1
|
Eberly HW, Sciscent BY, Lorenz FJ, Rettig EM, Goyal N. Current and Emerging Diagnostic, Prognostic, and Predictive Biomarkers in Head and Neck Cancer. Biomedicines 2024; 12:415. [PMID: 38398017 PMCID: PMC10886579 DOI: 10.3390/biomedicines12020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Head and neck cancers (HNC) are a biologically diverse set of cancers that are responsible for over 660,000 new diagnoses each year. Current therapies for HNC require a comprehensive, multimodal approach encompassing resection, radiation therapy, and systemic therapy. With an increased understanding of the mechanisms behind HNC, there has been growing interest in more accurate prognostic indicators of disease, effective post-treatment surveillance, and individualized treatments. This chapter will highlight the commonly used and studied biomarkers in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Hänel W. Eberly
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| | - Bao Y. Sciscent
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| | - F. Jeffrey Lorenz
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| | - Eleni M. Rettig
- Department of Otolaryngology Head and Neck Surgery, Brigham and Women’s Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02108, USA
| | - Neerav Goyal
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| |
Collapse
|
2
|
Chaba A, Fodil S, Lemiale V, Mariotte E, Valade S, Azoulay E, Zafrani L. Clinical Warburg effect in lymphoma patients admitted to intensive care unit. Ann Intensive Care 2023; 13:97. [PMID: 37796407 PMCID: PMC10555986 DOI: 10.1186/s13613-023-01192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The Warburg effect, characterized by elevated lactate levels without tissue hypoxia or shock, has been described in patients with aggressive lymphoproliferative malignancies. However, the clinical characteristics and long-term outcomes in this population remain poorly understood. METHODS We retrospectively analyzed 135 patients with aggressive lymphoproliferative malignancies admitted to the ICU between January 2017 and December 2022. Patients were classified into three groups: Clinical Warburg Effect (CWE), No Warburg with High Lactate level (NW-HL), and No Warburg with Normal Lactate level (NW-NL). Clinical characteristics and outcomes were compared between the groups and factors associated with 1-year mortality and CWE were identified using multivariable analyses. RESULTS Of the 135 patients, 46 (34%) had a CWE. This group had a higher proportion of Burkitt and T cell lymphomas, greater tumor burden, and more frequent bone and cerebral involvement than the other groups. At 1 year, 72 patients (53%) died, with significantly higher mortality in the CWE and NW-HL groups (70% each) than in the NW-NL group (38%). Factors independently associated with 1-year mortality were age [HR = 1.02 CI 95% (1.00-1.04)], total SOFA score at admission [HR = 1.19 CI 95% (1.12-1.25)], and CWE [HR = 3.87 CI 95% (2.13-7.02)]. The main factors associated with the CWE were tumor lysis syndrome [OR = 2.84 CI 95% (1.14-7.42)], bone involvement of the underlying malignancy [OR = 3.58 CI 95% (1.02-12.91)], the total SOFA score at admission [OR = 0.81 CI 95% (0.69-0.91)] and hypoglycemia at admission [OR = 14.90 CI 95% (5.42-47.18)]. CONCLUSION CWE is associated with a higher tumor burden and increased 1-year mortality compared to patients without this condition. Our findings underscore the importance of recognizing patients with CWE as a high-risk cohort, as their outcomes closely resemble those of individuals with lymphoma and shock, despite not requiring advanced organ support. Clinicians should recognize the urgency of managing these patients and consider early intervention to improve their prognosis.
Collapse
Affiliation(s)
- Anis Chaba
- Medical Intensive Care Unit, Saint-Louis University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Sofiane Fodil
- Department of Hematology, Saint-Louis University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Virginie Lemiale
- Medical Intensive Care Unit, Saint-Louis University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Eric Mariotte
- Medical Intensive Care Unit, Saint-Louis University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Sandrine Valade
- Medical Intensive Care Unit, Saint-Louis University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Elie Azoulay
- Medical Intensive Care Unit, Saint-Louis University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 1 Avenue Claude Vellefaux, 75010, Paris, France
- University Paris Cité, Paris, France
| | - Lara Zafrani
- Medical Intensive Care Unit, Saint-Louis University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 1 Avenue Claude Vellefaux, 75010, Paris, France.
- University Paris Cité, Paris, France.
- INSERM, UMR 944, University Paris Cité, Paris, France.
| |
Collapse
|
3
|
Czaplinska D, Ialchina R, Andersen HB, Yao J, Stigliani A, Dannesboe J, Flinck M, Chen X, Mitrega J, Gnosa SP, Dmytriyeva O, Alves F, Napp J, Sandelin A, Pedersen SF. Crosstalk between tumor acidosis, p53 and extracellular matrix regulates pancreatic cancer aggressiveness. Int J Cancer 2023; 152:1210-1225. [PMID: 36408933 PMCID: PMC10108304 DOI: 10.1002/ijc.34367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy with minimal treatment options and a global rise in prevalence. PDAC is characterized by frequent driver mutations including KRAS and TP53 (p53), and a dense, acidic tumor microenvironment (TME). The relation between genotype and TME in PDAC development is unknown. Strikingly, when wild type (WT) Panc02 PDAC cells were adapted to growth in an acidic TME and returned to normal pH to mimic invasive cells escaping acidic regions, they displayed a strong increase of aggressive traits such as increased growth in 3-dimensional (3D) culture, adhesion-independent colony formation and invasive outgrowth. This pattern of acidosis-induced aggressiveness was observed in 3D spheroid culture as well as upon organotypic growth in matrigel, collagen-I and combination thereof, mimicking early and later stages of PDAC development. Acid-adaptation-induced gain of cancerous traits was further increased by p53 knockout (KO), but only in specific extracellular matrix (ECM) compositions. Akt- and Transforming growth factor-β (TGFβ) signaling, as well as expression of the Na+ /H+ exchanger NHE1, were increased by acid adaptation. Whereas Akt inhibition decreased spheroid growth regardless of treatment and genotype, stimulation with TGFβI increased growth of WT control spheroids, and inhibition of TGFβ signaling tended to limit growth under acidic conditions only. Our results indicate that a complex crosstalk between tumor acidosis, ECM composition and genotype contributes to PDAC development. The findings may guide future strategies for acidosis-targeted therapies.
Collapse
Affiliation(s)
- Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Berg Andersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jiayi Yao
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Johs Dannesboe
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoming Chen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jakub Mitrega
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Peter Gnosa
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Frauke Alves
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Clinic of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Joanna Napp
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Clinic of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Mei Y, Zhao L, Jiang M, Yang F, Zhang X, Jia Y, Zhou N. Characterization of glucose metabolism in breast cancer to guide clinical therapy. Front Surg 2022; 9:973410. [PMID: 36277284 PMCID: PMC9580338 DOI: 10.3389/fsurg.2022.973410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background Breast cancer (BRCA) ranks as a leading cause of cancer death in women worldwide. Glucose metabolism is a noticeable characteristic of the occurrence of malignant tumors. In this study, we aimed to construct a novel glycometabolism-related gene (GRG) signature to predict overall survival (OS), immune infiltration and therapeutic response in BRCA patients. Materials and methods The mRNA sequencing and corresponding clinical data of BRCA patients were obtained from public cohorts. Lasso regression was applied to establish a GRG signature. The immune infiltration was evaluated with the ESTIMATE and CIBERSORT algorithms. The drug sensitivity was estimated using the value of IC50, and further forecasted the therapeutic response of each patient. The candidate target was selected in Cytoscape. A nomogram was constructed via the R package of “rms”. Results We constructed a six-GRG signature based on CACNA1H, CHPF, IRS2, NT5E, SDC1 and ATP6AP1, and the high-risk patients were correlated with poorer OS (P = 2.515 × 10−7). M2 macrophage infiltration was considerably superior in high-risk patients, and CD8+ T cell infiltration was significantly higher in low-risk patients. Additionally, the high-risk group was more sensitive to Lapatinib. Fortunately, SDC1 was recognized as candidate target and patients had a better OS in the low-SDC1 group. A nomogram integrating the GRG signature was developed, and calibration curves were consistent between the actual and predicted OS. Conclusions We identified a novel GRG signature complementing the present understanding of the targeted therapy and immune biomarker in breast cancer. The GRGs may provide fresh insights for individualized management of BRCA patients.
Collapse
Affiliation(s)
- Yingying Mei
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lantao Zhao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fangfang Yang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yizhen Jia
- Core Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Correspondence: Na Zhou Yizhen Jia
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Correspondence: Na Zhou Yizhen Jia
| |
Collapse
|
5
|
Li M, Mao S, Li L, Wei M. Hypoxia-related LncRNAs signature predicts prognosis and is associated with immune infiltration and progress of head and neck squamous cell carcinoma. Biochem Biophys Rep 2022; 31:101304. [PMID: 35818500 PMCID: PMC9270212 DOI: 10.1016/j.bbrep.2022.101304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 12/21/2022] Open
Abstract
Background Disclosing prognostic information is necessary to enable good treatment selection and improve patient outcomes. Previous studies suggest that hypoxia is associated with an adverse prognosis in patients with HNSCC and that long non-coding RNAs (lncRNAs) show functions in hypoxia-associated cancer biology. Nevertheless, the understanding of lncRNAs in hypoxia related HNSCC progression remains confusing. Methods Data were downloaded from TCGA and GEO database. Bioinformatic tools including R packages GEOquery, limma, pheatmap, ggplot2, clusterProfiler, survivalROC and survcomp and LASSO cox analysis were utilized. Si-RNA transfection, CCK8 and real-time quantified PCR were used in functional study. Results GEO data (GSE182734) revealed that lncRNA regulation may be important in hypoxia related response of HNSCC cell lines. Further analysis in TCGA data identified 314 HRLs via coexpression analysis between differentially expressed lncRNAs and hypoxia-related mRNAs. 23 HRLs were selected to build the prognosis predicting model using lasso Cox regression analyses. Our model showed excellent performance in predicting survival outcomes among patients with HNSCC in both the training and validation sets. We also found that the risk scores were related to tumor stage and to tumor immune infiltration. Moreover, LINC01116 were selected as a functional study target. The knockdown of LINC01116 significantly inhibited the proliferation of HNSCC cells and effected the hypoxia induced immune and the NF-κB/AKT signaling. Conclusions Data analysis of large cohorts and functional experimental validation in our study suggest that hypoxia related lncRNAs play an important role in the progression of HNSCC, and its expression model can be used for prognostic prediction. NcRNAs regulations showed significance in hypoxia related response in HNSCC. 314 lncRNAs coexpressed with hypoxia marker genes were identified as HRLs. An effective HRLs prognosis prediction model had been constructed and validated. Immune cells and pathways paly roles in hypoxia related progress of HNSCC. LINC01116 regulates HNSCC through hypoxia related immune and NF-κB/AKT signaling.
Collapse
Affiliation(s)
- Minhan Li
- School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Shaowei Mao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, China
| | - Lixing Li
- Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai, China
| | - Muyun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, China
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, China
| |
Collapse
|
6
|
Cost-Effective Real-Time Metabolic Profiling of Cancer Cell Lines for Plate-Based Assays. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A fundamental phenotype of cancer cells is their metabolic profile, which is routinely described in terms of glycolytic and respiratory rates. Various devices and protocols have been designed to quantify glycolysis and respiration from the rates of acid production and oxygen utilization, respectively, but many of these approaches have limitations, including concerns about their cost-ineffectiveness, inadequate normalization procedures, or short probing time-frames. As a result, many methods for measuring metabolism are incompatible with cell culture conditions, particularly in the context of high-throughput applications. Here, we present a simple plate-based approach for real-time measurements of acid production and oxygen depletion under typical culture conditions that enable metabolic monitoring for extended periods of time. Using this approach, it is possible to calculate metabolic fluxes and, uniquely, describe the system at steady-state. By controlling the conditions with respect to pH buffering, O2 diffusion, medium volume, and cell numbers, our workflow can accurately describe the metabolic phenotype of cells in terms of molar fluxes. This direct measure of glycolysis and respiration is conducive for between-runs and even between-laboratory comparisons. To illustrate the utility of this approach, we characterize the phenotype of pancreatic ductal adenocarcinoma cell lines and measure their response to a switch of metabolic substrate and the presence of metabolic inhibitors. In summary, the method can deliver a robust appraisal of metabolism in cell lines, with applications in drug screening and in quantitative studies of metabolic regulation.
Collapse
|
7
|
Mou Z, Yang C, Zhang Z, Wu S, Xu C, Cheng Z, Dai X, Chen X, Ou Y, Jiang H. Transcriptomic Analysis of Glycolysis-Related Genes Reveals an Independent Signature of Bladder Carcinoma. Front Genet 2021; 11:566918. [PMID: 33424916 PMCID: PMC7786194 DOI: 10.3389/fgene.2020.566918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Bladder carcinoma (BC) is one of the most prevalent and malignant tumors. Multiple gene signatures based on BC metabolism, especially regarding glycolysis, remain unclear. Thus, we developed a glycolysis-related gene signature to be used for BC prognosis prediction. Methods Transcriptomic and clinical data were divided into a training set and a validation set after they were downloaded and analyzed from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Gene-set enrichment analysis (GSEA) and differential analysis were used to screen differentially expressed genes (DEGs), while univariate Cox regression and lasso-penalized Cox regression were employed for signature establishment. To evaluate the prognostic power of the signature, receiver operating characteristic (ROC) curve and Kaplan-Meier (KM) survival analysis were also used. Additionally, we developed a nomogram to predict patients' survival chances using the identified prognostic gene signature. Further, gene mutation and protein expression, as well as the independence of signature genes, were also analyzed. Finally, we also performed qPCR and western blot to detect the expression and potential pathways of signature genes in BC samples. Results Ten genes were selected for signature construction among 71 DEGs, including nine risk genes and one protection gene. KM survival analysis revealed that the high-risk group had poor survival and the low-risk group had increased survival. ROC curve analysis and the nomogram validated the accurate prediction of survival using a gene signature composed of 10 glycolysis-related genes. Western blot and qPCR analysis demonstrated that the expression trend of signature genes was basically consistent with previous results. These 10 glycolysis-related genes were independent and suitable for a signature. Conclusion Our current study indicated that we successfully built and validated a novel 10-gene glycolysis-related signature for BC prognosis.
Collapse
Affiliation(s)
- Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol 2021; 599:1745-1757. [PMID: 33347611 DOI: 10.1113/jp278810] [Citation(s) in RCA: 401] [Impact Index Per Article: 133.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
Contrary to Warburg's original thesis, accelerated aerobic glycolysis is not a primary, permanent and universal consequence of dysfunctional or impaired mitochondria compensating for poor ATP yield per mole of glucose. Instead, in most tumours the Warburg effect is an essential part of a 'selfish' metabolic reprogramming, which results from the interplay between (normoxic/hypoxic) hypoxia-inducible factor-1 (HIF-1) overexpression, oncogene activation (cMyc, Ras), loss of function of tumour suppressors (mutant p53, mutant phosphatase and tensin homologue (PTEN), microRNAs and sirtuins with suppressor functions), activated (PI3K-Akt-mTORC1, Ras-Raf-MEK-ERK-cMyc, Jak-Stat3) or deactivated (LKB1-AMPK) signalling pathways, components of the tumour microenvironment, and HIF-1 cooperation with epigenetic mechanisms. Molecular and functional processes of the Warburg effect include: (a) considerable acceleration of glycolytic fluxes; (b) adequate ATP generation per unit time to maintain energy homeostasis and electrochemical gradients; (c) backup and diversion of glycolytic intermediates facilitating the biosynthesis of nucleotides, non-essential amino acids, lipids and hexosamines; (d) inhibition of pyruvate entry into mitochondria; (e) excessive formation and accumulation of lactate, which stimulates tumour growth and suppression of anti-tumour immunity - in addition, lactate can serve as an energy source for normoxic cancer cells and drives malignant progression and resistances to conventional therapies; (f) cytosolic lactate being mainly exported through upregulated lactate-proton symporters (MCT4), working together with other H+ transporters, and carbonic anhydrases (CAII, CAIX), which hydrate CO2 from oxidative metabolism to form H+ and bicarbonate; (g) these proton export mechanisms, in concert with poor vascular drainage, being responsible for extracellular acidification, driving malignant progression and resistance to conventional therapies; (h) maintenance of the cellular redox homeostasis and low reactive oxygen species (ROS) formation; and (i) HIF-1 overexpression, mutant p53 and mutant PTEN, which inhibit mitochondrial biogenesis and functions, negatively impacting cellular respiration rate. The glycolytic switch is an early event in oncogenesis and primarily supports cell survival. All in all, the Warburg effect, i.e. aerobic glycolysis in the presence of oxygen and - in principle - functioning mitochondria, constitutes a major driver of the cancer progression machinery, resistance to conventional therapies, and poor patient outcome. However, as evidenced during the last two decades, in a minority of tumours primary mitochondrial defects can play a key role promoting the Warburg effect and tumour progression due to mutations in some Krebs cycle enzymes and mitochondrial ROS overproduction.
Collapse
Affiliation(s)
- Peter Vaupel
- Department of Radiation Oncology, Tumour Pathophysiology Group, University Medical Centre, University of Mainz, Germany.,Department of Radiation Oncology, University Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Gabriele Multhoff
- Center for Translational Cancer Research, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,Department of RadioOncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
9
|
Vaupel P, Multhoff G. The Warburg Effect: Historical Dogma Versus Current Rationale. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:169-177. [PMID: 33966213 DOI: 10.1007/978-3-030-48238-1_27] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Contrary to Warburg's original thesis, accelerated aerobic glycolysis is not a primary and permanent consequence of dysfunctional mitochondria compensating for a poor ATP yield per mole glucose. Instead, the Warburg effect is an essential part of a "selfish" metabolic reprogramming, which results from the interplay between (normoxic or hypoxic) HIF-1 overexpression, oncogene activation (cMyc, Ras), loss of function of tumor suppressors (mutant p53, mutant PTEN, microRNAs and sirtuins with suppressor functions), activated (PI3K/Akt/mTORC1, Ras/Raf/Mek/Erk/c-Myc) or deactivated (AMPK) signaling pathways, components of the tumor microenvironment, and HIF-1 cooperations with epigenetic mechanisms. Molecular and functional processes of the Warburg effect include (a) considerably accelerated glycolytic fluxes; (b) adequate ATP generation per unit time to maintain energy homeostasis; (c) backup and diversion of glycolytic intermediates facilitating the biosynthesis of nucleotides, nonessential amino acids, lipids, and hexosamines; (d) inhibition of pyruvate entry into mitochondria; (e) excessive formation and accumulation of lactate which stimulates tumor growth and suppression of antitumor immunity (in addition, lactate can serve as an energy source for normoxic cancer cells, contributes to extracellular acidosis, and thus drives malignant progression and resistances to conventional therapies); (f) maintenance of the cellular redox homeostasis and low ROS formation; and (g) HIF-1 overexpression, mutant p53, and mutant PTEN which inhibit mitochondrial biogenesis and functions, thus negatively impacting cellular respiration rate. The glycolytic switch is an early event in oncogenesis and primarily supports cell survival. All in all, the Warburg effect, i.e., aerobic glycolysis in the presence of oxygen and - in principle - functioning mitochondria, constitutes a major driver of the cancer progression machinery, resistance to conventional therapies, and - finally - poor patient outcome.
Collapse
Affiliation(s)
- Peter Vaupel
- Department of Radiation Oncology, Tumor Pathophysiology Group, University Medical Center, Mainz, Germany.
| | - Gabriele Multhoff
- Center for Translational Cancer Research, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
10
|
Swartz JE, Wegner I, Noorlag R, van Kempen PMW, van Es RJJ, de Bree R, Willems SMW. HIF-1a expression and differential effects on survival in patients with oral cavity, larynx, and oropharynx squamous cell carcinomas. Head Neck 2020; 43:745-756. [PMID: 33155375 DOI: 10.1002/hed.26530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hypoxia is a negative prognostic factor in head and neck squamous cell carcinomas. Under hypoxia, the hypoxia-inducible factor (HIF)-1a transcription factor is overexpressed. We investigated whether there were site differences in HIF-1a expression and its effect on patient outcomes per subsite. DESIGN/METHOD A total of 941 patients with HNSCC in the squamous cell carcinoma of the oropharynx (OPSCC, n = 302), oral cavity (OSCC, n = 391), or larynx (LSCC, n = 248) were included. Expression of HIF-1a in tissue samples was investigated using immunohistochemistry. Overall survival (OS), disease-free survival (DFS), and locoregional control (LRC) were analyzed. RESULTS HIF-1a expression was higher in OSCC than in LSCC and OPSCC. High HIF-1a expression led to worse prognosis in OPSCC (OS P = .029, DFS P = .085) and LSCC (OS P = .041, DFS P = .011) and better in OSCC (OS P = .055, DFS P = .012). There was no association between HIF-1a and LRC. CONCLUSIONS High HIF-1a expression is related to poor outcome in OPSCC and LSCC and better outcome in OSCC.
Collapse
Affiliation(s)
- Justin E Swartz
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Inge Wegner
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob Noorlag
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pauline M W van Kempen
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Robert J J van Es
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Stefan M W Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
11
|
Liu B, Sun Z, Ma WL, Ren J, Zhang GW, Wei MQ, Hou WH, Hou BX, Wei LC, Huan Y, Zheng MW. DCE-MRI Quantitative Parameters as Predictors of Treatment Response in Patients With Locally Advanced Cervical Squamous Cell Carcinoma Underwent CCRT. Front Oncol 2020; 10:585738. [PMID: 33194734 PMCID: PMC7658627 DOI: 10.3389/fonc.2020.585738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose To evaluate the predictive value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) quantitative parameters in treatment response to concurrent chemoradiotherapy (CCRT) for locally advanced cervical squamous cell carcinoma (LACSC). Methods and materials LACSC patients underwent CCRT had DCE-MRI before (e0) and after 3 days of treatment (e3). Extended Tofts Linear model with a user arterial input function was adopted to generate quantitative measurements. Endothelial transfer constant (Ktrans), reflux rate (Kep), fractional extravascular extracellular space volume (Ve), and fractional plasma volume (Vp) were calculated, and percentage changes ΔKtrans, ΔKep, ΔVe, and ΔVp were computed. The correlations of these measurements with the tumor regression rate were analyzed. The predictive value of these parameters on treatment outcome was generated by the receiver operating characteristic (ROC) curve. Univariate and multivariate logistic regression analyses were conducted to find the independent variables. Results Ktrans-e0, Kep -e0, ΔKtrans, and ΔVe were positively correlated with the tumor regression rate. Mean values of Ktrans-e0, Ktrans-e3, ΔKtrans, and ΔVe were higher in the non-residual tumor group than residual tumor group and were independent prognostic factors for predicting residual tumor occurrence. Ktrans-e3 showed the highest area under the curve (AUC) for treatment response prediction. Conclusions Quantitative parameters at e0 and e3 from DCE-MRI could be used as potential indicators for predicting treatment response of LACSC.
Collapse
Affiliation(s)
- Bing Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Sun
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wan-Ling Ma
- Department of Radiology, Longgang District People's Hospital, Shenzhen, China
| | - Jing Ren
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guang-Wen Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng-Qi Wei
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei-Huan Hou
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing-Xin Hou
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Li-Chun Wei
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Huan
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min-Wen Zheng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. J Control Release 2020; 323:203-224. [PMID: 32320817 DOI: 10.1016/j.jconrel.2020.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Nano-drug/gene delivery systems (DDS) are powerful weapons for the targeted delivery of various therapeutic molecules in treatment of tumors. Nano systems are being extensively investigated for drug and gene delivery applications because of their exceptional ability to protect the payload from degradation in vivo, prolong circulation of the nanoparticles (NPs), realize controlled release of the contents, reduce side effects, and enhance targeted delivery among others. However, the specific properties required for a DDS vary at different phase of the complex delivery process, and these requirements are often conflicting, including the surface charge, particle size, and stability of DDS, which severely reduces the efficiency of the drug/gene delivery. Therefore, researchers have attempted to fabricate structure, size, or charge changeable DDS by introducing various tumor microenvironment (TME) stimuli-responsive elements into the DDS to meet the varying requirements at different phases of the delivery process, thus improving drug/gene delivery efficiency. This paper summarizes the most recent developments in TME stimuli-responsive DDS and addresses the aforementioned challenges.
Collapse
|
13
|
Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 2020; 38:93-101. [PMID: 30715644 DOI: 10.1007/s10555-019-09783-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor milieu is characteristically acidic as a consequence of the fermentative metabolism of glucose that results in massive accumulation of lactic acid within the cytoplasm. Tumor cells get rid of excessive protons through exchangers that are responsible for the extracellular acidification that selects cellular clones that are more apt at surviving in this challenging and culling environment. Extracellular vesicles (EVs) are vesicles with diameters ranging from nm to μm that are released from the cells to deliver nucleic acids, proteins, and lipids to adjacent or distant cells. EVs are involved in a plethora of biological events that promote tumor progression including unrestricted proliferation, angiogenesis, migration, local invasion, preparation of the metastatic niche, metastasis, downregulation or hijacking of the immune system, and drug resistance. There is evidence that the release of specific exosomes is increased many folds in cancer patients, as shown by many techniques aimed at evaluating "liquid biopsies". The quality of the exosomal contents has been shown to vary at the different moments of tumor life such as local invasion or metastasis. In vitro studies have recently pointed out that cancer acidity is a major determinant in inducing increased exosome release by human cancer cells, by showing that exosomal release was increased as the pH moved from 7.4 pH to the typical pH of cancer that is 6.5. In this review, we emphasize the recent evidence that tumor acidity and exosomes levels are strictly related and strongly contribute to the malignant tumor phenotypes.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Enrico Spugnini
- SAFU Department, Regina Elena Cancer Institute, Via Elio Chianesi 51, 00144, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
14
|
Tian Y, Liu Z, Tan H, Hou J, Wen X, Yang F, Cheng W. New Aspects of Ultrasound-Mediated Targeted Delivery and Therapy for Cancer. Int J Nanomedicine 2020; 15:401-418. [PMID: 32021187 PMCID: PMC6982438 DOI: 10.2147/ijn.s201208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Ultrasound-mediated targeted delivery (UMTD), a novel delivery modality of therapeutic materials based on ultrasound, shows great potential in biomedical applications. By coupling ultrasound contrast agents with therapeutic materials, UMTD combines the advantages of ultrasound imaging and carrier, which benefit deep tissue penetration and high concentration aggregation. In this paper we introduced recent advances in ultrasound contrast agents and applications in tumor therapy. Ultrasound contrast agents were categorized by their functions, mainly including thermosensitive, pH-sensitive and photosensitive ultrasound contrast agents. The various applications of UMTD in tumor treatment were summarized as follows: drug therapy, transfection of anti-oncogene, RNA interference, vaccine immunotherapy, monoclonal antibody immunotherapy, adoptive cellular immunotherapy, cytokine immunotherapy, and so on. In the end, we elaborated on the current challenges and provided perspectives of UMTD for clinical applications.
Collapse
Affiliation(s)
- Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Jiahui Hou
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Xin Wen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Fan Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| |
Collapse
|
15
|
Fatal Alliance of Hypoxia-/HIF-1α-Driven Microenvironmental Traits Promoting Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:169-176. [DOI: 10.1007/978-3-030-34461-0_21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Liu Y, Chen S, Sun J, Zhu S, Chen C, Xie W, Zheng J, Zhu Y, Xiao L, Hao L, Wang Z, Chang S. Folate-Targeted and Oxygen/Indocyanine Green-Loaded Lipid Nanoparticles for Dual-Mode Imaging and Photo-sonodynamic/Photothermal Therapy of Ovarian Cancer in Vitro and in Vivo. Mol Pharm 2019; 16:4104-4120. [PMID: 31517495 DOI: 10.1021/acs.molpharmaceut.9b00339] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have successfully fabricated versatile folate-targeted and oxygen/indocyanine green-loaded lipid nanoparticles (FA-OINPs) for dual-mode imaging-guided therapy in ovarian cancer cells and subcutaneous xenograft models. FA-OINPs were demonstrated to have great potential as superb contrast agents to enhance ultrasound and photoacoustic (US/PA) imaging We have successfully fabricated versatile folate-targeted and oxygen/indocyanine green-loaded lipid nanoparticles (FA-OINPs) for dual-mode imaging-guided therapy in ovarian cancer cells and subcutaneous xenograft models. FA-OINPs were demonstrated to have great potential as superb contrast agents to enhance ultrasound and photoacoustic (US/PA) imaging in vitro and in vivo. Confocal laser scanning microscopy and flow cytometry analysis verified that FA-OINPs could specifically target SKOV3 ovarian cancer cells and be endocytosed with a remarkable efficiency. Compared with other therapeutic options, FA-OINPs exhibited an excellent therapeutic outcome after exposure to laser and ultrasound. The MTT assay and flow cytometry analysis confirmed that cytotoxicity effects and apoptosis/necrosis rates were significantly increased. The fluorescence microscopy and fluorescence microplate reader detection validated that the generation of intracellular reactive oxygen species (ROS) was dramatically improved. Immunohistochemical analyses of tumor tissues demonstrated the enhanced tumor apoptosis, the decreased vascular endothelial growth factor (VEGF) and microvascular density (MVD) expression, and the decreased expression of CD68 after treatment. The presented results suggest that photo-sonodynamic/photothermal mediated FA-OINPs could provide a promising strategy for synergistic therapy in ovarian cancer with the guidance of US/PA dual-mode imaging.
Collapse
Affiliation(s)
- Yujiao Liu
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Shuning Chen
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Shenyin Zhu
- Department of Pharmacy , the First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , China
| | - Chunyan Chen
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Wan Xie
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Yi Zhu
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Linlin Xiao
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Lan Hao
- Institute of Ultrasound Imaging , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Zhigang Wang
- Institute of Ultrasound Imaging , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Shufang Chang
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| |
Collapse
|
17
|
Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 2019; 95:912-919. [PMID: 30822194 DOI: 10.1080/09553002.2019.1589653] [Citation(s) in RCA: 484] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the early 1920s, Warburg published experimental data on the enhanced conversion of glucose to pyruvate (followed by lactate formation) even in the presence of abundant oxygen (aerobic glycolysis, Warburg effect). He attributed this metabolic trait to a respiratory injury and considered this a universal metabolic alteration in carcinogenesis. This interpretation of the data was questioned since the early 1950s. Realistic causative mechanisms and consequences of the Warburg effect were described only during the past 15 years and are summarized in this article. There is clear evidence that mitochondria are not defective in most cancers. Aerobic glycolysis, a key metabolic feature of the Warburg phenotype, is caused by active metabolic reprogramming required to support sustained cancer cell proliferation and malignant progression. This metabolic switch is directed by altered growth factor signaling, hypoxic or normoxic activation of HIF-1α- transcription, oncogene activation or loss-of-function of suppressor genes, and is implemented in the hostile tumor microenvironment. The 'selfish' reprogramming includes (a) overexpression of glucose transporters and of key glycolytic enzymes, and an accelerated glycolytic flux with subsequent accumulation and diversion of glycolytic intermediates for cancer biomass synthesis, (b) high-speed ATP production that meets the energy demand, and (c) accumulation of lactate which drives tumor progression and largely contributes to tumor acidosis, which in turn synergistically favors tumor progression and resistance to certain antitumor therapies, and compromises antitumor immunity. Altogether, the Warburg effect is the central contributor to the cancer progression machinery.
Collapse
Affiliation(s)
- Peter Vaupel
- a Department of Radiation Oncology , Tumor Pathophysiology Group, University Medical Center , Mainz , Germany
| | - Heinz Schmidberger
- a Department of Radiation Oncology , Tumor Pathophysiology Group, University Medical Center , Mainz , Germany
| | - Arnulf Mayer
- a Department of Radiation Oncology , Tumor Pathophysiology Group, University Medical Center , Mainz , Germany
| |
Collapse
|
18
|
Zhou YL, Li YM, He WT. Oxygen-laden mesenchymal stem cells enhance the effect of gastric cancer chemotherapy in vitro. Oncol Lett 2018; 17:1245-1252. [PMID: 30655891 DOI: 10.3892/ol.2018.9670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is an important factor that results in failure of chemotherapy for the majority of solid tumor types, particularly for gastric cancer. In the present study, mesenchymal stem cells (MSCs), which have the ability to migrate to cancer tissues were used as a vehicle to supply oxygen to gastric cancer. The hemoglobin genes were transfected into MSCs as MSC-hemo groups. Subsequently, MSC-hemo groups were induced by isopropyl-b-D-thiogalactopyranoside and hemin to express hemoglobin. The hemoglobin was detected by western blotting method. Following this, the MSC-hemo groups were placed in an atmosphere containing 100% oxygen and were used to investigate the effect of the function of the oxygen-laden MSC-hemo group on gastric cancer chemotherapy with an MTT assay. As a first approach to investigate the possibility of MSCs as a vehicle to supply oxygen to anoxic cancer types, including gastric, liver, breast cancer, the results indicated that the oxygen-laden MSC-hemo group significantly enhanced the effect of chemotherapeutic treatments on gastric cancer cells. Utilizing MSCs as a svehicle to supply oxygen to the solid tumor may be a novel method to improve the hypoxia conditions of tumor tissues and improve the effect of chemotherapy on tumor cells.
Collapse
Affiliation(s)
- Ya-Li Zhou
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yu-Min Li
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Wen-Ting He
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
19
|
Kramer B, Polit M, Birk R, Rotter N, Aderhold C. HIF-1α and mTOR - Possible Novel Strategies of Targeted Therapies in p16-positive and -negative HNSCC. Cancer Genomics Proteomics 2018; 15:175-184. [PMID: 29695399 DOI: 10.21873/cgp.20075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Targeted therapy in head and neck squamous cell carcinoma (HNSCC) is limited. HIF-1α and mTOR are involved in the formation of local tumor progression and distant metastasis. The present study analyzed the influence of well-established tyrosine kinase inhibitors nilotinib, dasatinib, erlotinib and gefitinib on the expression of HIF-1α and mTOR in p16-positive and -negative squamous cancer cells (SCC) in vitro in order to develop novel strategies in the treatment of HNSCC. MATERIALS AND METHODS Expression of HIF-1α and mTOR was analyzed by using Sandwich-ELISA in p16-negative and p16-positive SCC after treatment with nilotinib, dasatinib, erlotinib and gefitinib (20 μmol/l, 24-96 h of incubation). RESULTS All substances significantly reduced mTOR expression in both, p16-negative and p16-positive SCC (p<0.05). HIF-1α expression was significantly reduced by all tested substances in p16-negative SCC. However, a statistically significant increase of HIF-1α was observed in p16-positive SCC. CONCLUSION This is the first study to investigate the alteration of expression levels of HIF-1α and mTOR under selective tyrosine kinase inhibition in both p16-positive and -negative SCC. Our findings provide novel insights for a better understanding of HIF-1α and mTOR in the tumor biology of HNSCC and their interaction with selective small-molecule inhibitors.
Collapse
Affiliation(s)
- Benedikt Kramer
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Max Polit
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Richard Birk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philips-Universität, Marburg, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Christoph Aderhold
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| |
Collapse
|
20
|
Angelopoulou A, Kolokithas-Ntoukas A, Papaioannou L, Kakazanis Z, Khoury N, Zoumpourlis V, Papatheodorou S, Kardamakis D, Bakandritsos A, Hatziantoniou S, Avgoustakis K. Canagliflozin-loaded magnetic nanoparticles as potential treatment of hypoxic tumors in combination with radiotherapy. Nanomedicine (Lond) 2018; 13:2435-2454. [PMID: 30311542 DOI: 10.2217/nnm-2018-0145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM To synthesize magnetic nanoparticles loaded with the SGLT2-inhibitor canagliflozin (CANA) and evaluate its anticancer potential under normoxic and hypoxic conditions in combination or not with radiotherapy. MATERIAL & METHODS Iron oxide nanoparticles were synthesized via an alkaline hydrolytic precipitation of iron precursor in the presence of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate). CANA was conjugated to the nanoparticles using N-ethyl-N'-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide chemistry. The anticancer efficacy of the nanoparticles was evaluated in cancer cell lines and in a mouse PDV C57 tumor model. RESULTS In the mouse xenograft cancer model, the combination of CANA-loaded nanoparticles with radiotherapy (in the presence of an external magnetic field at the tumor site) exhibited higher antitumor activity compared with the combination of free CANA with radiotherapy. CONCLUSION The results obtained indicate the potential that the combination of selective delivery of a SGLT2 inhibitor such as CANA with radiotherapy holds as an anticancer treatment.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece
| | | | - Ligeri Papaioannou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece
| | - Zacharias Kakazanis
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece
| | - Nikolas Khoury
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece
| | | | | | - Dimitrios Kardamakis
- Department of Radiation Oncology, School of Health Sciences, University of Patras, Patras 26504, Greece
| | - Aristides Bakandritsos
- Department of Physical Chemistry, Faculty of Science, Regional Centre for Advanced Technologies & Materials, Palacky University in Olomouc, 17 listopadu 1192/12, 77146 Olomouc, Czech Republic
| | - Sophia Hatziantoniou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece
| | - Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece.,Clinical Stidues Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, Athens 11527, Greece
| |
Collapse
|
21
|
Vaupel P, Multhoff G. Hypoxia-/HIF-1α-Driven Factors of the Tumor Microenvironment Impeding Antitumor Immune Responses and Promoting Malignant Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1072:171-175. [PMID: 30178341 DOI: 10.1007/978-3-319-91287-5_27] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The metabolic tumor microenvironment (TME) is characterized inter alia by critical oxygen depletion (hypoxia/anoxia), extracellular acidosis (pH ≤ 6.8), high lactate levels (up to 40 mM in heterogeneously distributed areas), strongly elevated adenosine concentrations (10-100 μM) and declining nutrient resources. These TME features are major drivers, e.g., for genetic instability, intratumor heterogeneity, malignant progression and development of resistance to conventional anticancer therapies. In this context, hypoxia-dependent (and non-hypoxic) HIF-1α activation plays a key role in orchestrating a multifaceted (local) suppression of innate and adaptive antitumor immune responses (and of immune-based tumor treatment). Besides the characteristic traits mentioned, the immune-suppressive actions can additionally be triggered by an (over-)expression of VEGF and activation of VEGFR, and externalisation of phosphatidylserine from the inner to the outer membrane leaflet of cells and exosomes. Altogether, and even individually, these features provide strong immune-suppressive signals. The downstream effects of an enhanced HIF-1α expression include (a) an activation of immune-suppressive effects (recruitment and stimulation of immune-suppressor cells [e.g., Treg, MDSC], secretion of immune-suppressive TH2-type cytokines), and (b) inhibition of antitumor immune responses (inhibition of immune cell actions [e.g., NK, NKT, CD4+, CD8+], inhibition of antigen-presenting cells [e.g., DC], reduced production of immune-stimulatory TH1-type cytokines).
Collapse
Affiliation(s)
- Peter Vaupel
- Department of Radiation Oncology and Radiotherapy, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
| | - Gabriele Multhoff
- Center of Translational Cancer Research (TranslaTUM), Technical University of Munich, Campus Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
22
|
Vaupel P, Multhoff G. Accomplices of the Hypoxic Tumor Microenvironment Compromising Antitumor Immunity: Adenosine, Lactate, Acidosis, Vascular Endothelial Growth Factor, Potassium Ions, and Phosphatidylserine. Front Immunol 2017; 8:1887. [PMID: 29312351 PMCID: PMC5742577 DOI: 10.3389/fimmu.2017.01887] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
In this minireview, we aim to highlight key factors of the tumor microenvironment, including adenosine, lactate, acidosis, vascular endothelial growth factor, phosphatidylserine, high extracellular K+ levels, and tumor hypoxia with respect to antitumor immune functions. Most solid tumors have an immature chaotic microvasculature that results in tumor hypoxia. Hypoxia is a key determinant of tumor aggressiveness and therapy resistance and hypoxia-related gene products can thwart antitumor immune responses.
Collapse
Affiliation(s)
- Peter Vaupel
- Department of Radiation Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| |
Collapse
|
23
|
Wang J, Kou J, Hou X, Zhao Z, Chao H. A ruthenium(II) anthraquinone complex as the theranostic agent combining hypoxia imaging and HIF-1α inhibition. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Vaupel P, Mayer A. Tumor Oxygenation Status: Facts and Fallacies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 977:91-99. [DOI: 10.1007/978-3-319-55231-6_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
25
|
Bhatia DR, Thiagarajan P. Combination effects of sorafenib with PI3K inhibitors under hypoxia in colorectal cancer. HYPOXIA 2016; 4:163-174. [PMID: 27995152 PMCID: PMC5153268 DOI: 10.2147/hp.s115500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aim This study reports the influence of hypoxia on response of colorectal cancer cells to anticancer effects of sorafenib in combination with PI3K inhibitors GDC-0941 and BEZ-235. Materials and methods All hypoxic exposures were carried out at 1% O2/5% CO2. Antiproliferation activity was evaluated by 48 hours propidium iodide and 14 days clonogenic assay. Protein levels were evaluated by fluorescence ELISA. Metabolites lactate and glucose were evaluated biochemically. Results In the 48-hour proliferation assay, sorafenib acted synergistically with GDC-0941 but not with BEZ-235. In long-term colony-forming assays, both GDC-0941 and BEZ-235 were shown to potentiate the antiproliferative activity of sorafenib. At the molecular level, the synergism is mediated through inhibition of pAKT, pS6, p4EBP1, pERK, cyclin D1, and Bcl-2. No change in hypoxia-inducible factor-1α (HIF-1α) levels was observed in cells treated with the combination of compounds under hypoxia. A significant reduction in glucose uptake and lactate release was observed in cells treated with the combination of compounds under normoxia and hypoxia. Conclusion Combinations of sorafenib with PI3K inhibitors BEZ-235 and GDC-0941 are efficacious under hypoxia. Thus, these anticancer combinations have a potential to overcome the hypoxia-mediated resistance mechanisms to antiproliferative agents in cancer therapy.
Collapse
Affiliation(s)
- Dimple R Bhatia
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Padma Thiagarajan
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| |
Collapse
|
26
|
Ramchandani D, Unruh D, Lewis CS, Bogdanov VY, Weber GF. Activation of carbonic anhydrase IX by alternatively spliced tissue factor under late-stage tumor conditions. J Transl Med 2016; 96:1234-1245. [PMID: 27721473 PMCID: PMC5121009 DOI: 10.1038/labinvest.2016.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 08/12/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Molecules of the coagulation pathway predispose patients to cancer-associated thrombosis and also trigger intracellular signaling pathways that promote cancer progression. The primary transcript of tissue factor, the main physiologic trigger of blood clotting, can undergo alternative splicing yielding a secreted variant, termed asTF (alternatively spliced tissue factor). asTF is not required for normal hemostasis, but its expression levels positively correlate with advanced tumor stages in several cancers, including pancreatic adenocarcinoma. The asTF-overexpressing pancreatic ductal adenocarcinoma cell line Pt45.P1/asTF+ and its parent cell line Pt45.P1 were tested for growth and mobility under normoxic conditions that model early-stage tumors, and in the hypoxic environment of late-stage cancers. asTF overexpression in Pt45.P1 cells conveys increased proliferative ability. According to cell cycle analysis, the major fraction of Pt45.P1/asTF+ cells reside in the dividing G2/M phase of the cell cycle, whereas the parental Pt45.P1 cells are mostly confined to the quiescent G0/G1 phase. asTF overexpression is also associated with significantly higher mobility in cells plated under either normoxia or hypoxia. A hypoxic environment leads to upregulation of carbonic anhydrase IX (CAIX), which is more pronounced in Pt45.P1/asTF+ cells. Inhibition of CAIX by the compound U-104 significantly decreases cell growth and mobility of Pt45.P1/asTF+ cells in hypoxia, but not in normoxia. U-104 also reduces the growth of Pt45.P1/asTF+ orthotopic tumors in nude mice. CAIX is a novel downstream mediator of asTF in pancreatic cancer, particularly under hypoxic conditions that model late-stage tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Vladimir Y. Bogdanov
- College of Medicine, University of Cincinnati,address correspondence to either: Georg F. Weber, College of Pharmacy, University of Cincinnati, 3225 Eden Avenue, Cincinnati, OH 45267-0004. , phone 513-558-0947 or : Vladimir Y. Bogdanov, College of Medicine, University of Cincinnati, OH 45267, USA.
| | - Georg F. Weber
- James L. Winkle College of Pharmacy, University of Cincinnati,address correspondence to either: Georg F. Weber, College of Pharmacy, University of Cincinnati, 3225 Eden Avenue, Cincinnati, OH 45267-0004. , phone 513-558-0947 or : Vladimir Y. Bogdanov, College of Medicine, University of Cincinnati, OH 45267, USA.
| |
Collapse
|
27
|
DCE-MRI Perfusion and Permeability Parameters as predictors of tumor response to CCRT in Patients with locally advanced NSCLC. Sci Rep 2016; 6:35569. [PMID: 27762331 PMCID: PMC5071875 DOI: 10.1038/srep35569] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
In this prospective study, 36 patients with stage III non-small cell lung cancers (NSCLC), who underwent dynamic contrast-enhanced MRI (DCE-MRI) before concurrent chemo-radiotherapy (CCRT) were enrolled. Pharmacokinetic analysis was carried out after non-rigid motion registration. The perfusion parameters [including Blood Flow (BF), Blood Volume (BV), Mean Transit Time (MTT)] and permeability parameters [including endothelial transfer constant (Ktrans), reflux rate (Kep), fractional extravascular extracellular space volume (Ve), fractional plasma volume (Vp)] were calculated, and their relationship with tumor regression was evaluated. The value of these parameters on predicting responders were calculated by receiver operating characteristic (ROC) curve. Multivariate logistic regression analysis was conducted to find the independent variables. Tumor regression rate is negatively correlated with Ve and its standard variation Ve_SD and positively correlated with Ktrans and Kep. Significant differences between responders and non-responders existed in Ktrans, Kep, Ve, Ve_SD, MTT, BV_SD and MTT_SD (P < 0.05). ROC indicated that Ve < 0.24 gave the largest area under curve of 0.865 to predict responders. Multivariate logistic regression analysis also showed Ve was a significant predictor. Baseline perfusion and permeability parameters calculated from DCE-MRI were seen to be a viable tool for predicting the early treatment response after CCRT of NSCLC.
Collapse
|
28
|
Qin Y, Roszik J, Chattopadhyay C, Hashimoto Y, Liu C, Cooper ZA, Wargo JA, Hwu P, Ekmekcioglu S, Grimm EA. Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma. Mol Cancer Ther 2016; 15:2442-2454. [PMID: 27458138 DOI: 10.1158/1535-7163.mct-15-0963] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
Abstract
Melanoma is molecularly and structurally heterogeneous, with some tumor cells existing under hypoxic conditions. Our cell growth assays showed that under controlled hypoxic conditions, BRAF(V600E) melanoma cells rapidly became resistant to vemurafenib. By employing both a three-dimensional (3D) spheroid model and a two-dimensional (2D) hypoxic culture system to model hypoxia in vivo, we identified upregulation of HGF/MET signaling as a major mechanism associated with vemurafenib resistance as compared with 2D standard tissue culture in ambient air. We further confirmed that the upregulation of HGF/MET signaling was evident in drug-resistant melanoma patient tissues and mouse xenografts. Pharmacologic inhibition of the c-Met/Akt pathway restored the sensitivity of melanoma spheroids or 2D hypoxic cultures to vemurafenib. Mol Cancer Ther; 15(10); 2442-54. ©2016 AACR.
Collapse
Affiliation(s)
- Yong Qin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chandrani Chattopadhyay
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuuri Hashimoto
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chengwen Liu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zachary A Cooper
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
29
|
Baumann R, Depping R, Delaperriere M, Dunst J. Targeting hypoxia to overcome radiation resistance in head & neck cancers: real challenge or clinical fairytale? Expert Rev Anticancer Ther 2016; 16:751-8. [PMID: 27253509 DOI: 10.1080/14737140.2016.1192467] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Tumor hypoxia is a major cause for failure of therapy in patients with inoperable head and neck cancers. AREAS COVERED Various anti-hypoxic treatment strategies (e.g. hyperbaric oxygenation, hypoxic cell sensitizers) have been tested in clinical trials in head and neck cancer over the past 30 years and have shown modest improvements in combination with radiotherapy in meta-analyses. Anemia worsens tumor hypoxia, but anemia correction had no significant effect. New approaches (e.g. anti-HIF-directed molecular therapies) have just entered early clinical studies and data are lacking. Expert commentary: A new attractive and promising approach derives from recent advances in imaging and radiotherapy delivery. Progress in imaging of hypoxia (e.g. by positron emission tomography) can select patients for specific therapies and may, in particular, facilitate anti-hypoxia-directed radiotherapy which has become feasible with advanced radiotherapy techniques (IMRT with 'dose-painting'). The combination of both methods may offer a powerful tool for effective targeting of hypoxia in the near future.
Collapse
Affiliation(s)
- René Baumann
- a Department of Radiation Oncology , Christian-Albrechts-University Kiel , Kiel , Germany
| | - Reinhard Depping
- b Institute of Physiology , University of Luebeck , Luebeck , Germany
| | - Marc Delaperriere
- a Department of Radiation Oncology , Christian-Albrechts-University Kiel , Kiel , Germany
| | - Juergen Dunst
- a Department of Radiation Oncology , Christian-Albrechts-University Kiel , Kiel , Germany
| |
Collapse
|
30
|
Adenosine can thwart antitumor immune responses elicited by radiotherapy : Therapeutic strategies alleviating protumor ADO activities. Strahlenther Onkol 2016; 192:279-87. [PMID: 26961686 DOI: 10.1007/s00066-016-0948-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/25/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. MATERIALS AND METHODS An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. RESULTS Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 (+) T and CD8 (+) T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. CONCLUSION ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters.
Collapse
|
31
|
Vaupel P, Mayer A. Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 876:177-183. [PMID: 26782210 DOI: 10.1007/978-1-4939-3023-4_22] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systematic studies on the oxygenation status of solid tumors have shown that the development of hypoxic/anoxic tissue subvolumes is a pathophysiological trait in a wide range of human malignancies. As a result of this characteristic property, adenosine (ADO) accumulation (range: 50-100 μM) occurs caused by intra- and extracellular generation of ADO. Extracellular nucleotide catabolism by hypoxia-/HIF-1α-sensitive, membrane-associated ecto-5'-nucleotidases most probably is the major source of ADO in the halo of cancer cells upon specific genetic alterations taking place during tumor growth. Extracellular ADO can act through autocrine and paracrine pathways following receptor-binding and involving different intracellular signalling cascades. Hypoxia-driven receptor activation can lead to a broad spectrum of strong immune-suppressive properties facilitating tumor escape from immune control (e.g., inhibition of CD4+, CD8+, NK and dendritic cells, stimulation of Treg cells). In addition, tumor growth and progression is promoted by ADO-driven direct stimulation of tumor cell proliferation, migration, invasion, metastatic dissemination, and an increase in the production of molecules stimulating tumor angiogenesis. Hypoxia- driven ADO accumulation in the tumor microenvironment thus plays a critical role in tumor growth and progression at multiple pathophysiological levels.
Collapse
Affiliation(s)
- Peter Vaupel
- Department of Radiooncology and Radiotherapy, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Arnulf Mayer
- Department of Radiooncology and Radiotherapy, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
32
|
Vaupel P, Mayer A. Can respiratory hyperoxia mitigate adenosine-driven suppression of antitumor immunity? ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:292. [PMID: 26697452 DOI: 10.3978/j.issn.2305-5839.2015.09.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Peter Vaupel
- Department of Radiooncology and Radiotherapy, Tumor Pathophysiology Section, University Medical Center, 55131 Mainz, Germany
| | - Arnulf Mayer
- Department of Radiooncology and Radiotherapy, Tumor Pathophysiology Section, University Medical Center, 55131 Mainz, Germany
| |
Collapse
|
33
|
Yeh TH, Chen YR, Chen SY, Shen WC, Ann DK, Zaro JL, Shen LJ. Selective Intracellular Delivery of Recombinant Arginine Deiminase (ADI) Using pH-Sensitive Cell Penetrating Peptides To Overcome ADI Resistance in Hypoxic Breast Cancer Cells. Mol Pharm 2015; 13:262-71. [PMID: 26642391 DOI: 10.1021/acs.molpharmaceut.5b00706] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arginine depletion strategies, such as pegylated recombinant arginine deiminase (ADI-PEG20), offer a promising anticancer treatment. Many tumor cells have suppressed expression of a key enzyme, argininosuccinate synthetase 1 (ASS1), which converts citrulline to arginine. These tumor cells become arginine auxotrophic, as they can no longer synthesize endogenous arginine intracellularly from citrulline, and are therefore sensitive to arginine depletion therapy. However, since ADI-PEG20 only depletes extracellular arginine due to low internalization, ASS1-expressing cells are not susceptible to treatment since they can synthesize arginine intracellularly. Recent studies have found that several factors influence ASS1 expression. In this study, we evaluated the effect of hypoxia, frequently encountered in many solid tumors, on ASS1 expression and its relationship to ADI-resistance in human MDA-MB-231 breast cancer cells. It was found that MDA-MB-231 cells developed ADI resistance in hypoxic conditions with increased ASS1 expression. To restore ADI sensitivity as well as achieve tumor-selective delivery under hypoxia, we constructed a pH-sensitive cell penetrating peptide (CPP)-based delivery system to carry ADI inside cells to deplete both intra- and extracellular arginine. The delivery system was designed to activate the CPP-mediated internalization only at the mildly acidic pH (6.5-7) associated with the microenvironment of hypoxic tumors, thus achieving better selectivity toward tumor cells. The pH sensitivity of the CPP HBHAc was controlled by recombinant fusion to a histidine-glutamine (HE) oligopeptide, generating HBHAc-HE-ADI. The tumor distribution of HBHAc-HE-ADI was comparable to ADI-PEG20 in a mouse xenograft model of human breast cancer cells in vivo. In addition, HBHAc-HE-ADI showed increased in vitro cellular uptake in cells incubated in a mildly acidic pH (hypoxic conditions) compared to normal pH (normoxic conditions), which correlated with pH-sensitive in vitro cytotoxicity in hypoxic MDA-MB-231 and human prostate cancer PC3 cells. Together, we conclude that the HBHAc-HE-based peptide delivery offers a useful means to overcome hypoxia-induced resistance to ADI in breast cancer cells, and to target the mildly acidic tumor microenvironment.
Collapse
Affiliation(s)
- Tzyy-Harn Yeh
- School of Pharmacy, College of Medicine, National Taiwan University , Taipei, Taiwan.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , Los Angeles, California 90033, United States
| | - Yun-Ru Chen
- Department of Metabolic Research, Beckman Research Institute, City of Hope , Duarte, California 91010, United States
| | - Szu-Ying Chen
- Department of Metabolic Research, Beckman Research Institute, City of Hope , Duarte, California 91010, United States.,Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University , Tainan, Taiwan
| | - Wei-Chiang Shen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , Los Angeles, California 90033, United States
| | - David K Ann
- Department of Metabolic Research, Beckman Research Institute, City of Hope , Duarte, California 91010, United States
| | - Jennica L Zaro
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , Los Angeles, California 90033, United States
| | - Li-Jiuan Shen
- School of Pharmacy, College of Medicine, National Taiwan University , Taipei, Taiwan.,Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University , Taipei, Taiwan.,Department of Pharmacy, National Taiwan University Hospital , Taipei, Taiwan
| |
Collapse
|
34
|
Breast Cancer Metabolism and Mitochondrial Activity: The Possibility of Chemoprevention with Metformin. BIOMED RESEARCH INTERNATIONAL 2015; 2015:972193. [PMID: 26605341 PMCID: PMC4641168 DOI: 10.1155/2015/972193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/11/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming refers to the ability of cancer cells to alter their metabolism in order to support the increased energy request due to continuous growth, rapid proliferation, and other characteristics typical of neoplastic cells. It has long been believed that the increase of metabolic request was independent of the mitochondrial action but recently we know that mitochondrial activity together with metabolism plays a pivotal role in the regulation of the energy needed for tumor cell growth and proliferation. For these reasons the mitochondria pathways could be a new target for therapeutic and chemopreventive intervention. Metformin in particular is actually considered a promising agent against mitochondrial activity thanks to its ability to inhibit the mitochondrial complex I.
Collapse
|
35
|
Abstract
Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy.
Collapse
|
36
|
Baker AF, Malm SW, Pandey R, Laughren C, Cui H, Roe D, Chambers SK. Evaluation of a hypoxia regulated gene panel in ovarian cancer. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2015; 8:45-56. [PMID: 25998313 PMCID: PMC4449346 DOI: 10.1007/s12307-015-0166-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/26/2015] [Indexed: 01/02/2023]
Abstract
A panel of nine hypoxia regulated genes, selected from a previously published fifty gene panel, was investigated for its ability to predict hypoxic ovarian cancer phenotypes. All nine genes including vascular endothelial growth factor A, glucose transporter 1, phosphoglycerate mutase 1, lactate dehydrogenase A, prolyl 4-hydroxylase, alpha-polypeptide 1, adrenomedullin, N-myc downstream regulated 1, aldolase A, and carbonic anhydrase 9 were upregulated in the HEY and OVCAR-3 human ovarian cell lines cultured in vitro under hypoxic compared to normoxic conditions as measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The gene panel was also elevated in HEY xenograft tumor tissue compared to HEY cells cultured in normoxia. The HEY xenograft tissue demonstrated heterogeneous positive immunohistochemical staining for the exogenous hypoxia biomarker pimonidazole, and the hypoxia regulated protein carbonic anhydrase IX. A quantitative nuclease protection assay (qNPA) was developed which included the nine hypoxia regulated genes. The qNPA assay provided similar results to those obtained using qRT-PCR for cultured cell lines. The qNPA assay was also evaluated using paraffin embedded fixed tissues including a set of five patient matched primary and metastatic serous cancers and four normal ovaries. In this small sample set the average gene expression was higher in primary and metastatic cancer tissue compared to normal ovaries for the majority of genes investigated. This study supports further evaluation by qNPA of this gene panel as an alternative or complimentary method to existing protein biomarkers to identify ovarian cancers with a hypoxic phenotype.
Collapse
Affiliation(s)
- Amanda F. Baker
- University of Arizona Cancer Center and College of Medicine, Tucson, Arizona ,University of Arizona Cancer Center, 1515 N. Campbell Ave Room 3977A, Tucson, AZ 85724 Arizona
| | - Scott W. Malm
- University of Arizona Cancer Center and College of Pharmacy, Tucson, Arizona
| | - Ritu Pandey
- University of Arizona Cancer Center, 1515 N. Campbell Ave Room 3977A, Tucson, AZ 85724 Arizona
| | - Cindy Laughren
- University of Arizona Cancer Center, 1515 N. Campbell Ave Room 3977A, Tucson, AZ 85724 Arizona
| | - Haiyan Cui
- University of Arizona Cancer Center, 1515 N. Campbell Ave Room 3977A, Tucson, AZ 85724 Arizona
| | - Denise Roe
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, Tucson, Arizona
| | - Setsuko K. Chambers
- University of Arizona Cancer Center and College of Medicine, Tucson, Arizona
| |
Collapse
|
37
|
Swartz JE, Pothen AJ, Stegeman I, Willems SM, Grolman W. Clinical implications of hypoxia biomarker expression in head and neck squamous cell carcinoma: a systematic review. Cancer Med 2015; 4:1101-16. [PMID: 25919147 PMCID: PMC4529348 DOI: 10.1002/cam4.460] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Awareness increases that the tumor biology influences treatment outcome and prognosis in cancer. Tumor hypoxia is thought to decrease sensitivity to radiotherapy and some forms of chemotherapy. Presence of hypoxia may be assessed by investigating expression of endogenous markers of hypoxia (EMH) using immunohistochemistry (IHC). In this systematic review we investigated the effect of EMH expression on local control and survival according to treatment modality in head and neck cancer (head and neck squamous cell carcinoma [HNSCC]). A search was performed in MEDLINE and EMBASE. Studies were eligible for inclusion that described EMH expression in relation to outcome in HNSCC patients. Quality was assessed using the Quality in Prognosis Studies (QUIPS) tool. Hazard ratios for locoregional control and survival were extracted. Forty studies of adequate quality were included. HIF-1a, HIF-2a, CA-IX, GLUT-1, and OPN were identified as the best described EMHs. With exception of HIF-2a, all EMHs were significantly related to adverse outcome in multiple studies, especially in studies where patients underwent single-modality treatment. Positive expression was often correlated with adverse clinical characteristics, including disease stage and differentiation grade. In summary, EMH expression was common in HNSCC patients and negatively influenced their prognosis. Future studies should investigate the effect of hypoxia-modified treatment schedules in patients with high In summary, EMH expression. These may include ARCON, treatment with nimorazole, or novel targeted therapies directed at hypoxic tissue. Also, the feasibility of surgical removal of the hypoxic tumor volume prior to radiotherapy should be investigated.
Collapse
Affiliation(s)
- Justin E Swartz
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ajit J Pothen
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Stegeman
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
38
|
Wang Q, Vaupel P, Ziegler SI, Shi K. Exploring the quantitative relationship between metabolism and enzymatic phenotype by physiological modeling of glucose metabolism and lactate oxidation in solid tumors. Phys Med Biol 2015; 60:2547-71. [PMID: 25761504 DOI: 10.1088/0031-9155/60/6/2547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular imaging using PET or hyperpolarized MRI can characterize tumor phenotypes by assessing the related metabolism of certain substrates. However, the interpretation of the substrate turnover in terms of a pathophysiological understanding is not straightforward and only semiquantitative. The metabolism of imaging probes is influenced by a number of factors, such as the microvascular structure or the expression of key enzymes. This study aims to use computational simulation to investigate the relationship between the metabolism behind molecular imaging and the underlying tumor phenotype. The study focused on the pathways of glucose metabolism and lactate oxidation in order to establish the quantitative relationship between the expression of several transporters (GLUT, MCT1 and MCT4), expression of the enzyme hexokinase (HK), microvasculature and the metabolism of glucose or lactate and the extracellular pH distribution. A computational model for a 2D tumor tissue phantom was constructed and the spatio-temporal evolution of related species (e.g. oxygen, glucose, lactate, protons, bicarbonate ions) was estimated by solving reaction-diffusion equations. The proposed model was tested by the verification of the simulation results using in vivo and in vitro literature data. The influences of different expression levels of GLUT, MCT1, MCT4, HK and microvessel distribution on substrate concentrations were analyzed. The major results are consistent with experimental data (e.g. GLUT is more influential to glycolytic flux than HK; extracellular pH is not correlated with MCT expressions) and provide theoretical interpretation of the co-influence of multiple factors of the tumor microenvironment. This computational simulation may assist the generation of hypotheses to bridge the discrepancy between tumor metabolism and the functions of transporters and enzymes. It has the potential to accelerate the development of multi-modal imaging strategies for assessment of tumor phenotypes.
Collapse
Affiliation(s)
- Qian Wang
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | |
Collapse
|
39
|
Liu L, Chang S, Sun J, Zhu S, Yin M, Zhu Y, Wang Z, Xu RX. Ultrasound-mediated destruction of paclitaxel and oxygen loaded lipid microbubbles for combination therapy in ovarian cancer xenografts. Cancer Lett 2015; 361:147-54. [PMID: 25754815 DOI: 10.1016/j.canlet.2015.02.052] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 12/18/2022]
Abstract
We have synthesized multifunctional oxygen and paclitaxel loaded microbubbles (OPLMBs) for ultrasound mediated delivery of combination therapy in an ovarian cancer xenograft model. In comparison with other therapeutic options, intravenous injection of OPLMBs followed by ultrasound mediation yielded a superior therapeutic outcome. Immunohistochemical analyses of the dissected tumor tissue confirmed the increased tumor apoptosis and the reduced VEGF expression after treatment. Western Blot tests further confirmed the decreased expressions of HIF-1α and P-gp. Our experiment suggests that ultrasound mediation of OPLMBs may provide a promising drug delivery strategy for the combination treatment of ovarian cancer.
Collapse
Affiliation(s)
- Li Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing 400016, China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shenyin Zhu
- Department of Pharmacy, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Minyue Yin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yi Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ronald X Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Blueschke G, Hanna G, Fontanella AN, Palmer GM, Boico A, Min H, Dewhirst MW, Irwin DC, Zhao Y, Schroeder T. Automated measurement of microcirculatory blood flow velocity in pulmonary metastases of rats. J Vis Exp 2014:e51630. [PMID: 25490280 DOI: 10.3791/51630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Because the lung is a major target organ of metastatic disease, animal models to study the physiology of pulmonary metastases are of great importance. However, very few methods exist to date to investigate lung metastases in a dynamic fashion at the microcirculatory level, due to the difficulty to access the lung with a microscope. Here, an intravital microscopy method is presented to functionally image and quantify the microcirculation of superficial pulmonary metastases in rats, using a closed-chest pulmonary window and automated analysis of blood flow velocity and direction. The utility of this method is demonstrated to measure increases in blood flow velocity in response to pharmacological intervention, and to image the well-known tortuous vasculature of solid tumors. This is the first demonstration of intravital microscopy on pulmonary metastases in a closed-chest model. Because of its minimized invasiveness, as well as due to its relative ease and practicality, this technology has the potential to experience widespread use in laboratories that specialize on pulmonary tumor research.
Collapse
Affiliation(s)
- Gert Blueschke
- Division of Plastic, Maxillofacial, and Oral Surgery, Duke University Medical Center
| | - Gabi Hanna
- Department of Radiation Oncology, Duke University Medical Center
| | | | - Gregory M Palmer
- Department of Radiation Oncology, Duke University Medical Center
| | - Alina Boico
- Department of Radiation Oncology, Duke University Medical Center
| | - Hooney Min
- Department of Radiation Oncology, Duke University Medical Center
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center
| | - David C Irwin
- Department of Cardiology, University of Colorado Denver
| | - Yulin Zhao
- Department of Radiation Oncology, Duke University Medical Center
| | | |
Collapse
|
41
|
ZHANG XIAOQIAN, SUN XIUE, LIU WENDONG, FENG YUGUANG, ZHANG HONGMEI, SHI LIHONG, SUN XIUNING, LI YANQING, GAO ZHIXING. Synergic effect between 5-fluorouracil and celecoxib on hypoxic gastric cancer cells. Mol Med Rep 2014; 11:1160-6. [DOI: 10.3892/mmr.2014.2783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 08/14/2014] [Indexed: 01/30/2023] Open
|
42
|
Zhang YL, Lü R, Chang ZS, Zhang WQ, Wang QB, Ding SY, Zhao W. Clostridium sporogenes
delivers interleukin-12 to hypoxic tumours, producing antitumour activity without significant toxicity. Lett Appl Microbiol 2014; 59:580-6. [DOI: 10.1111/lam.12322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/31/2014] [Accepted: 08/23/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Y.-L. Zhang
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - R. Lü
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - Z.-S. Chang
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - W.-Q. Zhang
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - Q.-B. Wang
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - S.-Y. Ding
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - W. Zhao
- Department of Microbiology; Medical College; Qingdao University; Qingdao 266071 China
| |
Collapse
|
43
|
Bicarbonate transport inhibitor SITS modulates pH homeostasis triggering apoptosis of Dalton's lymphoma: implication of novel molecular mechanisms. Mol Cell Biochem 2014; 397:167-78. [PMID: 25123669 DOI: 10.1007/s11010-014-2184-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
Abstract
Bicarbonate transporter (BCT) plays a crucial role in maintaining pH homeostasis of tumor cells by import of HCO3(-). This helps the tumor cells in manifesting extracellular tumor acidosis, accompanied by a relative intracellular alkalinization, which in turn promotes tumor progression. Therefore, blocking BCT-mediated HCO3(-) transport is envisaged as a promising anticancer therapeutic approach. Thus, using a murine model of a T cell lymphoma, designated as Dalton's lymphoma (DL), in the present in vitro investigation the antitumor consequences of blocking BCT function by its inhibitor 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) were explored. Treatment of DL cells with SITS resulted in an increase in the extracellular pH, associated with a decline in DL cell survival and augmented induction of apoptosis. BCT inhibition also elevated the expression of cytochrome c, caspase-9, caspase-3, Bax, reactive oxygen species, and nitric oxide along with inhibition of HSP-70 and Bcl2, which regulate tumor cell survival and apoptosis. SITS-treated DL cells displayed upregulated production of IFN-γ and IL-6 along with a decline of IL-10. Treatment of DL cells with SITS also inhibited the expression of fatty acid synthase, which is crucial for membrane biogenesis in neoplastic cells. The expression of lactate transporter MCT-1 and multidrug resistance regulating protein MRP-1 got inhibited along with hampered uptake of glucose and lactate production in SITS-treated DL cells. Thus, the declined tumor cell survival following inhibition of BCT could be the consequence of interplay of several inter-connected regulatory molecular events. The outcome of this study indicates the potential of BCT inhibition as a novel therapeutic approach for treatment of hematological malignancies.
Collapse
|
44
|
Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R, Sun J, Kapoor V, Scholler J, Puré E, Milone MC, June CH, Riley JL, Wherry EJ, Albelda SM. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res 2014; 20:4262-73. [PMID: 24919573 DOI: 10.1158/1078-0432.ccr-13-2627] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Immunotherapy using vaccines or adoptively transferred tumor-infiltrating lymphocytes (TIL) is limited by T-cell functional inactivation within the solid tumor microenvironment. The purpose of this study was to determine whether a similar tumor-induced inhibition occurred with genetically modified cytotoxic T cells expressing chimeric antigen receptors (CAR) targeting tumor-associated antigens. EXPERIMENTAL DESIGN Human T cells expressing CAR targeting mesothelin or fibroblast activation protein and containing CD3ζ and 4-1BB cytoplasmic domains were intravenously injected into immunodeficient mice bearing large, established human mesothelin-expressing flank tumors. CAR TILs were isolated from tumors at various time points and evaluated for effector functions and status of inhibitory pathways. RESULTS CAR T cells were able to traffic into tumors with varying efficiency and proliferate. They were able to slow tumor growth, but did not cause regressions or cures. The CAR TILs underwent rapid loss of functional activity that limited their therapeutic efficacy. This hypofunction was reversible when the T cells were isolated away from the tumor. The cause of the hypofunction seemed to be multifactorial and was associated with upregulation of intrinsic T-cell inhibitory enzymes (diacylglycerol kinase and SHP-1) and the expression of surface inhibitory receptors (PD1, LAG3, TIM3, and 2B4). CONCLUSIONS Advanced-generation human CAR T cells are reversibly inactivated within the solid tumor microenvironment of some tumors by multiple mechanisms. The model described here will be an important tool for testing T cell-based strategies or systemic approaches to overcome this tumor-induced inhibition. Our results suggest that PD1 pathway antagonism may augment human CAR T-cell function.
Collapse
MESH Headings
- Animals
- BALB 3T3 Cells
- Cytotoxicity, Immunologic/immunology
- Endopeptidases
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gelatinases/genetics
- Gelatinases/immunology
- Gelatinases/metabolism
- Humans
- Immunotherapy, Adoptive
- Lymphocytes, Tumor-Infiltrating/immunology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mesothelin
- Mesothelioma/immunology
- Mesothelioma/metabolism
- Mesothelioma/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Serine Endopeptidases/genetics
- Serine Endopeptidases/immunology
- Serine Endopeptidases/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine,
| | - Liang-Chuan Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | | | - Caleph B Wilson
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | | | - Jing Sun
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | - Veena Kapoor
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | - John Scholler
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | - Ellen Puré
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | - James L Riley
- Department of Microbiology and Institute for Immunology
| | - E John Wherry
- Department of Microbiology and Institute for Immunology
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| |
Collapse
|
45
|
Gao Y, Jing M, Ge R, Zhou Z, Sun Y. Inhibition of hypoxia inducible factor 1α by siRNA-induced apoptosis in human retinoblastoma cells. J Biochem Mol Toxicol 2014; 28:394-9. [PMID: 24860939 DOI: 10.1002/jbt.21576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022]
Abstract
Hypoxia, which activates the hypoxia inducible factor 1α (HIF-1α), is an essential feature of retinoblastoma (RB) and contributes to poor prognosis and resistance to conventional therapy. In this study, the effect of HIF-1α knockdown by small interfering RNA (siRNA) on cell proliferation, apoptosis, and apoptotic pathways of human Y-79 RB cells was first investigated. Exposure to hypoxia induced the increased expression of HIF-1α both in mRNA and protein levels. Then, knockdown of HIF-1α by siRNAHIF-1α resulted in inhibition of cell proliferation and induced cell apoptosis in human Y-79 RB cells under both normoxic and hypoxic conditions, with hypoxic conditions being more sensitive. Furthermore, knockdown of HIF-1α could enhance hypoxia-induced slight increase of Bax/Bcl-2 ratio and activate caspase-9 and caspase-3. These results together indicated that suppression of HIF-1α expression may be a promising strategy for the treatment of human RB in the future.
Collapse
Affiliation(s)
- Yu Gao
- Department of Ophthalmology, No. 411 Hospital of CPLA, Shanghai, 200081, People's Republic of China.
| | | | | | | | | |
Collapse
|
46
|
Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 812:19-24. [PMID: 24729210 DOI: 10.1007/978-1-4939-0620-8_3] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Hypoxia is a hallmark of tumors leading to (mal-)adaptive processes, development of aggressive phenotypes and treatment resistance. Based on underlying mechanisms and their duration, two main types of hypoxia have been identified, coexisting with complex spatial and temporal heterogeneities. Chronic hypoxia is mainly caused by diffusion limitations due to enlarged diffusion distances and adverse diffusion geometries (e.g., concurrent vs. countercurrent microvessels, Krogh- vs. Hill-type diffusion geometry) and, to a lesser extent, by hypoxemia (e.g., in anemic patients, HbCO formation in heavy smokers), and a compromised perfusion or flow stop (e.g., due to disturbed Starling forces or intratumor solid stress). Acute hypoxia mainly results from transient disruptions in perfusion (e.g., vascular occlusion by cell aggregates), fluctuating red blood cell fluxes or short-term contractions of the interstitial matrix. In each of these hypoxia subtypes oxygen supply is critically reduced, but perfusion-dependent nutrient supply, waste removal, delivery of anticancer or diagnostic agents, and repair competence can be impaired or may not be affected. This detailed differentiation of tumor hypoxia may impact on our understanding of tumor biology and may aid in the development of novel treatment strategies, tumor detection by imaging and tumor targeting, and is thus of great clinical relevance.
Collapse
|