molecule and its PEDF-R receptor.
Collapse
|
6
|
Bullock J, Pagan-Mercado G, Becerra SP. Cell-based assays to identify novel retinoprotective agents. MethodsX 2020; 7:101026. [PMID: 32874942 PMCID: PMC7452256 DOI: 10.1016/j.mex.2020.101026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Degeneration of the retina can lead ultimately to devastating irreversible vision loss, such as in inherited retinitis pigmentosa and age-related macular degeneration. Currently there is no cure to prevent retinal degeneration. Quantitative cell-based assays can be used to test potential drugs that prevent the death of retinal cells. Here, we describe in detail three semi-automated cell-based protocols to identify retinoprotective factors with two retinal cell lines, rat R28 cells and mouse 661W cells. In these protocols, cells are induced to undergo death by photo-oxidation stress, growth factor depletion or cytotoxicity with sodium iodate. Pigment epithelium-derived factor, an established neurotrophic factor for retinal cells, was used as a positive control. We discuss how these protocols will prove useful in high-throughput quantitative screening to identify novel therapeutics for retinal disorders.
Collapse
Affiliation(s)
- Jeanee Bullock
- Section on Protein Structure and Function, LRCMB, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Glorivee Pagan-Mercado
- Section on Protein Structure and Function, LRCMB, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Patricia Becerra
- Section on Protein Structure and Function, LRCMB, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Dixit S, Polato F, Samardzija M, Abu-Asab M, Grimm C, Crawford SE, Becerra SP. PEDF deficiency increases the susceptibility of rd10 mice to retinal degeneration. Exp Eye Res 2020; 198:108121. [PMID: 32721425 DOI: 10.1016/j.exer.2020.108121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022]
Abstract
The SERPINF1 gene encodes pigment epithelium-derived factor (PEDF), a member of the serpin superfamily with neurotrophic and antiangiogenic properties in the retina. We hypothesized that absence of PEDF would lead to increased stress-associated retinal degeneration in Serpinf1 null mice. Accordingly, using a Serpinf1 null mouse model, we investigated the impact of PEDF absence on retinal morphology, and susceptibility to induced and inherited retinal degeneration. We studied the pattern of Serpinf1 expression in the mouse retina layers. PEDF protein was detected by western blotting. Transmission electron microscopy was performed on mouse retina. Serpinf1 null mice and wild type littermates were injected with NaIO3 (30 mg/kg body weight) intraperitonially. At post-injection day 1, 3, 4, 6 and 8 mice were euthanized, and eyes were enucleated. Serpinf1 null and rd10 double mutant mice were generated and their eyes enucleated at different time points from post-natal day 15 to post-natal day 28. Enucleated eyes were processed for hematoxylin and eosin staining and histopathological evaluations. We found that Serpinf1 was expressed in the retinal pigment epithelium, in the inner nuclear layer and in the ganglion cell layer, but undetectable in the outer nuclear layer of wild type mice. Plasma PEDF protein levels were undetectable in Serpinf1 null animals. RPE atrophy and retinal thinning were observed in NaIO3-treated wild type mice that progressed with time post-injection. NaIO3-treated Serpinf1 null mice showed comparatively better retinal morphology than wild type mice at day 4 post-injection. However, the absence of PEDF in Serpinf1 null x rd10 mice increased the susceptibility to retinal degeneration relative to that of rd10 mice. We concluded that histopathological evaluation of retinas lacking PEDF showed that removal of the Serpinf1 gene may activate PEDF-independent compensatory mechanisms to protect the retina against oxidative stress, while it increases the susceptibility to degenerate the retina in inherited retinal degeneration models.
Collapse
Affiliation(s)
- Shivani Dixit
- Section of Protein Structure and Function, LRCMB-NEI-NIH, Bethesda, MD, USA
| | - Federica Polato
- Section of Protein Structure and Function, LRCMB-NEI-NIH, Bethesda, MD, USA
| | - Marijana Samardzija
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | | | - Christian Grimm
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Susan E Crawford
- Department of Surgery, NorthShore University Health System Research Institute, Evanston, IL, USA
| | - S Patricia Becerra
- Section of Protein Structure and Function, LRCMB-NEI-NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Signaling Mechanisms Involved in PEDF-Mediated Retinoprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1185:445-449. [PMID: 31884652 DOI: 10.1007/978-3-030-27378-1_73] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is involved in signal transduction cascades necessary for protection of the retina. The interaction between PEDF and retinal cells elicits neuroprotective effects in vitro and in vivo. The direct substrates and signaling mechanisms involved in the survival response derived from such interaction are beginning to be revealed. It is of interest to elucidate cell death pathways that are crucial for the retinoprotective response of PEDF for the identification of targets that interfere with retina degeneration with potential therapeutic value. Here we review the molecular pathways triggered by PEDF that are involved in retinal survival activity.
Collapse
|
9
|
PEDF peptides promote photoreceptor survival in rd10 retina models. Exp Eye Res 2019; 184:24-29. [PMID: 30980815 DOI: 10.1016/j.exer.2019.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/19/2018] [Accepted: 04/05/2019] [Indexed: 12/20/2022]
Abstract
The purpose of the study is to evaluate the protective properties of PEDF peptide fragments on rd10 mouse models of retinal degeneration ex vivo. Human recombinant PEDF and synthetic peptides were used. Rd10 retinal explants as well as wild-type retinal explants treated with zaprinast to mimic the rd10 photoreceptor cell death were employed. PEDF protein was intravitreally administered into rd10 mice. Outer nuclear layer thickness measurements in retinal sections, TUNEL labeling in retinal explants, western blots and immunofluorescence with retinal samples were performed. PEDF protein levels in the RPE of rd10 mice decreased with age (P15 - P25). Levels of PEDF receptor PEDF-R declined in the photoreceptor inner segments from rd10 relative to wild-type mice at P25. PEDF administration increased the outer nuclear layer thickness of rd10 retinas in vivo and decreased the number of TUNEL+ nuclei of photoreceptors in rd10 retinal explant cultures, both relative to untreated controls. Peptides containing the PEDF neurotrophic region decreased the number of TUNEL+ photoreceptors in both rd10 and zaprinast-induced cell death ex vivo models, while peptides without the neurotrophic region and/or lacking affinity for PEDF-R were ineffective in protecting photoreceptors. Thus, retinal explants are a valuable system to evaluate PEDF activity. Short peptides with the photoreceptor-protective property of PEDF may prove useful for the development of therapeutic agents for photoreceptor protection in retinal degenerations.
Collapse
|
10
|
Chang JYA, Shi L, Ko ML, Ko GYP. Circadian Regulation of Mitochondrial Dynamics in Retinal Photoreceptors. J Biol Rhythms 2019; 33:151-165. [PMID: 29671706 DOI: 10.1177/0748730418762152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Energy expenditure and metabolism in the vertebrate retina are under circadian control, as we previously reported that the overall retinal ATP content and various signaling molecules related to metabolism display daily or circadian rhythms. Changes in the fission and fusion process of mitochondria, the major organelles producing ATP, in retinal photoreceptors are largely dependent on light exposure, but whether mitochondrial dynamics in photoreceptors and retinal neurons are under circadian control is not clear. Herein, we investigated the possible roles of circadian oscillators in regulating mitochondrial dynamics, mitophagy, and redox states in the chicken retina and mammalian photoreceptors. After entrainment to 12:12-h light-dark (LD) cycles for several days followed by free-running in constant darkness (DD), chicken embryonic retinas and cone-derived 661W cells were collected in either LD or DD at 6 different zeitgeber time (ZT) or circadian time (CT) points. The protein expression of mitochondrial dynamin-related protein 1 (DRP1), mitofusin 2 (MFN2), and PTEN-induced putative kinase 1 (PINK1) displayed daily rhythms, but only DRP1 was under circadian control in the chicken retinas and cultured 661W cells. In addition, cultured chicken retinal cells responded to acute oxidative stress differently from 661W cells. Using pMitoTimer as a mitochondrial redox indicator, we found that the mitochondrial redox states were more affected by light exposure than regulated by circadian oscillators. Thus, this study demonstrates that the influence of cyclic lights might outweigh the circadian regulation of complex mitochondrial dynamics in light-sensing retinal cells.
Collapse
Affiliation(s)
- Janet Ya-An Chang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas.,Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas.,Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
11
|
Ma Y, Han X, de Castro RB, Zhang P, Zhang K, Hu Z, Qin L. Analysis of the bystander effect in cone photoreceptors via a guided neural network platform. SCIENCE ADVANCES 2018; 4:eaas9274. [PMID: 29750200 PMCID: PMC5942910 DOI: 10.1126/sciadv.aas9274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The mammalian retina system consists of a complicated photoreceptor structure, which exhibits extensive random synaptic connections. To study retinal development and degeneration, various experimental models have been used previously, but these models are often uncontrollable, are difficult to manipulate, and do not provide sufficient similarity or precision. Therefore, the mechanisms in many retinal diseases remain unclear because of the limited capability in observing the progression and molecular driving forces. For example, photoreceptor degeneration can spread to surrounding healthy photoreceptors via a phenomenon known as the bystander effect; however, no in-depth observations can be made to decipher the molecular mechanisms or the pathways that contribute to the spreading. It is then necessary to build dissociated neural networks to investigate the communications with controllability of cells and their treatment. We developed a neural network chip (NN-Chip) to load single neurons into highly ordered microwells connected by microchannels for synapse formation to build the neural network. By observing the distribution of apoptosis spreading from light-induced apoptotic cones to the surrounding cones, we demonstrated convincing evidence of the existence of a cone-to-cone bystander killing effect. Combining the NN-Chip with microinjection technology, we also found that the gap junction protein connexin 36 (Cx36) is critical for apoptosis spreading and the bystander effect in cones. In addition, our unique NN-Chip platform provides a quantitative, high-throughput tool for investigating signaling mechanisms and behaviors in neurons and opens a new avenue for screening potential drug targets to cure retinal diseases.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ricardo Bessa de Castro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
- College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kai Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zhongbo Hu
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
12
|
Falero-Perez J, Park S, Sorenson CM, Sheibani N. PEDF expression affects retinal endothelial cell proangiogenic properties through alterations in cell adhesive mechanisms. Am J Physiol Cell Physiol 2017; 313:C405-C420. [PMID: 28747334 PMCID: PMC5668572 DOI: 10.1152/ajpcell.00004.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is an endogenous inhibitor of angiogenesis. Although various ocular cell types including retinal endothelial cells (EC) produce PEDF, we know very little about cell autonomous effects of PEDF in these cell types. Here we determined how PEDF expression affects retinal EC proangiogenic properties. Retinal EC were prepared from wild-type (PEDF+/+) and PEDF-deficient (PEDF-/-) mice. The identity of EC was confirmed by staining for specific markers including vascular endothelial cadherin, CD31, and B4-lectin. Retinal EC also expressed VEGF receptor 1 and endoglin, as well as ICAM-1, ICAM-2, and VCAM-1. PEDF-/- retinal EC were more proliferative, less apoptotic when challenged with H2O2, less migratory, and less adherent compared with PEDF+/+ EC. These changes could be associated, at least in part, with increased levels of tenascin-C, fibronectin, thrombospondin-1 and collagen IV, and lower amounts of osteopontin. PEDF-/- EC also exhibited alterations in expression of a number of integrins including α2, αv, β1, β8, and αvβ3, and cell-cell adhesion molecules including CD31, zonula occluden-1, and occludin. These observations correlated with attenuation of capillary morphogenesis and increased levels of oxidative stress in PEDF-/- EC. PEDF-/- EC also produced lower levels of VEGF compared with PEDF+/+ cells. Thus, PEDF deficiency has a significant impact on retinal EC adhesion and migration, perhaps through altered production of extracellular matrix and junctional proteins in response to increased oxidative stress affecting their proangiogenic activity.
Collapse
Affiliation(s)
- Juliana Falero-Perez
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - SunYoung Park
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin;
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
13
|
Zhu S, Liu H, Sha H, Qi L, Gao DS, Zhang W. PERK and XBP1 differentially regulate CXCL10 and CCL2 production. Exp Eye Res 2017; 155:1-14. [PMID: 28065589 DOI: 10.1016/j.exer.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/11/2016] [Accepted: 01/04/2017] [Indexed: 02/04/2023]
Abstract
Inflammation plays a key role in the pathogenesis of many retinal degenerative diseases related with photoreceptor dysfunction/degeneration. However the involvement of photoreceptor cells in inflammatory reactions is largely unknown as they are not considered as inflammatory cells. In this study, we assessed whether photoreceptor cells can produce CCL2 and CXCL10, two important players in inflammation during endoplasmic reticulum (ER) stress. After photoreceptor 661 W cells were treated with ER stress inducer thapsigargin (TG), induction of ER stress increased CXCL10 and CCL2 expression at both mRNA and protein levels, which was significantly blocked by an ER stress blocker 4-phenylbutyrate. ER stress contains three pathways: PERK, ATF6 and IRE1α. Knockdown of PERK attenuated TG-induced CXCL10 and CCL2 mRNA expression, associated with significant decreases in phosphorylation of NF-κB RelA and STAT3. In contrast to PERK, knockdown of XBP1, which is activated by IRE1α-mediated splicing, robustly enhanced TG-induced CXCL10 and CCL2 expression and phosphorylation of NF-κB RelA and STAT3. Blockade of NF-κB or STAT3 markedly diminished TG-induced CXCL10 and CCL2 expression. The specific roles of PERK and XBP1 in CXCL10 and CCL2 expression were further investigated by treating photoreceptor cells with advanced glycation end products (AGE) and high glucose (HG), two of the major contributors to diabetic complications. Similarly, AGE and HG induced CXCL10 and CCL2 expression in which PERK was a positive regulator while XBP1 was a negative regulator. These studies suggest that photoreceptors may be involved in retinal inflammation by expressing chemokines CXCL10 and CCL2. PERK and IRE1α/XBP1 in the unfolded protein response differentially regulate the expression of CXCL10 and CCL2 likely through modulation of ER stress-induced NF-κB RelA and STAT3 activation.
Collapse
Affiliation(s)
- Shuang Zhu
- Research Center for Neurology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX, USA
| | - Hua Liu
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA
| | - Haibo Sha
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - Dian-Shuai Gao
- Research Center for Neurology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX, USA; Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
14
|
Natoli R, Rutar M, Lu YZ, Chu-Tan JA, Chen Y, Saxena K, Madigan M, Valter K, Provis JM. The Role of Pyruvate in Protecting 661W Photoreceptor-Like Cells Against Light-Induced Cell Death. Curr Eye Res 2016; 41:1473-1481. [DOI: 10.3109/02713683.2016.1139725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Riccardo Natoli
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Matt Rutar
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yen-Zhen Lu
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Joshua A. Chu-Tan
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yuwei Chen
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Kartik Saxena
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Michele Madigan
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, Australia
- The Save Sight Institute, University of Sydney, Sydney, Australia
| | - Krisztina Valter
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Jan M. Provis
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| |
Collapse
|
15
|
PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases. Clin Sci (Lond) 2015; 128:805-23. [PMID: 25881671 PMCID: PMC4557399 DOI: 10.1042/cs20130463] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a broadly expressed multifunctional member of the serine proteinase inhibitor (serpin) family. This widely studied protein plays critical roles in many physiological and pathophysiological processes, including neuroprotection, angiogenesis, fibrogenesis and inflammation. The present review summarizes the temporal and spatial distribution patterns of PEDF in a variety of developing and adult organs, and discusses its functions in maintaining physiological homoeostasis. The major focus of the present review is to discuss the implication of PEDF in diabetic and hypoxia-induced angiogenesis, and the pathways mediating PEDF's effects under these conditions. Furthermore, the regulatory mechanisms of PEDF expression, function and degradation are also reviewed. Finally, the therapeutic potential of PEDF as an anti-angiogenic drug is briefly summarized.
Collapse
|
16
|
Primary retinal cultures as a tool for modeling diabetic retinopathy: an overview. BIOMED RESEARCH INTERNATIONAL 2015; 2015:364924. [PMID: 25688355 PMCID: PMC4320900 DOI: 10.1155/2015/364924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/04/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Experimental models of diabetic retinopathy (DR) have had a crucial role in the comprehension of the pathophysiology of the disease and the identification of new therapeutic strategies. Most of these studies have been conducted in vivo, in animal models. However, a significant contribution has also been provided by studies on retinal cultures, especially regarding the effects of the potentially toxic components of the diabetic milieu on retinal cell homeostasis, the characterization of the mechanisms on the basis of retinal damage, and the identification of potentially protective molecules. In this review, we highlight the contribution given by primary retinal cultures to the study of DR, focusing on early neuroglial impairment. We also speculate on possible themes into which studies based on retinal cell cultures could provide deeper insight.
Collapse
|